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Abstract

Transposable elements (TE) comprise roughly half of the human genome. Though initially

derided as “junk DNA”, they have been widely hypothesized to contribute to the evolution

of gene regulation. However, the contribution of TE to the genetic architecture of diseases

and complex traits remains unknown. Here, we analyze data from 41 independent diseases

and complex traits (average N=320K) to draw three main conclusions. First, TE are uniquely

informative for disease heritability. Despite overall depletion for heritability (54% of SNPs,

39±2% of heritability; enrichment of 0.72±0.03; 0.38-1.23 enrichment across four main TE

classes), TE explain substantially more heritability than expected based on their depletion

for known functional annotations (expected enrichment of 0.35±0.03; 2.11x ratio of true vs.

expected enrichment). This implies that TE acquire function in ways that di↵er from known

functional annotations. Second, older TE contribute more to disease heritability, consistent with

acquiring biological function; SNPs inside the oldest 20% of TE explain 2.45x more heritability

than SNPs inside the youngest 20% of TE. Third, Short Interspersed Nuclear Elements (SINE;

one of the four main TE classes) are far more enriched for blood traits (2.05±0.30) than for other

traits (0.96±0.09); this di↵erence is far greater than expected based on the weaker depletion of

SINEs for regulatory annotations in blood compared to other tissues. Our results elucidate the

biological roles that TE play in the genetic architecture of diseases and complex traits.
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Introduction

Transposable elements (TE), defined as DNA sequences that can insert themselves at new genomic

locations, comprise roughly half of the human genome1,2. Though initially derided as “junk DNA”,

TE have been widely hypothesized to contribute to the evolution of gene regulation by providing

new targets for transcription factor binding and rewiring core regulatory networks3–16. TE have

been shown to play these important roles in a growing number of specific examples, potentially

impacting the genetic architecture of common disease. However, our current understanding of the

contribution of TE to the genetic architecture of diseases and complex traits is extremely limited.

Here, we applied stratified LD score regression17 (S-LDSC) with the baseline-LD model18 to

41 independent diseases and complex traits (average N=320K) to estimate the components of

heritability explained by di↵erent classes of TE. We sought to answer three questions. First, what

is the contribution of TE to disease, and does this di↵er from what is expected based on the extent

of their level of overlap with known functional annotations19,20? Second, do older TE contribute

more to the disease heritability than younger TE? Third, do there exist classes of TE that play a

greater role in specific diseases or traits?

Results

Overview of methods

We applied stratified LD score regression (S-LDSC)17 to assess the contribution of di↵erent TE

to disease and trait heritability. We estimated the heritability enrichment and standardized e↵ect

size (⌧⇤) for each TE annotation conditional on 75 functional annotations from the baseline-LD

model18 (Supplementary Table 1, see URLs). Heritability enrichment is defined as the propor-

tion of heritability causally explained by the set of common SNPs in an annotation divided by

the proportion of common SNPs in the annotation. Distinct from heritability enrichment, we also

compute the enrichment that is expected based on an annotation’s overlap with baseline-LD model

annotations, denoted as Expected (baseline-LD) (see Methods); this computation determines the

extent to which heritability enrichment/depletion is explained by known functional annotations.

We note that enrichment and expected enrichment can be either > 1 or < 1 (i.e. depletion). Stan-
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dardized e↵ect size (⌧⇤) is defined as the proportionate change in per-SNP heritability associated

with an increase in the value of the annotation by one standard deviation18; unlike heritability

enrichment, ⌧⇤ quantifies e↵ects that are unique to the focal annotation (see Methods). For each

TE annotation, we include an additional annotation defined by 500bp flanking regions, to guard

against bias due to model misspecification17 (see Methods). We have made our annotations and

partitioned LD scores freely available (see URLs). Most of our results are meta-analyzed across 41

independent diseases and complex traits (Supplementary Table 2, same traits as in ref.21).

TE are uniquely informative for disease heritability

We first focused on four main TE classes: long interspersed nuclear elements (LINE; 21% of SNPs),

short interspersed nuclear elements (SINE; 16% of SNPs), long terminal repeats (LTR; 9.8% of

SNPs), DNA transposons (DNA; 3.2% of SNPs), and the union all TE (ALLTE; 54% of SNPs).

The proportion of SNPs in each TE class slightly exceeded the proportion of the genome spanned

by the TE class (Supplementary Figure 1). This is consistent with weaker selective constraint

within surviving TE, and confirms that SNPs lying inside TE can be e↵ectively assayed despite the

challenges of aligning TE sequences. ALLTE explained 39% of disease heritability (meta-analyzed

across 41 diseases and traits), a moderate depletion (enrichment of 0.72±0.03; Figure 1A-B and

Supplementary Table 3). The four main TE classes were all depleted or non-significantly enriched

for trait heritability, with substantial heterogeneity between classes: 0.73±0.05 for LINE, 1.18±0.11

for SINE, 0.38±0.07 for LTR, and 1.23±0.19 for DNA (Figure 1B and Supplementary Table 3). Our

simulations confirm that S-LDSC produces unbiased estimates of enrichment for these annotations

(see Methods, Supplementary Figure 2). A secondary analysis of enrichment of fine-mapped causal

disease SNPs22,23 produced concordant results (Supplementary Table 4). A secondary analysis of

enrichment of fine-mapped causal cis-eQTL SNPs21 from GTEx data24 also produced concordant

results (Supplementary Table 5).

Notably, the heritability enrichments expected based on overlap with baseline-LD model an-

notations were much lower (Expected (baseline-LD); Figure 1A-B and Supplementary Table 3),

consistent with the large depletion of overlap between TE and known functional annotations (Sup-

plementary Figure 3). Accordingly, ⌧⇤ estimates were significantly positive for each TE class

(Figure 1C), implying disease heritability enrichment e↵ects that are not captured by known func-
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tional annotations. These ⌧⇤ estimates were similar (in absolute value) to ⌧⇤ estimates for the

most informative annotations in our previous work18,21. Furthermore, each of the four main TE

classes (LINE, SINE, LTR, and DNA) had a significant ⌧⇤ conditional on each other and baseline-

LD model annotations (Supplementary Table 6), indicating that each is uniquely informative for

disease heritability.

We investigated whether the age of a TE impacts its contribution to disease heritability. We es-

timated the age of each TE using miliDiv (RepeatMasker software; see URLs), which computes the

number of mutations relative to a consensus sequence to estimate the age of each TE11. We strat-

ified SNPs lying in a TE into five quintiles based on the age of the TE. We determined that older

SNPs had larger heritability enrichments than younger SNPs (e.g. 0.91±0.11 for oldest quintile

vs 0.37±0.10 for youngest quintile; Supplementary Figure 4 and Supplementary Table 7). We re-

peated this analysis for each TE class (SINE, LINE, LTR, DNA) and observed the largest e↵ect for

SINE (Supplementary Figure 5). Analyses of Expected(baseline-LD) across TE families/subfamilies

produced similar results, with the largest age e↵ect for SINE (Supplementary Figure 6 and Sup-

plementary Table 8). These results indicate that older TE have a higher contribution to disease

heritability, perhaps because they have gained biological function.

Next, we analyzed 35 TE families/subfamilies spanning at least 0.4% of common SNPs (i.e.,

MAF � 0.05; Supplementary Table 9). We identified 4 TE families/subfamilies that were sig-

nificantly depleted for trait heritability (L1, L1PA3, ERV1, and L1PA4; Supplementary Figure 7

and Supplementary Tables 10 and 11); none were significantly enriched. For the 814 TE fami-

lies/subfamilies spanning less than 0.4% of common SNPs (Supplementary Table 12), we estimated

Expected (baseline-LD) enrichment only (Supplementary Table 13), as S-LDSC is not applicable

to very small annotations17. We identified 587 TE families/subfamilies that were significantly

depleted for expected disease heritability (Supplementary Table 14). We also identified 46 TE fam-

ilies/subfamilies that were significantly enriched for expected disease heritability (Supplementary

Figure 8 and Supplementary Table 14), consistent with their excess overlap with known functional

annotations (Supplementary Figures 9 and 10 and Supplementary Tables 15 and 16). Notably,

LFSINE-Vert and AmnSINE1, which have previously been reported to have important biological

function25–27, had very large expected enrichments (5.54±0.39 and 5.44±0.32 respectively).
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SINE are specifically strongly enriched for blood traits

We investigated whether TE enrichment varies across disease and traits. We estimated the her-

itability enrichment of each TE class (ALLTE, LINE, SINE, LTR, DNA) for 5 blood traits, 6

autoimmune diseases, and 8 brain-related traits (see Supplementary Table 17; same traits as in

ref.21). We included a blood-specific chromatin annotation in our analyses of blood traits and

autoimmune diseases, and a brain-specific chromatin annotation in our analyses of brain-related

traits, in addition to the baseline-LD model (see Methods). Results are reported in Figure 2A and

Supplementary Table 18. We determined that SINE are specifically strongly enriched for blood

traits (2.05±0.30 vs. 1.18± 0.11 for non-blood traits; P=3E-04 for di↵erence); no other TE class

had significant trait class-specific enrichment after correcting for hypotheses tested, although SINE

enrichment was non-significantly higher for autoimmune diseases vs. other traits (Supplementary

Table 18). The di↵erence in SINE enrichment for blood traits vs non-blood traits was much higher

than expected based on overlap with baseline-LD model and blood-specific chromatin annotations

(Expected (baselineLD+blood chromatin); Supplementary Table 18). Accordingly, we estimated

a particularly large ⌧⇤ for SINE for blood traits (Figure 2B and Supplementary Table 18), much

larger (in absolute value) than ⌧⇤ estimates for the most informative annotations in our previous

work18,21. The specific importance of SINE for blood traits is consistent with the weaker depletion

of SINE in blood-specific chromatin annotations vs. other tissue/cell types (Figure 2C and Supple-

mentary Table 19), but is far greater than expected based on this weaker depletion; in particular,

the ⌧⇤ estimates of Figure 2B are conditioned on blood-specific chromatin annotations.

We repeated the trait class-specific analysis for the 35 TE families/subfamilies spanning at least

0.4% of common SNPs (Supplementary Tables 20-22). We did not detect any trait class-specific

enrichments except for the Alu family, which spans 80% of the SINE class and produces results

similar to SINE. For the 814 TE families/subfamilies spanning less than 0.4% of common SNPs,

we detected 27 that had significantly higher Expected (baseline-LD+blood chromatin) enrichment

for blood-related traits vs. other traits (Supplementary Table 23) and 27 that had significantly

higher Expected (baseline-LD+blood chromatin) enrichment for autoimmune diseases vs other

traits (Supplementary Table 24). The majority of TE families/subfamilies for that were specifically

enriched for autoimmune diseases are endogenous retroviruses (ERV), including the MER41, which
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has previously been reported to contribute to autoimmune disease14. We also detected 109 TE

families/subfamilies with higher Expected (baselineLD+brain chromatin) enrichment for brain-

related traits vs. other traits (Supplementary Table 25).

Discussion

We have quantified the disease heritability explained by TE, including di↵erent classes of TE. We

reached three main conclusions. First, TE are uniquely informative for disease heritability, as they

explain substantially more heritability than expected based on their depletion for known functional

annotations. This implies that TE acquire function in ways that di↵er from known functional

annotations. Second, we observed that older TE contribute more to disease heritability, consistent

with acquiring biological function. Third, the SINE class of TE is far more enriched for blood traits

than for other traits, showing that TE biology can be trait class-specific.

Our findings have several biological implications. First, our results suggest that the functional

annotation of the human genome is far from complete, as the functional regions underlying the

contribution of TE to disease heritability have yet to be annotated. This motivates intense e↵orts

to identify these functional regions. We have provided a framework (⌧⇤ metric; Figure 1C) to

evaluate these e↵orts. Specifically, a ⌧⇤ value close to 0 (conditional on a new set of functional

annotations) would imply that this goal has been achieved; this can be evaluated for all TE and all

traits (Figure 1C), but is of particular interest for SINE and blood traits (Figure 2B). Second, our

TE-related annotations with conditionally significant signals (Figure 1C) can be incorporated to

improve functionally informed fine-mapping28–30, as well as functionally informed e↵orts to increase

association power31,32 and polygenic prediction accuracy33–35.

We note several limitations of our work. First, S-LDSC cannot be applied to estimate the

heritability enrichment of TE families/subfamilies that span a small proportion of the genome (e.g.

less than 0.4% of common SNPs)17. We can instead compute the heritability enrichment that is

expected based on an annotation’s overlap with baseline-LD model annotations, although we cau-

tion that this quantity has a di↵erent interpretation. Second, we focused our analyses on common

variants, as we used the 1000 Genomes LD reference panel, but future work could draw inferences

about low-frequency variants using larger reference panels36. Third, SNPs lying inside TE may be
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di�cult to identify and annotate due to the challenges of aligning TE sequences. However, the pro-

portion of SNPs in each TE class slightly exceeded the proportion of the genome spanned by the TE

class (Supplementary Figure 1), suggesting that SNPs lying inside TE can be e↵ectively assayed.

In addition, we observed that 85% of 1000 Genomes SNPs lie in a 35-mer that has mappability

of 1 (i.e. unique mappability) based on the ENCODE 35-mer track. Thus, 85% of the SNPs in

our analysis are not impacted by aligning reads to repetitive regions of the genome. Furthermore,

we confirmed that restricting our analyses to the 85% of SNPs with mappability of 1 produces

very similar results (Supplementary Table 27). Fourth, inferences about components of heritability

can potentially be biased by failure to account for LD-dependent architectures18,37–39. All of our

analyses used the baseline-LD model, which includes 6 LD-related annotations18. The baseline-LD

model is supported by formal model comparisons using likelihood and polygenic prediction meth-

ods, as well as analyses using a combined model incorporating alternative approaches40; however,

there can be no guarantee that the baseline-LD model perfectly captures LD-dependent architec-

tures. Despite these limitations, our results substantially improve our current understanding of the

contribution of TE to the genetic architecture of diseases and complex traits.
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Methods

Heritability enrichment and standardized e↵ect size (⌧⇤)

We use two metics (Heritability enrichment and standardized e↵ect size (⌧⇤)) to measure the

contribution of an annotation to disease and trait heritability17,18. We use S-LDSC to compute

the heritability enrichment and standardized e↵ect size (⌧⇤). S-LDSC assumes that the per-SNP

heritability or variance of each SNP is equal to the linear contribution of each annotation17:

Var(�j) =
X

c

acj⌧c (1)

where acj indicates the annotation value of SNP j for the annotation c and ⌧c is the contribution

of annotation c to the per-SNP heritability. S-LDSC estimates the ⌧c for each annotation using the

following equation:

E[�2
j ] = N

X

c

`(j, c)⌧c + 1 (2)

where N is GWAS sample size and `(j, c) is the LD-score for the SNP j and annotation c computed

from the 1000 Genome project (see URLs). We estimated `(j, c) as
P

k ackr
2
jk where rjk is the

genotypic correlation between SNPs j and k.

Because ⌧c depends on trait heritability and the size of annotation we can not compare ⌧c

between di↵erent traits or annotations. Gazal et al.18 introduced standardized e↵ect size (⌧⇤) for

an annotation as follows:

⌧c⇤ =
⌧csd(c)

h2g/Mc
(3)

where sd(c) is the standard deviation of the annotation values, Mc is total number of common

SNPs used to estimate the h2g, and h2g is the SNP-heritability for each trait. In our experiments Mc

is equal to 5,961,159. We can compare ⌧⇤ between di↵erent traits or annotations.

Heritability enrichment for an annotation is defined as the proportion of trait heritability cap-

tured by an annotation divide by the proportion of common SNPs that span that annotation. Thus,
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heritability enrichment is computed as follows:

Enrichment =
%h2g(c)

%SNP(c)
=

h2
g(c)

h2
gP

j ajc
Mc

(4)

where h2g(c) is the heritability captured by the annotation c and it is computed as follows:

h2g(c) =
X

j

ajcVar(�j) =
X

j

ajc
�X

c

ajc⌧c
�

(5)

Both heritability enrichment and ⌧⇤ are computed conditional on set of annotations in the model

(e.g. baseline-LD model18), ⌧⇤ captures the signal that is unique to the focal annotation after

conditioning on all the annotations in the model. Standardized e↵ect size (⌧⇤) is defined as the

proportionate change in per-SNP heritability associated with an increase in the value of the anno-

tation by one standard deviation18. However, enrichment captures a signal that is unique and/or

non-unique to the focal annotation.

We computed the statistical significance of heritability enrichment using block-jackknife, as

described in our previous studies17,18,21 where we break the genome to 200 equal blocks. We

compute the statistical significant of ⌧⇤ by assuming that ⌧⇤
se(⌧⇤) follows a normal distribution with

mean zero and variance one ( ⌧⇤
se(⌧⇤) ⇠ N(0, 1))17,18,21.

The meta-analyzed values of enrichment and ⌧⇤ across the 41 independent traits (47 data sets, see

Supplementary Table 2) were computed using a random-e↵ect meta-analysis, as implemented in

the rmeta R package (see URLs).

Expected(baseline-LD): We compute the expected (baseline-LD) enrichment for an annotation by

assuming that the ⌧ of the focal annotation is zero. This is equivalent to apply S-LDSC to each

trait using baseline-LD model and compute the per-SNP heritability for each variant using equation

(1). Next, we compute the h2g(c) of the annotation by summing over the per-SNP heritability of all

SNPs that are in the annotation c. In the end, we can compute the heritability enrichment using

equation (4) and compute the standard error using similar block-jackknife.
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Proportion of heritability captured by each annotation

We can compute 3 di↵erent proportion of heritability (%heritability) for each annotation: ob-

served heritability, Expected(%SNPs), Expected (baseline-LD). Observed heritability enrichment

is obtained from S-LDSC by conditioning on baseline-LD model.

Expected(%SNPs): Under the null model, we assume the enrichment of an annotation is one. Thus,

this annotation has none significant heritability enrichment (non-enriched or non-depleted), then

we expect the %heritability for an annotation to be equal to %SNPs in that annotation.

Expected(baseline-LD): We compute this quantity by multiplying the expected (baseline-LD) and

%SNPs.

Observed %heritability: We compute this quantity by utilizing S-LDSC results of heritability en-

richment and %SNPs. We have: Observed %heritability = Heritability enrichment ⇥ %SNPs.

TE annotations

We constructed two annotations for each TE where the first annotation is obtained by considering

all the SNPs that fall in a TE and the second annotation is obtained by considering all the SNP

in a 500bp window of the TE. The window annotation is based on recommendation of previous

work17. All results are obtained by conditioning over baseline-LD model. The ⌧⇤ and enrichment

reported for each TE class/family/subfamily are based on the first constructed TE annotation.

We compared this enrichment estimates with the case where we compute the enrichment of an

annotation conditional jointly on 4 extra annotations created by considering di↵erent window size

of 100, 200, 500, and 1000bp. We observed that S-LDSC results does not depend on the window

size (Supplementary Figure 11).

S-LDSC simulations

We set the ⌧ for each annotation based on enrichment obtained in real data sets. Utilizing the

total heritability we simulated causal trait e↵ect sizes using a polygenetic model: � ⇠ N(0, h2g/nc)

where nc is the number of causal SNPs. We simulated the phenotypic values under the additive

model (Y = X� + e) where X is the standardized genotype matrix and e is the environment and

measurement noise. We computed the summary statistics by performing linear regression between
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the phenotypic values and genotype data using PLINK software (see URLs). In our simulation, we

vary the number of individuals for the traits among 2,000, 20,000, and 40,000 where UK biobank

genotypes41 are used. After simulating the summary statistics, we applied S-LDSC conditional

on baseline-LD model and our TE annotation. Regression SNPs in S-LDSC were obtained from

the HapMap Project phase 342 (see URLs). These SNPs are well-imputed SNPs. SNPs with

marginal association statistics larger than 80 or larger than 0.001N and SNPs that are in the major

histocompatibility complex (MHC) region were excluded from all the analyses17,18,21. Reference

SNPs were obtained using the European samples in 1000G41. Heritability SNPs, which are used

to estimate h2g, were common variants (MAF�0.05) in the set of reference SNPs.

Excess overlap

Let A and B indicate two annotations and |.| indicate the number of SNPs in the annotation. We

defined the excess overlap as follows:

Excess(A,B) =
|A\B|
M

|A|
M

|B|
M

(6)

where M is total number of SNPs and |A \ B| indicates the set of SNPs that is shared in both

annotations A and B. We compute the standard error over our estimates using block jackknife with

200 blocks that is similar how S-LDSC computed the standard error over heritability enrichment

as described in our previous studies17,18,21.

Tissue-specific chromatin annotations

Blood chromatin is blood active chromatin regions by combining 27 blood cells and 6 chromatin

marks (H3K27ac, H3K4me3, DNase, DNase-H3K27ac, DNase-H3K4me3) obtained from ChromIm-

pute43 applied on Roadmap Epigenomics data20. Non-blood chromatin is non-blood active chro-

matin regions by combining 100 non-blood cells and 6 chromatin marks (H3K27ac, H3K4me3,

DNase, DNase-H3K27ac, DNase-H3K4me3).

Brain chromatin is brain active chromatin regions by combining 13 brain cells and 6 chromatin

marks (H3K27ac, H3K4me3, DNase, DNase-H3K27ac, DNase-H3K4me3) obtained from ChromIm-

pute43 applied on Roadmap Epigenomics data20. Non-brain chromatin is non-brain active chro-
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matin regions by combining 114 non-brain cells and 6 chromatin marks.
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URLs

baselineLD annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/

TE annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/TE/

Repeat masker software: http://www.repeatmasker.org

1000 Genomes Project Phase 3 data: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502

PLINK software: https://www.cog-genomics.org/plink2

BOLT-LMM software: https://data.broadinstitute.org/alkesgroup/BOLT-LMM

BOLT-LMM summary statistics for UK Biobank traits: https://data.broadinstitute.org/alkesgroup/UKBB

UK Biobank: http://www.ukbiobank.ac.uk/

UK Biobank Genotyping and QC Documentation: http://www.ukbiobank.ac.uk/wp-content/uploads/2014/

04/UKBiobank genotyping QC documentation-web.pdf

rmeta R package: https://cran.r-project.org/web/packages/rmeta/index.html
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Figure 1. TE are uniquely informative for disease heritability. For each of four main TE classes
and ALLTE, we report A) three measures of %heritability: Expected (%SNPs), Observed, and Expected
(baseline-LD); B) two measures of heritability enrichment: Observed and Expected (baseline-LD); and C)
standardized e↵ect size (⌧⇤), which quantifies e↵ect that are unique to the focal annotation. Results are
meta-analyzed across 41 independent traits. Numerical values of %SNPs are provided for each annotation.
Error bars denote 95% confidence intervals. Numerical results are reported in Supplementary Table 3.
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Figure 2. Larger SINE enrichments for blood traits. For each of four main TE classes and ALLTE,
we report A) heritability enrichment for blood traits and other traits; B) standardized e↵ect size (⌧⇤) for
blood traits and other traits; and C) excess overlap with chromatin annotations in blood and chromatin
annotations in other tissues. Results are meta-analyzed across 41 independent traits. Numerical values of
%SNPs are provided for each annotation. Error bars denote 95% confidence intervals. Numerical results are
reported in Supplementary Table 18 (A,B) and Supplementary Table 19 (C).
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