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Abstract10

Our study investigates the possible drivers of recombination hotspots in Theobroma cacao11

using ten genetically differentiated populations. This constitutes the first time that recom-12

bination rates from more than two populations of the same species have been compared,13

providing a novel view of recombination at the population-divergence time-scale. For each14

population, a fine-scale recombination map was generated using under the coalescent with a15

standard method based on linkage disequilibrium (LD). They revealed higher recombination16

rates in a domesticated population and a population that has undergone a recent bottleneck.17

We address whether the pattern of recombination rate variation along the chromosome is18

sensitive to the uncertainty in the per-site estimates. We find that uncertainty, as assessed19

from the Markov chain Monte Carlo iterations is orders of magnitude smaller than the scale of20

variation of the recombination rates genome-wide. We inferred hotspots of recombination for21

each population and find that the genomic locations of these hotspots correlate with genetic22

differentiation between populations (FST ). We developed novel randomization approaches23

to generate appropriate null models for understanding the association between hotspots of24

recombination and both DNA sequence motifs and genomic features. Hotspot regions con-25

tained fewer known retroelement sequences than expected, and were overrepresented near26

transcription start and termination sites. Our findings indicate that recombination hotspots27

are evolving in a way that is consistent with genetic differentiation, but are also preferentially28

driven to regions of the genome that are up or downstream from coding regions.29
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Introduction30

Genetic variation is fundamental for evolutionary forces like selection and genetic drift to31

act. Selection and drift also contribute to a loss of variation, which means that they must act32

in conjunction with forces that maintain variation along the genome in order for populations33

to continue evolving over prolonged periods of time. Recombination’s rearranging of genetic34

material onto different backgrounds generates a larger set of haplotype combinations on35

which selection can act, reducing the magnitude of Hill-Robertson interference (Felsenstein,36

1974). Different regimes of recombination can strongly influence how efficient selection is37

at purging deleterious mutations and increasing the frequency of beneficial mutations in the38

population (Felsenstein, 1974).39

One way to elucidate the distribution of recombination events along the genome is by40

using fine-scale recombination maps (Myers et al., 2005; Auton et al., 2012; Brunschwig et al.,41

2012; Paape et al., 2012; Choi et al., 2013; Hellsten et al., 2013; Singhal et al., 2015; Stevison42

et al., 2016). These maps are constructed with methods that leverage current patterns43

of linkage disequilibrium (LD) using the coalescent, in order to estimate historical rates of44

recombination between sites along the genome (Auton and McVean, 2007). Studies in a wide45

range of species have shown that recombination rates are not uniform along the genome and46

general patterns of variation have been described (Begun and Aquadro, 1992; Akhunov et al.,47

2003; Wu et al., 2003; Anderson et al., 2004; McVean et al., 2004; Mézard, 2006; Kim et al.,48

2007; Gore et al., 2009; Schnable et al., 2009; Branca et al., 2011; Paape et al., 2012). One of49

these patterns is the reduced recombination rate in centromeric regions of the chromosomes50

and the progressive increase of recombination rates as the physical distance to telomeres51

decreases (Begun and Aquadro, 1992; Akhunov et al., 2003; Wu et al., 2003; Anderson et al.,52

2004; Gore et al., 2009; Schnable et al., 2009). This pattern has also been shown to arise in53

simulation studies (e.g. Mackiewicz et al., 2010). Another interesting pattern that has been54
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observed is that of regions with unusually high rates of recombination spread throughout55

chromosomes: recombination hotspots (McVean et al., 2004; Brunschwig et al., 2012; Paape56

et al., 2012; Hellsten et al., 2013; Stevison et al., 2016; Shanfelter et al., 2018). In this study,57

we define hotspots locally, requiring that their recombination rate be unusually high when58

compared to neighboring regions. The importance of recombination hotspots lies in their59

ability to shuffle genetic variation at higher rates than the rest of the genome, profoundly60

impacting the dynamics of selection for or against specific mutations (Felsenstein, 1974).61

A variety of genomic features have been identified as being associated with regions of62

high recombination. Recombination hotspots have been linked to transcriptional start sites63

(TSSs) and transcriptional termination sites (TTSs) in Arabidopsis thaliana, Taeniopygia64

guttata, Poephila acuticauda, and humans (Myers et al., 2005; Choi et al., 2013; Singhal et al.,65

2015). In Mimulus guttatus hotspots were found to be associated with CpG islands (short66

segments of cytosine and guanine rich DNA, associated with promoter regions) (Hellsten67

et al., 2013). CpG islands were also associated with increased recombination rates in humans68

and chimpazees (Auton et al., 2012). These patterns point to recombination occurring69

frequently near, but not within coding regions. The formation of chiasmata is important70

for the proper disjunction of chromosomes during meiosis (Martinez-perez et al., 2008),71

but repeated double-strand breaks can lead to an increased mutation rate (Rodgers and72

McVey, 2015). In coding regions in particular, this excess mutation rate can have a high73

evolutionary cost, due to the likelihood of novel deleterious mutations being higher than that74

of beneficial ones (Haldane, 1937; Crow and Kimura, 1970; Wloch et al., 2001; Sanjuán et al.,75

2004; Eyre-Walker and Keightley, 2007). Recombination hotspots have also been found to be76

correlated with particular DNA sequence motifs. In some mammals, including Mus musculus77

(Brunschwig et al., 2012) and apes (Auton et al., 2012; Stevison et al., 2016) binding sites for78

PRDM9, a histone trimethylase with a DNA zinc-finger binding domain, have been found to79

correlate with recombination hotspots. In Arabidopsis thaliana, proteins that limit overall80
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recombination rate have been identified, leading to a genome-wide increase in recombination81

rate in knockout mutants (Fernandes et al., 2018). However, these Arabidopsis proteins have82

not been shown to direct recombination to particular regions, and are therefore not expected83

to affect the location of recombination hotspots.84

Comparisons of recombination hotspots between pairs of populations have yielded vary-85

ing results. Hinch et al. (2011) found that, at finer scales, the genetic maps of European and86

African human populations were significantly different. They also found that, when look-87

ing at hotspots in the major histocompatibility complex, the African populations showed a88

hotspot that was not present in Europeans, but all European hotspots were found in African89

populations (Hinch et al., 2011). Recent work on recombination in apes (Stevison et al.,90

2016) found little correlation of recombination rates in orthologous hotspot regions when91

looking between species, but a strong correlation when comparing between two populations92

of the same species. Other studies have also found very little sharing of hotspots between93

humans and chimpanzees Ptak et al. (2005); Winckler et al. (2005). Additionally, the dy-94

namic of changing hotspot locations observed in humans and other apes has been observed95

in simulations Mackiewicz et al. (2013). This suggests that recombination hotspots are po-96

tentially changing in ways that match demographic patterns, differentiating at a similar rate97

as genomic sequences.98

The identification of ten genetically differentiated populations of the cocoa tree, Theo-99

broma cacao (Motamayor et al., 2008; Cornejo et al., 2018) can be leveraged to study100

population-level drivers of recombination hotspots. These ten populations originate from101

different regions of South and Central America, and include one fully domesticated pop-102

ulation (Criollo), used in the production of fine chocolate, and nine wilder, more resilient103

populations which generate higher cocoa yield than the Criollo variety (Fig. 1) (Motamayor104

et al., 2008; Henderson et al., 2007; Cornejo et al., 2018). These ten populations have been105

shown to have strong signatures of differentiation between them (FST values ranging from106
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0.16 to 0.65) and they separate into clear clusters of ancestry (Cornejo et al., 2018). Com-107

paring the locations of hotspots between these ten populations of T. cacao can contribute108

to the understanding of hotstpot turnover at the population-divergence time-scale. These109

comparisons also contribute to our understanding of how demographics impact the turnover110

of recombination hotspot locations.111

Fine-scale, LD-based recombination maps have been constructed for a number of plant112

models (Paape et al., 2012; Choi et al., 2013; Hellsten et al., 2013), identifying a variety of113

features correlated to recombination rate. Unlike these model plants with short generation114

times, T. cacao is a perennial woody plant with a five-year generation time (Henderson115

et al., 2007). The size and long generation time of T. cacao makes direct measurements116

of recombination impractical. However, historical recombination can be estimated for T.117

cacao using coalescent based methods (Auton and McVean, 2007). Theoretical studies have118

shown that population structure can generate artificially inflated measures of LD (Ohta,119

1982; Li and Nei, 1974), which would be detrimental to our estimates of recombination.120

For this reason recombination maps were constructed independently for each population.121

In contrast to previous studies, which have focused primarily on recombination rates, this122

study attempts to describe the relationship between recombination hotspots and a variety123

of factors.124

We used an LD-based method to estimate recombination rates, which we then analyzed125

with a maximum likelihood statistical framework to infer the location of recombination126

hotspots. The location of hotspots were compared across populations and a novel resam-127

pling scheme tailored to the genomic architecture of T. cacao was used to generate null128

assumptions for the distribution of hotspots along the genome. These null distributions129

were used to identify differential representation of known DNA sequence motifs in ubiqui-130

tous recombination hotspots, and of overlap between recombination hotspots and genomic131

traits for each population. The re-sampling schemes used to identify these associations are132
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novel in the context of this work and were designed to take into account the size and distri-133

bution of elements in the genome. In this work we aimed to answer the following questions:134

(i) How are recombination rates distributed within 10 highly differentiated populations of T.135

cacao, and how do they compare to each other? (ii) How are hotspots distributed along the136

genome of each of the ten populations of T. cacao, and can these distributions be explained137

by patterns of population genetic differentiation? (iii) Are there identifiable DNA sequence138

motifs that are associated with the location of recombination hotspots along the T. cacao139

genome? (iv) Are there genomic features (e.g. TSSs, TTSs, exons, introns) consistently140

associated with recombination hotspot locations across T. cacao populations? Our findings141

suggest that recombination hotspot locations generally follow patterns of diversification be-142

tween populations, while also having a strong tendency to occur close to TSSs and TTSs.143

Moreover, we find a strong negative association between the occurrence of recombination144

hotspots and the presence of retroelements.145

146

Results147

Comparing recombination rates between populations148

149

Populations show a mean recombination rate r/kb between 2.1×10−5 and 5.25×10−3 (Ta-150

ble 1), with a variety of distributions (Fig. 2). We observe a higher mean than median r/kb151

for all populations, indicating that extreme high values are present for all populations. The152

extreme recombination rate values affect the mean, driving it to values consistently higher153

than the median. The pattern of recombination rates along the genome varied between pop-154

ulations, as can be seen in the comparison of the Nanay and Purus third chromosome (Fig.155

3). Purus appears to have a higher average recombination rate than Nanay for chromosome156
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three. More specifically, particular regions of the chromosome present peaks in one popula-157

tion that are absent in the other. A similar patter can also be observed for the density of158

recombination hotspots, e.g. Purus presenting a high density of hotspots in certain regions159

that is not observed in Nanay. The median 95% probability interval for recombination rate160

across the genome for each population was found to be several orders of magnitude larger161

than the uncertainty per site, estimated as the median 95% Credibility Interval of the trace162

for each position in the genome for that population (Table 2).163

Overall, the mean recombination rate for most of the populations was higher than esti-164

mated mutation rates for multicellular eukaryotes of 10−6 changes per kb per generation165

(Lynch, 2010; Exposito-Alonso et al., 2018) (Table 1). Two populations, Guianna and Criollo,166

were notable exceptions, having higher average recombination rates than the other popula-167

tions by one and two orders of magnitude respectively. Guianna and Criollo also have been168

estimated to have a lower effective population size (Ne) (Cornejo et al., 2018) by one and169

two orders of magnitude respectively. However, there was no significant linear trend be-170

tween mean Ne and r/kb (p = 0.1119), indicating that, for a high enough Ne, the ability to171

detect recombination events is not dictated by the effective population size. When Criollo172

and Guianna were excluded, the relationship was also not present (p = 0.3886). When all173

populations were included, the inbreeding coefficient (F , from Cornejo et al., 2018) showed174

no significant linear association with mean r/kb (p = 0.3361). We also found no linear trend175

between sample size and mean r/kb (p = 0.2333). The average recombination rate per popu-176

lation was transformed from r/kb to cM/Mb (Table 1) using the Kosambi mapping function177

Kosambi (1943). The average cM/Mb was 4.6× 10−04.178

In order to compare the average recombination rates (r/kb) of the different populations,179

a Kruskal-Wallis test was performed for every pair of populations. The only pair of popu-180

lations that did not show a significant difference in mean recombination rate was the pair181

of Nacional and Nanay (p = 0.3). All other pairwise comparisons were highly significant182
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(p < 2× 10−16).183

184

Comparing recombination hotspot locations between populations185

186

The majority (55.5%) of hotspots identified were not shared between populations. The 25187

most numerous sets of hotspots are represented in Fig. 5. The nine largest of these are sets188

of hotspots unique to single populations. The hotspots unique to the remaining population189

(Criollo) formed the eleventh largest set. Effective population size (Ne) is not a good linear190

predictor of the amount of detected hotspots (p = 0.1489), nor is sample size (p = 0.351).191

The recombination rate in hotspot regions for nine of the populations was on average be-192

tween 22 and 237% higher than the average recombination rate of the genome. The exception193

was Guianna, which only showed an approximately 1% increase in average recombination194

rate in hotspots regions when compared to that of the non-hotspot regions. A 1% higher195

average recombination rate in hotspots may be due to an increased ability to detect hotspots196

in regions of low recombination for this population. Additionally, Guianna presents unusu-197

ally large hotspots (average 8.9 kb, Table 6), which points to an especially low resolution in198

hotspot detection for this population.199

Despite the majority of hotspots not being shared between populations, we conducted200

pairwise Fisher’s exact tests to verify whether there was significantly more hotspot overlap201

than expected (if hotspots were randomly distributed along the genome) between popu-202

lations. For most pairs of populations we found significantly more hotspot overlap than203

expected (Table 3). There were three comparisons that did not show significantly more204

overlap than expected: Amelonado-Nacional, Amelonado-Purus, and Criollo-Nacional. A205

Mantel test comparing distances between populations based on shared hotspots and FST206

values between populations resulted in a significant correlation between them (r = 0.66,207

p = 0.002). The correlation between eigenvectors from a correlation matrix and those of the208
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genetic covariance matrix were also explored. When all populations were included, we found209

that the first eigenvector from the genetic covariance matrix was not significantly correlated210

with the first eigenvector from the hotspot correlation matrix (p = 0.7055), but the second211

genetic eigenvector was (p = 0.009007, r = 0.7711638). However, the first eigenvector of the212

genetic covariance matrix captured the difference between the Criollo population (the only213

domesticated variety) and the rest of the populations. The second eigenvector explains most214

of the natural differentiation across populations (Cornejo et al., 2018). For that reason, we215

decided to exclude Criollo and repeat the analysis. We found that the first eigenvector from216

the correlation matrix constructed from shared hotspot information was not significantly217

correlated with either of the first two eigenvectors of the genetic covariance matrix when218

Criollo was excluded (eigenvector 1: p = 0.1314, eigenvector2: p = 0.3376).219

To study the effects of demographic history more closely, shared hotspots were converted220

to dimensions of a multiple correspondence analysis and modeled along a previously con-221

structed drift tree (Cornejo et al., 2018). Modeling the dimension as a Brownian motion was a222

better fit (AIC=79.4) than modeling it as an Ornstein-Uhlenbeck (OU) process (AIC=81.4),223

which is consistent with the small number of hotspots shared between populations. The224

model assuming Brownian motion is consistent with pure drift driving differentiation of a225

trait along a genealogy, while an OU process is consistent with a higher trait maintenance226

(stabilizing selection).227

228

Identifying DNA sequence motifs associated with the locations of recombination hotspots229

230

RepeatMasker was used to analyze the set of recombination hotspots that were present231

in at least eight T. cacao populations (17 total hotspots), as well as the consensus set232

of recombination hotstpots, and the reference genome. In order to determine whether a233

particular set of DNA sequence repeats was overrepresented in the regions of ubiquitous234
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recombination hotspots, the percentage of DNA sequence that was identified as potentially235

being from retroelements or DNA transposon was compared to an empirical distribution.236

The percentage of observations from the distribution which were greater than the observed237

are reported in Table 4. While retroelements were found to be underrepresented in the ubiq-238

uitous hotspots, DNA transposons were marginally overrepresented.239

240

Identifying genomic features associated with the location of recombination hotspots241

242

An overrepresentation of recombination hotspots was found in all ten of the populations243

at transcriptional start sites (TSSs) and transcriptional termination sites (TTSs)(Table 5).244

The level of overrepresentation of hotstpots in particular regions was compared to a null ex-245

pectation based on simulations of hotspots of the same size as the ones detected, distributed246

randomly along the chromosomes. For all populations, all 1000 simulations showed a lower247

proportion of overlap with TSSs and TTSs than the observed. In the case of exons and248

introns, seven populations (Contamana, Criollo, Iquitos, Maranon, Nacional, Nanay, Purus)249

had an observed value that was lower than all, or almost all (Purus for exons), simulations.250

Three of the remaining four populations (Amelonado, Curaray, and Nanay) had no clear251

trend in either direction (Table 5). The final population (Guianna) showed an overrepresen-252

tation of hotspots in both exons and introns.253

254

Discussion255

Understanding how recombination rates vary between genetically differentiated populations256

of the same species is an important step toward disentangling the role of recombination in257

genetic differentiation. This set of T. cacao populations presents a unique opportunity to258
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infer recombination in wild, long- and recently established populations, as well as a domesti-259

cated population (Criollo) (Cornejo et al., 2018; Bartley, 2005). This system has allowed us260

to explore differences in recombination hotspot locations between populations of the same261

species. Our results point to a conservation of hotspots between populations that generally262

mirrors the patterns of genetic differentiation between populations. Also, we find that TSSs263

and TTSs are strongly associated with recombination hotspots in all populations, which is264

consistent with previous findings in plants (Paape et al., 2012; Choi et al., 2013; Hellsten265

et al., 2013). This factor seems to play an important role in determining the location of266

novel hotspots. Finally, hotspots that are shared by at least eight populations appear to be267

associated with DNA transposons, pointing to a potential mechanism for the maintenance268

of recombination hotspots at the population-divergence time-scale.269

270

Comparing recombination rates between populations271

272

We found that the eight long-established, wild T. cacao populations show an average273

recombination rate (r/kb) greater than multicellular eukaryotic mutation rates (Table 1),274

while the other two populations (Criollo and Guianna) show unusually high average recom-275

bination rates in comparison. Despite a small sample for some populations, we found no276

linear trend between sample size and recombination rate. Additionally, the rates calculated277

for the two wild, small-sample populations (Curaray and Nacional) were consistent with278

those of other wild populations. This makes us confident in our estimates, particularly for279

the domesticated Criollo population. For all populations, the mean recombination rate was280

found to be greater than the median. This is consistent with high rate outlier values; an281

expected result in the presence of recombination hotspots. Using the effective population282

size for Medicago truncatula from Siol et al., 2007 and the estimate of rho from Paape et al.,283

2012, we calculated r/kb (= 4×10−3) and found that it was comparable with the rate found284
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for the Criollo population (Table 1). We also calculated the median recombination rate285

in cM/Mb for each chromosome using the Kosambi mapping function (Kosambi, 1943) over286

non-overlapping, 100 SNP windows. The average cM/Mb for all populations was 4.6×10−04,287

which is lower than has been measured for any Malvale (Kundu et al., 2015), but not as low288

as the lowest measured for conifers (Chen et al., 2010; Stapley et al., 2017). This places289

T. cacao on the high end of known recombination rates for its order but comfortably in290

the range of other long-lived, woody plants. Average recombination rates in cM/Mb varied291

between populations from Amelonado ( 4.04× 10−06) to Criollo ( 3.91×−03). Previous work292

has shown that Criollo is the only population showing a strong signature of domestication, as293

revealed by much higher drift parameter than that observed for other populations (Cornejo294

et al., 2018). Domestication has been observed to increase recombination rates, particularly295

in plants (Ross-Ibarra, 2004), and is a possible explanation for the higher recombination296

rate observed for the Criollo population. The high recombination rate observed in Guianna297

can be explained in a similar way; while Guianna does not show a strong signature of do-298

mestication, it is the most recently established population (Bartley, 2005), and it has also299

undergone a recent bottleneck (Cornejo et al., 2018). We hypothesize from this result that300

the Guianna population is undergoing the initial stages of domestication and its increased301

recombination is an early indicator of this. It is possible that the high recombination rates302

estimated for Criollo and Guianna can be explained by biases in estimation caused by errors303

associated to small samples or low genetic variation; yet, the recombination rates for Amel-304

onado (another population with low variation) or Purus (a population with small sample305

size) did not present this problem. Analyses exploring mutations of putative recombination306

suppression genes (Fernandes et al., 2018) could help disentangle the nature of this extreme307

variation in recombination rate in the Criollo and Guianna populations.308

Despite recombination rates for eight of the ten populations being of the same order309

of magnitude, pairwise comparisons of average rates indicated that most populations have310
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a significantly different rate of recombination from the others. The only exception were311

Nacional and Nanay whose average rates were not significantly different from each other.312

These two populations, however, are not more closely related to each other than they are313

to other populations, based on genetic differentiation (Cornejo et al., 2018). We interpret314

this result as suggestive that their similarity is not due to genetic similarity, but some other315

factors, e.g. epigenetics.316

The likelihood of detecting hotspots of recombination in the genome will likely be affected317

by the amount uncertainty in the estimates of recombination across sites or regions. Yet,318

we have been unable to identify any study where the magnitude of the uncertainty in the319

estimates of recombination are assessed to address this issue. We have performed careful320

comparisons and assessed the magnitude of the uncertainty in the estimation of recombi-321

nation rates to show that this uncertainty is several orders of magnitude smaller than the322

variation in recombination rates across the genome (Table 2).323

324

Comparing recombination hotspot locations between populations325

326

Similarly to recombination rates, the location of recombination hotspots can be very327

informative to questions of divergence between populations. Understanding the pattern and328

rate of change of recombination hotspots at the population level can elucidate their role329

in shaping genome architecture, impacting how effectively selection operates (Felsenstein,330

1974). We found that a large proportion (55.5%) of hotspots detected are unique to a single331

population. While we do not detect all the hotspots in these populations and not all the332

hotspots detected are necessarily true positives, this proportion of unique hotspots can be333

seen as an indicator that the turnover rate for hotspots is faster than the time it took the334

10 populations to differentiate. The detection rate for LDhot is approximately 55% under335

constant population conditions, and greater when a recent bottleneck has occurred (Auton336
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et al., 2014; Dapper and Payseur, 2017). Only two of the populations in this study (Criollo337

and Guianna) have a known recent bottleneck (Cornejo et al., 2018). However, Criollo was338

the only one of these two with an unusually low hotspot count (Table 6). Criollo’s low339

number of detected hotspots can be a product of its increased genome-wide recombination340

rate, making the signal of hotspots less pronounced. The observed variability of hotspot341

location between populations points to demographic history not being the main driver of342

recombination hotspot location. However, the hotspots tend to appear in similar regions,343

as demonstrated by the Fisher’s exact tests (Table 3). This dichotomy can be explained344

by considering that the proportion of the genome occupied by recombination hotspots is345

very low, so even a small proportion of hotspots from two different populations being in the346

same region is enough for the Fisher’s exact test to recognize them as significantly similar.347

This small but significant similarity can occur by recombination being limited in its possible348

positioning along the genome, but not to the point of forcing hotspots to occur consistently349

in the same locations, and thus maintaining some level of stochasticity. It is important to350

note that our hotspots are unusually large (Table 6). This is likely a product of our low351

sample size leading to low resolution when resolving hotspot regions.352

Given the significant proportion of overlapping hotspots between populations, it was still353

important to explore whether the similarities can be explained by shared genetic history. If354

demographic history explains the evolution of hotspot location, we would expect that more355

closely related populations would have a higher percent of overlapped hotspots. A significant356

relationship was found between population differentiation (FST ) and the distance between357

populations based on shared hotspots (Mantel test, r = 0.66, p = 0.002). The comparison358

between the hotspot correlation matrix and the genetic covariance matrix supports what359

was found when comparing the hotspot correlation matrix to the FST matrix. One caveat360

is that the first genetic eigenvector, which separated Criollo from the other populations,361

was not correlated with the first hotspot correlation eigenvector, indicating that Criollo’s362
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domestication generated a genetic pattern that deviates from the pattern of shared hotspots.363

This indicates that, to some extent, the genetic differentiation and the location of hotspots364

are mirroring each other, which could be due to recombination hotspots being a product of the365

shared history between the populations. However, since recombination rates were estimated366

using a coalescent-based method, we expect historical relationships to be represented in367

our findings. We transformed the information of hotspot overlap to model hotspots as368

quantitative traits changing along a population tree (Cornejo et al., 2018). Our results, show369

that a Brownian motion model (AIC=79.4) better fits the data than a model with stabilizing370

selection Ornstein-Uhlenbeck model (AIC=81.4) and suggest that, in principle, drift alone371

could explain the evolution of the location of recombination hotspots. However, the absolute372

number of hotspots that are shared among populations indicates that demographic history373

alone is insufficient to explain the evolution of recombination hotspots in this species.374

One conclusion that follows from these results is that, while shared recombination hotspots375

can to some extent be explained by patterns of genetic differentiation, some of the sharing376

can simply be due to a tendency for hotspots to arise near TSSs and TTSs. It has been ob-377

served in other organisms that hotspots of recombination are frequently associated to specific378

genomic features (including TSSs and TTSs) (Auton et al., 2013; Choi et al., 2013; Hellsten379

et al., 2013; Myers et al., 2005; Singhal et al., 2015) or DNA sequence motifs (Auton et al.,380

2012; Brunschwig et al., 2012; Stevison et al., 2016). These factors can affect the landscape381

of recombination, contributing to the patterns of shared hotspot locations between popula-382

tions that we are observing in T. cacao. Previous studies looking at apes and finches have383

explored recombination hotspots in multiple species and as many as two populations of the384

same species (Singhal et al., 2015; Stevison et al., 2016; Shanfelter et al., 2018), but this385

study is the first to compare hotspots in more than two populations of the same species at386

once. The increased number of populations allows us to analyze the relationship between387

population genetic processes and recombination. Our results suggest that the pattern of388
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gains and losses of recombination hotspots is very dynamic and the landscape of recombina-389

tion changes rapidly during the process of diversification within a species. This dynamism390

can have a tremendous impact on the adaptive dynamics of a species, and it should be taken391

into account, considering that theoretical studies tend to assume that recombination rates392

are constant during the evolution of populations (Hudson and Kaplan, 1988; Donnelly and393

Kurtz, 1999).394

395

Identifying DNA sequence motifs associated with the locations of recombination hotspots396

397

The analysis of 17 hotspots shared between at least eight populations of T. cacao found an398

underrepresentation of retroelements and a marginal overrepresentation of DNA transposons399

when compared to the entire genome (Table 4). These results are not entirely surprising as400

it has already been suggested that transposable elements (TEs) tend to be enriched in ar-401

eas of low recombination in Drosophila as a consequence of selection against TEs (Rizzon402

et al., 2002). However, the marginal over-representation of DNA transposons in the most403

conserved recombination hostspot is unexpected, given that all previous observations have404

shown a reduced representation of mobile elements in areas with high recombination rate405

(Rizzon et al., 2002). It is possible that DNA transposons are at least partly responsible for406

the maintenance of recombination hotspots as populations diverge, from which we expect407

that site-directed recombination is more frequent in these locations of the genome. However,408

the low percentage of these sequences observed in the set of all hotspots (Table 4) indicates409

that these sequences only have a small effect on the maintenance of hotspots. It has been410

observed in humans that short DNA motifs enriched for repeat sequences determine the loca-411

tion of 40 per cent of hotspots enriched for recurrent non-allelic homologous recombination412

(McVean, 2010). One potential explanation for why natural selection does not eliminate413

hotspots in these regions is the possibility that these regions do not produce a large enough414
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mutational load for natural selection to remove them from the population (McVean, 2010).415

416

Identifying genomic features associated with the location of recombination hotspots417

418

For all ten populations, an overrepresentation of hotspots was found in the areas im-419

mediately preceding and following transcribed regions of the chromosome. This matches420

the findings of previous studies in Arabidopsis thaliana (Choi et al., 2013), Taenipygia gut-421

tata and Poephila acuticauda (Singhal et al., 2015), and humans (Myers et al., 2005). The422

most likely explanation is that recombination events within genes are selected against. The423

rationale being that a recombinant chromosome that undergoes a double-strand break in424

the middle of a coding region will have a higher risk of being inviable, and therefore not425

represented in the current set of chromosomes for its population. Recombination occurring426

in transcription start and stop sites, on the other hand, does a much better job at break-427

ing up haplotypes or shuffling alleles in different genomic backgrounds, while preserving the428

functionality of coding regions. This rational is supported by previous findings of increased429

recombination rates in these regions (Choi et al., 2013). It is also supported by results from430

PRDM9 knock-out Mus musculus, which has shown a reversion to hotspots located near431

TSSs (Brick Kevin et al., 2012). The enrichment of T. cacao hotspots in TSSs and TTSs432

is thus a reasonable result given that zinc-finger binding motifs and potential modifiers like433

PRDM9 have not been identified in this species.434

435

Implications for the evolutionary history of T. cacao436

437

Overall, our results show a large consistent pattern where recombination rates in the ten438

populations of T. cacao are of a similar magnitude as mutation rates, but show a high di-439

versity in location and number of hotspots of recombination that cannot be explained solely440
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by the process of diversification of the populations. In fact, the results are indicative of the441

turnover rate of hotspots being faster than the process of divergence among populations.442

A potential hypothesis that could explain the rapid turnover of hotspots of recombination443

and the relative differences in recombination among populations is that epigenetic changes444

are involved in controlling the turnover of recombination in plants. This hypothesis is not445

unreasonable given the recent observation of epigenetic control of recombination in plants446

(Yelina et al., 2015). Further theoretical and simulation work should be done in order to bet-447

ter understand the implications of the rapidly changing recombination hotspots in adaptive448

dynamics. We also show that there is an overall underrepresentation of hotspots in exons449

and introns for most populations, which is consistent with purifying selection acting against450

changes that could result in disruptions of gene function. On the other hand, we observed an451

overrepresentation of hotspots in TTSs and TSSs for all ten populations. This could impact452

the maintenance and spread of beneficial traits in the population by shuffling allelic variants453

of genes without causing disruption of their function. We hypothesize that the enrichment of454

hotspots of recombination in TTSs and TSSs can have an important impact in the spread of455

beneficial mutations across different genomic backgrounds; increasing the rate of adaptation456

to selective pressures (e.g. selection for improved pathogen response).457

458

Materials and Methods459

Comparing recombination rates between populations460

461

Sequence data were downloaded from the Cacao Genome Database and NCBI (Accession462

PRJNA486011), including the reference sequence for each chromosome and the full genome463

annotation (Theobroma cacao cv. Matina 1-6 v1.1)(Motamayor et al., 2013). Processing464
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was done using the pipeline from (Cornejo et al., 2018) available at the github repository465

oeco28/Cacao_Genomics. Full genome data was used from a total of 73 individuals across466

10 populations (Cornejo et al., 2018): Criollo (N = 4, #SNPs = 309,818), Curaray (N =467

5, #SNPs = 1,106,871), Contamana (N = 9, #SNPs = 2,097,618), Amelonado (N = 11,468

#SNPs = 373,789), Maranon (N = 14, #SNPs = 1,783,226), Guianna (N = 9, #SNPs =469

770,729), Iquitos (N = 7, #SNPs = 1,575,711), Purus (N = 6, #SNPs = 1,184,181), Nanay470

(N = 10, #SNPs = 830,885), and Nacional (N = 4, #SNPs = 718,099). We filtered the single471

nucleotide polymorphism data and excluded rare variants (minor allele frequency <= 0.05)472

per population. Separate variant files per population per chromosome were then phased473

using default conditions with SHAPEIT2 (Delaneau et al., 2011) under default parameters.474

Haplotype files were converted back to phased variant calling format (vcf) for its downstream475

analysis. We have also phased the data with Beagle (Browning and Browning, 2007), using476

a burnin of 10000 iterations, and estimations done over 10000 iterations. No appreciable477

differences were observed between the two methods and Beagle phasing was maintained for478

the analyses. The reason for performing the phasing separately for each population is that479

linkage disequilibrium patterns are expected to be affected by population structure. The ten480

populations have been shown to be unique clusters with very little admixture between them481

Cornejo et al. (2018), and the individuals used in this study were those whose ancestry was482

clearly from a single population. VCFTools (Danecek Petr et al., 2011) was used to remove483

all singletons and doubletons. Only bi-allelic single nucleotide polymorphisms (SNPs) were484

retained and were exported in LDhat format.485

In order to estimate recombination rates we used the interval routine of LDhat (Auton486

and McVean, 2007), a program that implements coalescent resampling methods to estimate487

historical recombination rates from SNP data. To reduce computation time, each chromo-488

some was split into windows, each containing 2000 SNPs. To counteract the overestimation489

of recombination rate produced at the ends of the windows, an overlap of 500 SNPs was left490
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between consecutive windows. The final window for each chromosome did not always match491

the general scheme, so the final 2000 SNPs were taken (making the overlap with the second492

to last window variable, but never less than 500 SNPs) (Fig. 6). Once these windows were493

generated, LDhat was run over each window using 100 million iterations, sampling every494

10000 iterations (10000 total points sampled), with a block penalty of 5. Lookup tables495

with a grid of 100 points, a population mutation rate parameter (θ) of 0.1 and a number496

of sequences (n) of 50 were used for all populations. We used the same θ for all popula-497

tions since estimates from Cornejo et al. (2018) ranged from π = 0.27% to π = 0.37%, all498

comfortably within an order of magnitude of each other. The first 50 million iterations were499

discarded as burn-in. Once recombination rates were calculated, 250 positions were cut off500

from both windows involved in each overlap, so that the estimates for the first half of the501

overlap was taken from the end of the preceding window and the estimates for the second502

half of the overlap were taken from the beginning of the following window. The final overlap503

in each chromosome was split in order to remove 250 SNPs from the second to last window,504

regardless of the remaining size of the last window. The remaining rate estimates were then505

merged in order to obtain recombination rates for the entire chromosome. This was done for506

each chromosome of each population.507

The estimation of recombination rates with LDhat is approximated using a sampling508

scheme with a Markov Chain Monte Carlo (MCMC) algorithm as implemented in the interval509

routine. The inference of recombination rates is the result of the integration of estimated510

parameter values across iterations with the routine stats. In the majority of recent studies511

where LDhat or LDhelmet are used (Myers et al., 2005; Auton et al., 2012; Brunschwig et al.,512

2012; Paape et al., 2012; Auton et al., 2013; Choi et al., 2013; Singhal et al., 2015; Stevison513

et al., 2016), whether there is convergence of the Markov chains has not been explicitly514

investigated. One study that we are aware of has used simulations to asses whether their515

small sample size affected their ability to obtain reliable estimates of recombination using516
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LDhelmet (Booker et al., 2017), but did not assess the uncertainty of the estimates from517

the MCMC process itself. We argue that evaluation of convergence is important to assess518

the confidence in the estimated reported values, especially if there is interest in analyzing519

the differences in recombination rate along the genome. Visual inspection of pilot runs of520

the analysis demonstrated that convergence was not achieved after running 40M iterations,521

which is why the length of the chains was increased to 100M iterations. Additionally we522

explored the uncertainty in the estimates of recombination site-wise by integrating over the523

trace of the estimates for recombination rate to infer the 95% Credibility Interval. We then524

estimated the 95% interval of recombination estimates range across all sites in the genome525

to have an overall measure of uncertainty that we compared to the median 95% Credibility526

Interval for the trace of each position.527

In order to compare recombination rates, the effective population size (Ne) calculated for528

each population (Cornejo et al., 2018) was used to convert rates in Ner/kb to r/kb. Differ-529

ences in the mean genome-wide recombination rate between populations were then tested530

using the Kruskal-Wallis test (kruskal.test function from the stats package in R) (R Core531

Team, 2018). There were 45 comparisons, making the Bonferroni correction cutoff value:532

α = 0.0011. To transform per population recombination rates from r/kb to cM/Mb, we533

divided each chromosome into windows of 100 SNPs and used the Kosambi mapping func-534

tion (Kosambi, 1943). The median for the windows of a chromosome was then calculated,535

and the average of each population’s chromosomes was taken as that population’s average536

recombination rate in cM/Mb.537

538

Comparing recombination hotspot locations between populations539

540

Recombination hotspots were estimated with LDhot (Auton and McVean, 2007), a likelihood-541

based program that tests whether a single distribution model or a two distribution model542
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better explains the observed recombination rates in 1 kb sliding windows (default), for each543

chromosome. Each chromosome was run in its entirety, with the number of simulations544

(nsims) set to 1000. The resulting potential hotspots were refined by an alpha of 0.001, and545

overlapping hotspots were merged. This method therefore detects hotspots by comparing546

rates in 1 kb windows to the rates in the surrounding regions.547

To determine the set of consensus hotspots, the hotspots from all populations were548

merged. Two hotspots from different populations were considered to be shared if they both549

overlapped with the same hotspot in the consensus set. To summarize all shared hotspots, a550

Boolean matrix was constructed, in which a population having a hotspot that overlaps with551

a hotspot in the consensus list leads to an indication of presence of the consensus hotspot552

in that population. This matrix was used to determine hotspots shared by two or more553

populations.554

A Fisher’s exact test was run for each pair of populations in order to determine whether555

hotspots for the pair of populations overlap significantly more than expected. The BED556

files containing the location of the recombination hotspots for each pair of populations were557

compared using Bedtools:fisher (Quinlan and Hall, 2010). The number of comparisons was558

45, making the the Bonferroni correction cutoff value: α = 0.0011.559

In order to compare the relationships between populations based on shared hotspots we560

calculated Jaccard distances (distance function, philentropy package, R) (Drost, 2018)561

and compared them to a published FST matrix (Cornejo et al., 2018) using a Mantel test562

(mantel.rtest function, ade4 package, R) (Chessel et al., 2004; Dray and Dufour, 2007;563

Dray et al., 2007; Bougeard and Dray, 2018). The FST estimates from Cornejo et al. (2018)564

were generated using Weir and Cockerham’s estimator Weir and Cockerham (1984).565

The Boolean matrix for shared hotspots was also used to explore the relationship be-566

tween hotspot similarities and genetic covariances from a previous study (Cornejo et al.,567

2018). Singletons were removed from the hotspot matrix, which was converted to a corre-568
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lation matrix using the mixed.cor function from the psych package in R (Revelle, 2018).569

The mixed.cor function was used due to its ability to calculate Pearson correlations from570

dichotomous data. We then used the eigen function in R (R Core Team, 2018) to generate571

eigenvectors for the hotspot correlation matrix and the genetic covariance matrix. Pearson572

correlations between the first and second eigenvector of the genetic covariance matrix and the573

hotspot correlation matrix were then calculated (cor.test function, stats package, R)(R574

Core Team, 2018). This analysis was done once with all populations included, and once with575

the Criollo population excluded before correlations were calculated.576

In order to model the presence or absence of hotspots along a drift tree, a multiple577

correspondance analysis was used on the Boolean matrix of shared hotspots using the MCA578

function from the FactoMineR package in R Lê et al. (2008). Nine dimensions were retained579

and used as traits along a previously generated drift tree (Cornejo et al., 2018). Using the580

Rphylopars package in R (Goolsby et al., 2016), the dimensions were modeled as Brownian581

motion and as an Ornstein-Uhlenbeck process. The fit of the two models were compared582

using the AIC values for the best fitting models of each type.583

584

Identifying DNA sequence motifs associated with the locations of recombination hotspots585

586

Motifs associated with hotspots were found using RepeatMasker (Smith et al., 2016).587

The entire genome, the set of consensus hotspots, and a set of ubiquitous hotspots (hotspots588

shared by at least eight of the populations) were examined with RepeatMasker, using normal589

speed and "theobroma cacao" in the species option. In order to determine whether ubiqui-590

tous hotspots were enriched for particular DNA sequences, a set of the same number and size591

of sequences was randomly selected from the genome using Bedtools:shuffle (Quinlan and592

Hall, 2010) and examined with RepeatMasker. This simulation was repeated one thousand593

times and a null distribution against which observed values were compared was constructed594
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from the results.595

596

Identifying genomic features associated with the location of recombination hotspots597

598

Testing whether recombination hotspots were overrepresented near particular genomic599

features was done by using a resampling scheme to establish null expectations and then600

comparing the observed value to the empirical distribution. For each feature, locations were601

retrieved and the number of observed hotspots that overlap with this feature were counted.602

To determine whether this amount of overlapping hotspots was unusually high or low, a set of603

hotspots that matched the number of hotspots and the size of each hotspot was simulated.604

These simulated hotspots were placed randomly along the chromosome, using a uniform605

distribution. The simulation was run 1000 times and the number of simulated hotspots that606

overlap with the true genomic features was measured for each simulation. The simulations607

generate an expected distribution of overlap with the genomic feature, and the true value608

was then compared to the distribution. When simulated hotspots overlapped, the location609

of one of them was sampled again. Features tested were: Transcriptional start sites (TSSs),610

transcriptional termination sites (TTSs), exons, and introns. TSSs and TTSs are considered611

to be the 500bp upstream and downstream of coding regions respectively.612

The reason for the proposed novel resampling scheme is that, if the size and distribution613

of genomic features and hotspots were not taken into account, it would set unrealistic expec-614

tations for the overlap between features under a null model of no association. In this sense,615

the null model would be inappropriate and potentially inflate the false positive rate.616

617

Data and code availability618

619

Rate and summary files from LDhat runs as well as hotspots for each population will620
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be placed in a Dryad repository. Scripts for LDhat and LDhot runs as well as the re-621

sampling schemes used and additional analysis is available in the following github repository622

ejschwarzkopf/recombination−map.623
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Tables632

Population Mean Mean Mean Median Lower Bound Upper Bound Mean
4Ner/kb Ne r/kb r/kb (Mean r/kb) (Mean r/kb) cM/Mb

Amelonado 1.58 15744 2.51e-05 2.40e-09 2.48e-05 2.54e-05 4.04e-06
Contamana 8.53 61102 3.49e-05 4.92e-06 3.48e-05 3.50e-05 7.74e-05
Criollo 14.60 695 5.25e-03 4.27e-03 5.23e-03 5.27e-03 3.91e-03
Curaray 10.36 58213 4.45e-05 1.78e-05 4.44e-05 4.46e-05 1.18e-04
Guianna 8.66 4651 4.65e-04 7.74e-06 4.63e-04 4.67e-04 2.74e-04
Iquitos 4.23 49984 2.11e-05 5.88e-09 2.10e-05 2.12e-05 1.84e-05
Maranon 4.09 34037 3.01e-05 1.64e-08 2.99e-05 3.02e-05 1.68e-05
Nacional 4.66 26060 4.47e-05 9.76e-08 4.44e-05 4.49e-05 4.10e-05
Nanay 6.82 42429 4.02e-05 1.51e-07 4.00e-05 4.04e-05 1.33e-05
Purus 5.95 17357 8.57e-05 7.74e-06 8.54e-05 8.60e-05 1.23e-04

Table 1: Recombination rates in 4Ner/kb, r/kb, and cM/Mb for all ten T. cacao populations.
The Ne that was used for the transformation is also reported for each population, as are the
lower and upper bounds of a 95% confidence interval for r/kb.
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Population Position Position Genome Genome Position Genome
L95 U95 L95 U95 Range Quotient Range Quotient

Amelonado 6.35e-10 7.67e-08 2.33e-10 3.13e-04 120.75 1.34e+06
Contamana 1.63e-06 1.34e-05 1.40e-09 2.64e-04 8.22 1.88e+05
Criollo 8.75e-04 4.31e-03 5.35e-07 1.66e-02 4.92 3.11e+04
Curaray 5.15e-06 2.63e-05 2.72e-09 2.02e-04 5.11 7.40e+04
Guianna 9.76e-06 1.26e-04 1.81e-09 2.96e-03 12.90 1.63e+06
Iquitos 3.50e-10 6.52e-08 1.58e-10 2.45e-04 186.29 1.55e+06
Maranon 1.98e-09 7.40e-07 2.31e-10 3.52e-04 373.35 1.52e+06
Nacional 4.80e-10 6.50e-08 2.76e-10 3.66e-04 135.60 1.33e+06
Nanay 1.65e-09 3.06e-07 2.06e-10 3.52e-04 185.32 1.71e+06
Purus 3.98e-08 5.24e-06 2.00e-09 6.35e-04 131.87 3.18e+05

Table 2: The median of the upper and lower bounds of the 95% Credibility Interval for the
trace of estimates of r from all positions in the genome are presented for each population
(i.e. Position L95 and Position U95). The upper and lower bounds of the 95% probability
interval for the median estimate of r for each population is also presented (i.e. Genome L95
and Genome U95). The quotients of the upper and lower bounds for each of the two intervals
point to a much larger genome-wide variation in r than per-position variation in the trace
for the estimate of r.

Population Ame Con Cri Cur Gui Iqu Mar Nac Nan

Amelonado - - - - - - - - -
Contamana <2e-07 - - - - - - - -

Criollo <9e-05 <5e-13 - - - - - - -
Curaray <3e-05 <3e-37 <5e-08 - - - - - -
Guianna <3e-06 <1e-37 <7e-07 <4e-20 - - - - -
Iquitos <4e-08 <6e-87 <2e-11 <3e-16 <2e-29 - - - -
Maranon <6e-13 <7e-77 <2e-11 <2e-20 <5e-33 <4e-64 - - -
Nacional 0.0015 <2e-43 0.0212 <7e-14 <3e-06 <6e-14 <3e-13 - -
Nanay 0.0004 <2e-44 <9e-11 <4e-16 <2e-21 <3e-39 <2e-38 <9e-06 -
Purus 0.1782 <4e-117 <2e-05 <2e-29 <1e-33 <2e-39 <8e-43 <6e-27 <2e-21

Table 3: Fisher’s exact test p-values for pairwise comparisons of recombination hotspot
locations between populations of T. cacao
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Measures Observed % Observed % Observed % Mean % % Sim
ubiquitous HS all HS whole genome Sim >ubiquitous HS

Retroelements 2.34 9.45 11.12 11.11 99.9
DNA transposons 1.94 1.64 1.10 1.10 5.4

Total 4.28 11.09 12.21 12.22 99.7

Table 4: Percentage of DNA sequences identified as either retroelements or DNA transposons,
and total interspersed repeats. Observed values for the entire T. cacao genome, for all
recombination hotspots (HS), and ubiquitous hotspots (hotspots in the same location in at
least eight different populations). Also presented are mean percentage of these sequences
for 1000 simulations of hotspots equivalent in size and count as the ubiquitous set and the
percentile at which the observed value for the ubiquitous set is found in the distribution of
the simulated set (Sim).

TSSs TTSs Exon Intron
(500bp) (500bp)

Amelonado 1 1 0.602 0.527
Contamana 1 1 0.000 0.000

Criollo 1 1 0.000 0.000
Curaray 1 1 0.346 0.058
Guianna 1 1 1.000 1.000
Iquitos 1 1 0.000 0.000
Maranon 1 1 0.000 0.000
Nacional 1 1 0.000 0.000
Nanay 1 1 0.027 0.237
Purus 1 1 0.004 0.000

Table 5: Proportion of simulated chromosomes that presented a lower amount of hotspots
intersecting with TSSs, TTSs, exons, and introns than the observed chromosomes. TSSs
and TTSs are considered to be the 500bp upstream and downstream of transcribed regions,
respectively.
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Population Mean Hotspot Hotspot
Size (kb) Count

Amelonado 6.9 1324
Contamana 6.1 5184

Criollo 6.1 887
Curaray 5.8 2303
Guianna 8.6 3655
Iquitos 7.0 3258
Maranon 6.8 3296
Nacional 6.9 2202
Nanay 7.6 3818
Purus 6.3 3972
Average 6.9 2989.9

Table 6: Average hotspot size (in kb) and count for hotspots detected in each population
and average for all populations.

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2019. ; https://doi.org/10.1101/482299doi: bioRxiv preprint 

https://doi.org/10.1101/482299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures638
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Maranon
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Figure 1: Drift tree constructed using TreeMix (Pickrell and Pritchard, 2012) for the 10
T. cacao populations. Distances between populations are based on the drift parameter.
Modified from Cornejo et al. (2018)
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Figure 2: Distribution of log10 recombination rates (log(r/kb)) along the genomes of the ten
T. cacao populations.
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Figure 3: The third chromosomes of the Nanay (A) and Purus (B) populations were se-
lected to exemplify the differences between populations in recombination rates (r/kb) and
recombination hotspot locations (vertical bars above rates).
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Figure 4: Boxplots of recombination hotspot sizes (log10(bp)) by population. The horizontal
line in the box represents the median value, while the points represent potential outliers.
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Figure 5: Upset plot showing number of hotspots in different subsets. Horizontal bars
represent total hotspots detected in a population, each dot on the matrix indicate that
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represented by the connected dots. The 25 largest subsets are shown.

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2019. ; https://doi.org/10.1101/482299doi: bioRxiv preprint 

https://doi.org/10.1101/482299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Window 1
1750 SNPs

Window 2
1500 SNPs

Window 3
1500 SNPs

Window 4
1500 SNPs

Window 5
1500 SNPs

Window 6
1500 SNPs

Window 7
1250 SNPs

Overlap
500 SNPs

250 SNPs250 SNPs
each

750 SNPs

Figure 6: Example of the window layout for a 10,750 SNP chromosome. The 2,000 SNP
long windows are represented by alternating horizontal and vertical lines and the overlaps
between them are represented by square crosshatches. Braces above the chromosome indicate
the regions from which recombination rates are extracted to generate the chromosome-wide
recombination rates.
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