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o Abstract

u  Our study investigates the possible drivers of recombination hotspots in Theobroma cacao
12 using ten genetically differentiated populations. This constitutes the first time that recom-
13 bination rates from more than two populations of the same species have been compared,
12 providing a novel view of recombination at the population-divergence time-scale. For each
15 population, a fine-scale recombination map was generated using under the coalescent with a
16 standard method based on linkage disequilibrium (LD). They revealed higher recombination
17 rates in a domesticated population and a population that has undergone a recent bottleneck.
18 We address whether the pattern of recombination rate variation along the chromosome is
10 sensitive to the uncertainty in the per-site estimates. We find that uncertainty, as assessed
20 from the Markov chain Monte Carlo iterations is orders of magnitude smaller than the scale of
21 variation of the recombination rates genome-wide. We inferred hotspots of recombination for
2> each population and find that the genomic locations of these hotspots correlate with genetic
23 differentiation between populations (Fgr). We developed novel randomization approaches
24 to generate appropriate null models for understanding the association between hotspots of
s recombination and both DNA sequence motifs and genomic features. Hotspot regions con-
26 tained fewer known retroelement sequences than expected, and were overrepresented near
o7 transcription start and termination sites. Our findings indicate that recombination hotspots
23 are evolving in a way that is consistent with genetic differentiation, but are also preferentially

20 driven to regions of the genome that are up or downstream from coding regions.
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» Introduction

s1 Genetic variation is fundamental for evolutionary forces like selection and genetic drift to
32 act. Selection and drift also contribute to a loss of variation, which means that they must act
33 in conjunction with forces that maintain variation along the genome in order for populations
32 to continue evolving over prolonged periods of time. Recombination’s rearranging of genetic
35 material onto different backgrounds generates a larger set of haplotype combinations on
s which selection can act, reducing the magnitude of Hill-Robertson interference (Felsenstein,
sz 1974). Different regimes of recombination can strongly influence how efficient selection is
33 at purging deleterious mutations and increasing the frequency of beneficial mutations in the
30 population (Felsenstein, 1974).

a0 One way to elucidate the distribution of recombination events along the genome is by
a1 using fine-scale recombination maps (Myers et al., 2005; Auton et al., 2012; Brunschwig et al.,
22 2012; Paape et al., 2012; Choi et al., 2013; Hellsten et al., 2013; Singhal et al., 2015; Stevison
ss et al., 2016). These maps are constructed with methods that leverage current patterns
s of linkage disequilibrium (LD) using the coalescent, in order to estimate historical rates of
ss recombination between sites along the genome (Auton and McVean, 2007). Studies in a wide
s range of species have shown that recombination rates are not uniform along the genome and
ar general patterns of variation have been described (Begun and Aquadro, 1992; Akhunov et al.,
s 2003; Wu et al., 2003; Anderson et al., 2004; McVean et al., 2004; Mézard, 2006; Kim et al.,
s 2007; Gore et al., 2009; Schnable et al., 2009; Branca et al., 2011; Paape et al., 2012). One of
so these patterns is the reduced recombination rate in centromeric regions of the chromosomes
s1 and the progressive increase of recombination rates as the physical distance to telomeres
52 decreases (Begun and Aquadro, 1992; Akhunov et al., 2003; Wu et al., 2003; Anderson et al.,
53 2004; Gore et al., 2009; Schnable et al., 2009). This pattern has also been shown to arise in

s« simulation studies (e.g. Mackiewicz et al., 2010). Another interesting pattern that has been
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ss observed is that of regions with unusually high rates of recombination spread throughout
ss chromosomes: recombination hotspots (McVean et al., 2004; Brunschwig et al., 2012; Paape
s7 et al., 2012; Hellsten et al., 2013; Stevison et al., 2016; Shanfelter et al., 2018). In this study,
ss we define hotspots locally, requiring that their recombination rate be unusually high when
so compared to neighboring regions. The importance of recombination hotspots lies in their
eo ability to shuffle genetic variation at higher rates than the rest of the genome, profoundly
&1 impacting the dynamics of selection for or against specific mutations (Felsenstein, 1974).

62 A variety of genomic features have been identified as being associated with regions of
63 high recombination. Recombination hotspots have been linked to transcriptional start sites
s« (TSSs) and transcriptional termination sites (TTSs) in Arabidopsis thaliana, Taeniopygia
s guttata, Poephila acuticauda, and humans (Myers et al., 2005; Choi et al., 2013; Singhal et al.,
6o 2015). In Mimulus guttatus hotspots were found to be associated with CpG islands (short
o7 segments of cytosine and guanine rich DNA, associated with promoter regions) (Hellsten
s et al., 2013). CpG islands were also associated with increased recombination rates in humans
s and chimpazees (Auton et al., 2012). These patterns point to recombination occurring
70 frequently near, but not within coding regions. The formation of chiasmata is important
7 for the proper disjunction of chromosomes during meiosis (Martinez-perez et al., 2008),
22 but repeated double-strand breaks can lead to an increased mutation rate (Rodgers and
73 McVey, 2015). In coding regions in particular, this excess mutation rate can have a high
74 evolutionary cost, due to the likelihood of novel deleterious mutations being higher than that
s of beneficial ones (Haldane, 1937; Crow and Kimura, 1970; Wloch et al., 2001; Sanjuan et al.,
7 2004; Eyre-Walker and Keightley, 2007). Recombination hotspots have also been found to be
77 correlated with particular DNA sequence motifs. In some mammals, including Mus musculus
7s  (Brunschwig et al., 2012) and apes (Auton et al., 2012; Stevison et al., 2016) binding sites for
79 PRDMY, a histone trimethylase with a DNA zinc-finger binding domain, have been found to

so correlate with recombination hotspots. In Arabidopsis thaliana, proteins that limit overall
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g1 recombination rate have been identified, leading to a genome-wide increase in recombination
sz rate in knockout mutants (Fernandes et al., 2018). However, these Arabidopsis proteins have
83 not been shown to direct recombination to particular regions, and are therefore not expected
s« to affect the location of recombination hotspots.

85 Comparisons of recombination hotspots between pairs of populations have yielded vary-
ss ing results. Hinch et al. (2011) found that, at finer scales, the genetic maps of European and
g7 African human populations were significantly different. They also found that, when look-
s ing at hotspots in the major histocompatibility complex, the African populations showed a
so hotspot that was not present in Europeans, but all European hotspots were found in African
o populations (Hinch et al., 2011). Recent work on recombination in apes (Stevison et al.,
o1 2016) found little correlation of recombination rates in orthologous hotspot regions when
o2 looking between species, but a strong correlation when comparing between two populations
o3 of the same species. Other studies have also found very little sharing of hotspots between
o« humans and chimpanzees Ptak et al. (2005); Winckler et al. (2005). Additionally, the dy-
os namic of changing hotspot locations observed in humans and other apes has been observed
o6 in simulations Mackiewicz et al. (2013). This suggests that recombination hotspots are po-
oz tentially changing in ways that match demographic patterns, differentiating at a similar rate
08 as genomic sequences.

99 The identification of ten genetically differentiated populations of the cocoa tree, Theo-
wo broma cacao (Motamayor et al., 2008; Cornejo et al., 2018) can be leveraged to study
101 population-level drivers of recombination hotspots. These ten populations originate from
102 different regions of South and Central America, and include one fully domesticated pop-
w3 ulation (Criollo), used in the production of fine chocolate, and nine wilder, more resilient
s populations which generate higher cocoa yield than the Criollo variety (Fig. 1) (Motamayor
s et al., 2008; Henderson et al., 2007; Cornejo et al., 2018). These ten populations have been

s shown to have strong signatures of differentiation between them (Fsr values ranging from


https://doi.org/10.1101/482299
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/482299; this version posted April 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

w7 0.16 to 0.65) and they separate into clear clusters of ancestry (Cornejo et al., 2018). Com-
108 paring the locations of hotspots between these ten populations of T. cacao can contribute
100 to the understanding of hotstpot turnover at the population-divergence time-scale. These
10 comparisons also contribute to our understanding of how demographics impact the turnover
11 of recombination hotspot locations.

112 Fine-scale, LD-based recombination maps have been constructed for a number of plant
1z models (Paape et al., 2012; Choi et al., 2013; Hellsten et al., 2013), identifying a variety of
s features correlated to recombination rate. Unlike these model plants with short generation
us  times, T. cacao is a perennial woody plant with a five-year generation time (Henderson
ue et al.,, 2007). The size and long generation time of 7. cacao makes direct measurements
uz of recombination impractical. However, historical recombination can be estimated for 7.
us cacao using coalescent based methods (Auton and McVean, 2007). Theoretical studies have
1o shown that population structure can generate artificially inflated measures of LD (Ohta,
120 1982; Li and Nei, 1974), which would be detrimental to our estimates of recombination.
121 For this reason recombination maps were constructed independently for each population.
122 In contrast to previous studies, which have focused primarily on recombination rates, this
123 study attempts to describe the relationship between recombination hotspots and a variety
12a  of factors.

125 We used an LD-based method to estimate recombination rates, which we then analyzed
126 with a maximum likelihood statistical framework to infer the location of recombination
127 hotspots. The location of hotspots were compared across populations and a novel resam-
128 pling scheme tailored to the genomic architecture of T. cacao was used to generate null
120 assumptions for the distribution of hotspots along the genome. These null distributions
130 were used to identify differential representation of known DNA sequence motifs in ubiqui-
131 tous recombination hotspots, and of overlap between recombination hotspots and genomic

132 traits for each population. The re-sampling schemes used to identify these associations are


https://doi.org/10.1101/482299
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/482299; this version posted April 20, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

133 novel in the context of this work and were designed to take into account the size and distri-
13 bution of elements in the genome. In this work we aimed to answer the following questions:
135 (i) How are recombination rates distributed within 10 highly differentiated populations of T.
136 cacao, and how do they compare to each other? (ii) How are hotspots distributed along the
137 genome of each of the ten populations of T. cacao, and can these distributions be explained
s by patterns of population genetic differentiation? (iii) Are there identifiable DNA sequence
130 motifs that are associated with the location of recombination hotspots along the T. cacao
o genome? (iv) Are there genomic features (e.g. TSSs, TTSs, exons, introns) consistently
11 associated with recombination hotspot locations across T. cacao populations? Our findings
12 suggest that recombination hotspot locations generally follow patterns of diversification be-
13 tween populations, while also having a strong tendency to occur close to TSSs and TTSs.
12a  Moreover, we find a strong negative association between the occurrence of recombination
s hotspots and the presence of retroelements.

146

w Results

s Comparing recombination rates between populations

149

150 Populations show a mean recombination rate r /kb between 2.1 x 1075 and 5.25x 1073 (Ta-
151 ble 1), with a variety of distributions (Fig. 2). We observe a higher mean than median r/kb
152 for all populations, indicating that extreme high values are present for all populations. The
153 extreme recombination rate values affect the mean, driving it to values consistently higher
152 than the median. The pattern of recombination rates along the genome varied between pop-
15 ulations, as can be seen in the comparison of the Nanay and Purus third chromosome (Fig.

156 3). Purus appears to have a higher average recombination rate than Nanay for chromosome
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157 three. More specifically, particular regions of the chromosome present peaks in one popula-
158 tion that are absent in the other. A similar patter can also be observed for the density of
150 recombination hotspots, e.g. Purus presenting a high density of hotspots in certain regions
10 that is not observed in Nanay. The median 95% probability interval for recombination rate
161 across the genome for each population was found to be several orders of magnitude larger
12 than the uncertainty per site, estimated as the median 95% Credibility Interval of the trace
163 for each position in the genome for that population (Table 2).

164 Overall, the mean recombination rate for most of the populations was higher than esti-
165 mated mutation rates for multicellular eukaryotes of 107% changes per kb per generation
166 (Lynch, 2010; Exposito-Alonso et al., 2018) (Table 1). Two populations, Guianna and Criollo,
167 were notable exceptions, having higher average recombination rates than the other popula-
168 tions by one and two orders of magnitude respectively. Guianna and Criollo also have been
160 estimated to have a lower effective population size (N.) (Cornejo et al., 2018) by one and
170 two orders of magnitude respectively. However, there was no significant linear trend be-
i1 tween mean N, and r/kb (p = 0.1119), indicating that, for a high enough N,, the ability to
12 detect recombination events is not dictated by the effective population size. When Criollo
173 and Guianna were excluded, the relationship was also not present (p = 0.3886). When all
s populations were included, the inbreeding coefficient (F', from Cornejo et al., 2018) showed
s 1o significant linear association with mean r/kb (p = 0.3361). We also found no linear trend
76 between sample size and mean r/kb (p = 0.2333). The average recombination rate per popu-
w77 lation was transformed from r/kb to ¢M/Mb (Table 1) using the Kosambi mapping function
17s Kosambi (1943). The average cM/Mb was 4.6 x 107,

179 In order to compare the average recombination rates (r/kb) of the different populations,
10 a Kruskal-Wallis test was performed for every pair of populations. The only pair of popu-
181 lations that did not show a significant difference in mean recombination rate was the pair

12 of Nacional and Nanay (p = 0.3). All other pairwise comparisons were highly significant
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83 (p < 2x10719).

184

185 Comparing recombination hotspot locations between populations

186

187 The majority (55.5%) of hotspots identified were not shared between populations. The 25
188 most numerous sets of hotspots are represented in Fig. 5. The nine largest of these are sets
180 of hotspots unique to single populations. The hotspots unique to the remaining population
1o (Criollo) formed the eleventh largest set. Effective population size (N.) is not a good linear
101 predictor of the amount of detected hotspots (p = 0.1489), nor is sample size (p = 0.351).
102 The recombination rate in hotspot regions for nine of the populations was on average be-
103 tween 22 and 237% higher than the average recombination rate of the genome. The exception
10« was Guianna, which only showed an approximately 1% increase in average recombination
15 rate in hotspots regions when compared to that of the non-hotspot regions. A 1% higher
106 average recombination rate in hotspots may be due to an increased ability to detect hotspots
107 in regions of low recombination for this population. Additionally, Guianna presents unusu-
s ally large hotspots (average 8.9 kb, Table 6), which points to an especially low resolution in
109 hotspot detection for this population.

200 Despite the majority of hotspots not being shared between populations, we conducted
201 pairwise Fisher’s exact tests to verify whether there was significantly more hotspot overlap
202 than expected (if hotspots were randomly distributed along the genome) between popu-
203 lations. For most pairs of populations we found significantly more hotspot overlap than
200 expected (Table 3). There were three comparisons that did not show significantly more
205 overlap than expected: Amelonado-Nacional, Amelonado-Purus, and Criollo-Nacional. A
206 Mantel test comparing distances between populations based on shared hotspots and Fgr
207 values between populations resulted in a significant correlation between them (r = 0.66,

28 p = 0.002). The correlation between eigenvectors from a correlation matrix and those of the
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200 genetic covariance matrix were also explored. When all populations were included, we found
210 that the first eigenvector from the genetic covariance matrix was not significantly correlated
2 with the first eigenvector from the hotspot correlation matrix (p = 0.7055), but the second
212 genetic eigenvector was (p = 0.009007, » = 0.7711638). However, the first eigenvector of the
213 genetic covariance matrix captured the difference between the Criollo population (the only
212 domesticated variety) and the rest of the populations. The second eigenvector explains most
215 of the natural differentiation across populations (Cornejo et al., 2018). For that reason, we
216 decided to exclude Criollo and repeat the analysis. We found that the first eigenvector from
217 the correlation matrix constructed from shared hotspot information was not significantly
218 correlated with either of the first two eigenvectors of the genetic covariance matrix when
210 Criollo was excluded (eigenvector 1: p = 0.1314, eigenvector2: p = 0.3376).

220 To study the effects of demographic history more closely, shared hotspots were converted
21 to dimensions of a multiple correspondence analysis and modeled along a previously con-
222 structed drift tree (Cornejo et al., 2018). Modeling the dimension as a Brownian motion was a
223 better fit (AIC=79.4) than modeling it as an Ornstein-Uhlenbeck (OU) process (AIC=81.4),
224« which is consistent with the small number of hotspots shared between populations. The
225 model assuming Brownian motion is consistent with pure drift driving differentiation of a
26 trait along a genealogy, while an OU process is consistent with a higher trait maintenance
227 (stabilizing selection).

228

220 Identifying DNA sequence motifs associated with the locations of recombination hotspots
230

231 RepeatMasker was used to analyze the set of recombination hotspots that were present
232 in at least eight 7. cacao populations (17 total hotspots), as well as the consensus set
233 of recombination hotstpots, and the reference genome. In order to determine whether a

23 particular set of DNA sequence repeats was overrepresented in the regions of ubiquitous

W
a

10
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235 recombination hotspots, the percentage of DNA sequence that was identified as potentially
236 being from retroelements or DNA transposon was compared to an empirical distribution.
237 The percentage of observations from the distribution which were greater than the observed
238 are reported in Table 4. While retroelements were found to be underrepresented in the ubig-
230 uitous hotspots, DNA transposons were marginally overrepresented.

240

201 Identifying genomic features associated with the location of recombination hotspots

242

243 An overrepresentation of recombination hotspots was found in all ten of the populations
200 at transcriptional start sites (TSSs) and transcriptional termination sites (TTSs)(Table 5).
2es The level of overrepresentation of hotstpots in particular regions was compared to a null ex-
26 pectation based on simulations of hotspots of the same size as the ones detected, distributed
2e7 randomly along the chromosomes. For all populations, all 1000 simulations showed a lower
2as proportion of overlap with TSSs and TTSs than the observed. In the case of exons and
200 introns, seven populations (Contamana, Criollo, Iquitos, Maranon, Nacional, Nanay, Purus)
250 had an observed value that was lower than all, or almost all (Purus for exons), simulations.
51 Three of the remaining four populations (Amelonado, Curaray, and Nanay) had no clear
22 trend in either direction (Table 5). The final population (Guianna) showed an overrepresen-
253 tation of hotspots in both exons and introns.

254

= 1J)1Scussion

56 Understanding how recombination rates vary between genetically differentiated populations
257 of the same species is an important step toward disentangling the role of recombination in

258 genetic differentiation. This set of T. cacao populations presents a unique opportunity to

11
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250 infer recombination in wild, long- and recently established populations, as well as a domesti-
20 cated population (Criollo) (Cornejo et al., 2018; Bartley, 2005). This system has allowed us
261 to explore differences in recombination hotspot locations between populations of the same
262 species. Our results point to a conservation of hotspots between populations that generally
263 mirrors the patterns of genetic differentiation between populations. Also, we find that T'SSs
264 and TTSs are strongly associated with recombination hotspots in all populations, which is
265 consistent with previous findings in plants (Paape et al., 2012; Choi et al., 2013; Hellsten
266 et al., 2013). This factor seems to play an important role in determining the location of
267 novel hotspots. Finally, hotspots that are shared by at least eight populations appear to be
268 associated with DNA transposons, pointing to a potential mechanism for the maintenance
260 of recombination hotspots at the population-divergence time-scale.

270

271 Comparing recombination rates between populations

272

273 We found that the eight long-established, wild T. cacao populations show an average
272 recombination rate (r/kb) greater than multicellular eukaryotic mutation rates (Table 1),
275 while the other two populations (Criollo and Guianna) show unusually high average recom-
276 bination rates in comparison. Despite a small sample for some populations, we found no
277 linear trend between sample size and recombination rate. Additionally, the rates calculated
27s for the two wild, small-sample populations (Curaray and Nacional) were consistent with
270 those of other wild populations. This makes us confident in our estimates, particularly for
280 the domesticated Criollo population. For all populations, the mean recombination rate was
251 found to be greater than the median. This is consistent with high rate outlier values; an
232 expected result in the presence of recombination hotspots. Using the effective population
283 size for Medicago truncatula from Siol et al., 2007 and the estimate of rho from Paape et al.,

28 2012, we calculated r/kb (= 4 x 1073) and found that it was comparable with the rate found

12
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25 for the Criollo population (Table 1). We also calculated the median recombination rate
286 in M /Mb for each chromosome using the Kosambi mapping function (Kosambi, 1943) over
267 non-overlapping, 100 SNP windows. The average cM/Mb for all populations was 4.6 x 107%4,
268 which is lower than has been measured for any Malvale (Kundu et al., 2015), but not as low
20 as the lowest measured for conifers (Chen et al., 2010; Stapley et al., 2017). This places
200 T. cacao on the high end of known recombination rates for its order but comfortably in
201 the range of other long-lived, woody plants. Average recombination rates in ¢M/Mb varied
202 between populations from Amelonado ( 4.04 x 107%) to Criollo ( 3.91x~%). Previous work
203 has shown that Criollo is the only population showing a strong signature of domestication, as
20a  revealed by much higher drift parameter than that observed for other populations (Cornejo
205 et al., 2018). Domestication has been observed to increase recombination rates, particularly
206 in plants (Ross-Ibarra, 2004), and is a possible explanation for the higher recombination
207 rate observed for the Criollo population. The high recombination rate observed in Guianna
208 can be explained in a similar way; while Guianna does not show a strong signature of do-
200 Mestication, it is the most recently established population (Bartley, 2005), and it has also
s0 undergone a recent bottleneck (Cornejo et al., 2018). We hypothesize from this result that
s the Guianna population is undergoing the initial stages of domestication and its increased
32 recombination is an early indicator of this. It is possible that the high recombination rates
303 estimated for Criollo and Guianna can be explained by biases in estimation caused by errors
;04 associated to small samples or low genetic variation; yet, the recombination rates for Amel-
s onado (another population with low variation) or Purus (a population with small sample
06 size) did not present this problem. Analyses exploring mutations of putative recombination
307 suppression genes (Fernandes et al., 2018) could help disentangle the nature of this extreme
s08 variation in recombination rate in the Criollo and Guianna populations.

300 Despite recombination rates for eight of the ten populations being of the same order

;10 of magnitude, pairwise comparisons of average rates indicated that most populations have

13
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s a significantly different rate of recombination from the others. The only exception were
;12 Nacional and Nanay whose average rates were not significantly different from each other.
s13 These two populations, however, are not more closely related to each other than they are
sia to other populations, based on genetic differentiation (Cornejo et al., 2018). We interpret
s1s  this result as suggestive that their similarity is not due to genetic similarity, but some other
;16 factors, e.g. epigenetics.

317 The likelihood of detecting hotspots of recombination in the genome will likely be affected
;18 by the amount uncertainty in the estimates of recombination across sites or regions. Yet,
3190 we have been unable to identify any study where the magnitude of the uncertainty in the
30 estimates of recombination are assessed to address this issue. We have performed careful
s comparisons and assessed the magnitude of the uncertainty in the estimation of recombi-
32 nation rates to show that this uncertainty is several orders of magnitude smaller than the
223 variation in recombination rates across the genome (Table 2).

324

325 Comparing recombination hotspot locations between populations

326

327 Similarly to recombination rates, the location of recombination hotspots can be very
s informative to questions of divergence between populations. Understanding the pattern and
320 rate of change of recombination hotspots at the population level can elucidate their role
;30 in shaping genome architecture, impacting how effectively selection operates (Felsenstein,
a1 1974). We found that a large proportion (55.5%) of hotspots detected are unique to a single
32 population. While we do not detect all the hotspots in these populations and not all the
;33 hotspots detected are necessarily true positives, this proportion of unique hotspots can be
;3¢ seen as an indicator that the turnover rate for hotspots is faster than the time it took the
;35 10 populations to differentiate. The detection rate for LDhot is approximately 55% under

16 constant population conditions, and greater when a recent bottleneck has occurred (Auton
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ss7 et al., 2014; Dapper and Payseur, 2017). Only two of the populations in this study (Criollo
1s and Guianna) have a known recent bottleneck (Cornejo et al., 2018). However, Criollo was
330 the only one of these two with an unusually low hotspot count (Table 6). Criollo’s low
s0 number of detected hotspots can be a product of its increased genome-wide recombination
s rate, making the signal of hotspots less pronounced. The observed variability of hotspot
32 location between populations points to demographic history not being the main driver of
;a3 recombination hotspot location. However, the hotspots tend to appear in similar regions,
us  as demonstrated by the Fisher’s exact tests (Table 3). This dichotomy can be explained
aas by considering that the proportion of the genome occupied by recombination hotspots is
us  very low, so even a small proportion of hotspots from two different populations being in the
sz same region is enough for the Fisher’s exact test to recognize them as significantly similar.
as This small but significant similarity can occur by recombination being limited in its possible
30 positioning along the genome, but not to the point of forcing hotspots to occur consistently
30 in the same locations, and thus maintaining some level of stochasticity. It is important to
1 note that our hotspots are unusually large (Table 6). This is likely a product of our low
352 sample size leading to low resolution when resolving hotspot regions.

353 Given the significant proportion of overlapping hotspots between populations, it was still
354 important to explore whether the similarities can be explained by shared genetic history. If
355 demographic history explains the evolution of hotspot location, we would expect that more
ss6  closely related populations would have a higher percent of overlapped hotspots. A significant
57 relationship was found between population differentiation (Fgr) and the distance between
;s populations based on shared hotspots (Mantel test, » = 0.66, p = 0.002). The comparison
30 between the hotspot correlation matrix and the genetic covariance matrix supports what
0 was found when comparing the hotspot correlation matrix to the Fgr matrix. One caveat
1 1s that the first genetic eigenvector, which separated Criollo from the other populations,

2 was not correlated with the first hotspot correlation eigenvector, indicating that Criollo’s
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33 domestication generated a genetic pattern that deviates from the pattern of shared hotspots.
;4 This indicates that, to some extent, the genetic differentiation and the location of hotspots
365 are mirroring each other, which could be due to recombination hotspots being a product of the
366 shared history between the populations. However, since recombination rates were estimated
37 using a coalescent-based method, we expect historical relationships to be represented in
s our findings. We transformed the information of hotspot overlap to model hotspots as
30 quantitative traits changing along a population tree (Cornejo et al., 2018). Our results, show
sro that a Brownian motion model (AIC=79.4) better fits the data than a model with stabilizing
s selection Ornstein-Uhlenbeck model (AIC=81.4) and suggest that, in principle, drift alone
sz could explain the evolution of the location of recombination hotspots. However, the absolute
sz number of hotspots that are shared among populations indicates that demographic history
s7a alone is insufficient to explain the evolution of recombination hotspots in this species.

375 One conclusion that follows from these results is that, while shared recombination hotspots
76 can to some extent be explained by patterns of genetic differentiation, some of the sharing
sz can simply be due to a tendency for hotspots to arise near T'SSs and TTSs. It has been ob-
s7s  served in other organisms that hotspots of recombination are frequently associated to specific
;7o genomic features (including TSSs and TTSs) (Auton et al., 2013; Choi et al., 2013; Hellsten
0 et al., 2013; Myers et al., 2005; Singhal et al., 2015) or DNA sequence motifs (Auton et al.,
ss1 2012; Brunschwig et al., 2012; Stevison et al., 2016). These factors can affect the landscape
;2 of recombination, contributing to the patterns of shared hotspot locations between popula-
33 tions that we are observing in T. cacao. Previous studies looking at apes and finches have
33 explored recombination hotspots in multiple species and as many as two populations of the
;s same species (Singhal et al., 2015; Stevison et al., 2016; Shanfelter et al., 2018), but this
;86 study is the first to compare hotspots in more than two populations of the same species at
sz once. The increased number of populations allows us to analyze the relationship between

s population genetic processes and recombination. Our results suggest that the pattern of
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330 gains and losses of recombination hotspots is very dynamic and the landscape of recombina-
300 tion changes rapidly during the process of diversification within a species. This dynamism
301 can have a tremendous impact on the adaptive dynamics of a species, and it should be taken
302 into account, considering that theoretical studies tend to assume that recombination rates
303 are constant during the evolution of populations (Hudson and Kaplan, 1988; Donnelly and
s0a  Kurtz, 1999).

305

396 Identifying DNA sequence motifs associated with the locations of recombination hotspots
307

308 The analysis of 17 hotspots shared between at least eight populations of 7. cacao found an
300 underrepresentation of retroelements and a marginal overrepresentation of DNA transposons
a0 when compared to the entire genome (Table 4). These results are not entirely surprising as
so1 it has already been suggested that transposable elements (TEs) tend to be enriched in ar-
w2 eas of low recombination in Drosophila as a consequence of selection against TEs (Rizzon
a3 et al.,; 2002). However, the marginal over-representation of DNA transposons in the most
a0s conserved recombination hostspot is unexpected, given that all previous observations have
a5 shown a reduced representation of mobile elements in areas with high recombination rate
ws (Rizzon et al., 2002). It is possible that DNA transposons are at least partly responsible for
a0z the maintenance of recombination hotspots as populations diverge, from which we expect
a8 that site-directed recombination is more frequent in these locations of the genome. However,
a0 the low percentage of these sequences observed in the set of all hotspots (Table 4) indicates
a0 that these sequences only have a small effect on the maintenance of hotspots. It has been
a1 observed in humans that short DNA motifs enriched for repeat sequences determine the loca-
a2 tion of 40 per cent of hotspots enriched for recurrent non-allelic homologous recombination
sz (McVean, 2010). One potential explanation for why natural selection does not eliminate

a1z hotspots in these regions is the possibility that these regions do not produce a large enough
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a5 mutational load for natural selection to remove them from the population (McVean, 2010).
416

a7 Identifying genomic features associated with the location of recombination hotspots

a18

410 For all ten populations, an overrepresentation of hotspots was found in the areas im-
20 mediately preceding and following transcribed regions of the chromosome. This matches
a1 the findings of previous studies in Arabidopsis thaliana (Choi et al., 2013), Taenipygia gut-
a2 tata and Poephila acuticauda (Singhal et al., 2015), and humans (Myers et al., 2005). The
423 most likely explanation is that recombination events within genes are selected against. The
a22 rationale being that a recombinant chromosome that undergoes a double-strand break in
a2s the middle of a coding region will have a higher risk of being inviable, and therefore not
w26 represented in the current set of chromosomes for its population. Recombination occurring
427 in transcription start and stop sites, on the other hand, does a much better job at break-
428 ing up haplotypes or shuffling alleles in different genomic backgrounds, while preserving the
a0 functionality of coding regions. This rational is supported by previous findings of increased
a0 recombination rates in these regions (Choi et al., 2013). It is also supported by results from
a1 PRDM9 knock-out Mus musculus, which has shown a reversion to hotspots located near
sz TSSs (Brick Kevin et al., 2012). The enrichment of 7. cacao hotspots in TSSs and TTSs
433 is thus a reasonable result given that zinc-finger binding motifs and potential modifiers like
32 PRDMO9 have not been identified in this species.

435

436 Implications for the evolutionary history of T. cacao

437

438 Overall, our results show a large consistent pattern where recombination rates in the ten
430 populations of T. cacao are of a similar magnitude as mutation rates, but show a high di-

as0 versity in location and number of hotspots of recombination that cannot be explained solely
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a1 by the process of diversification of the populations. In fact, the results are indicative of the
a2 turnover rate of hotspots being faster than the process of divergence among populations.
a3 A potential hypothesis that could explain the rapid turnover of hotspots of recombination
aa and the relative differences in recombination among populations is that epigenetic changes
a5 are involved in controlling the turnover of recombination in plants. This hypothesis is not
ass unreasonable given the recent observation of epigenetic control of recombination in plants
sz (Yelina et al., 2015). Further theoretical and simulation work should be done in order to bet-
as  ter understand the implications of the rapidly changing recombination hotspots in adaptive
a9 dynamics. We also show that there is an overall underrepresentation of hotspots in exons
sso and introns for most populations, which is consistent with purifying selection acting against
a1 changes that could result in disruptions of gene function. On the other hand, we observed an
a2 overrepresentation of hotspots in TTSs and TSSs for all ten populations. This could impact
a3 the maintenance and spread of beneficial traits in the population by shuffling allelic variants
asa of genes without causing disruption of their function. We hypothesize that the enrichment of
a5 hotspots of recombination in TTSs and TSSs can have an important impact in the spread of
ass  beneficial mutations across different genomic backgrounds; increasing the rate of adaptation
w7 to selective pressures (e.g. selection for improved pathogen response).

458

= Materials and Methods

w0 Comparing recombination rates between populations

a61

462 Sequence data were downloaded from the Cacao Genome Database and NCBI (Accession
w63 PRJNA486011), including the reference sequence for each chromosome and the full genome

sse annotation (Theobroma cacao cv. Matina 1-6 v1.1)(Motamayor et al., 2013). Processing
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a5 was done using the pipeline from (Cornejo et al., 2018) available at the github repository
ass  0eco28/Cacao Genomics. Full genome data was used from a total of 73 individuals across
a7 10 populations (Cornejo et al., 2018): Criollo (N = 4, #SNPs = 309,818), Curaray (N =
ws D, #SNPs = 1,106,871), Contamana (N = 9, #SNPs = 2,097,618), Amelonado (N = 11,
a0 #SNPs = 373,789), Maranon (N = 14, #SNPs = 1,783,226), Guianna (N = 9, #SNPs =
a0 770,729), Iquitos (N = 7, #SNPs = 1,575,711), Purus (N = 6, #SNPs = 1,184,181), Nanay
an (N =10, #SNPs = 830,885), and Nacional (N = 4, #SNPs = 718,099). We filtered the single
a2 nucleotide polymorphism data and excluded rare variants (minor allele frequency <= 0.05)
a1z per population. Separate variant files per population per chromosome were then phased
ara using default conditions with SHAPEIT2 (Delaneau et al., 2011) under default parameters.
a5 Haplotype files were converted back to phased variant calling format (vcf) for its downstream
ars analysis. We have also phased the data with Beagle (Browning and Browning, 2007), using
a7z a burnin of 10000 iterations, and estimations done over 10000 iterations. No appreciable
a7 differences were observed between the two methods and Beagle phasing was maintained for
aro the analyses. The reason for performing the phasing separately for each population is that
a0 linkage disequilibrium patterns are expected to be affected by population structure. The ten
a1 populations have been shown to be unique clusters with very little admixture between them
s> Cornejo et al. (2018), and the individuals used in this study were those whose ancestry was
a3 clearly from a single population. VCFTools (Danecek Petr et al., 2011) was used to remove
s all singletons and doubletons. Only bi-allelic single nucleotide polymorphisms (SNPs) were
ass retained and were exported in LDhat format.

486 In order to estimate recombination rates we used the interval routine of LDhat (Auton
a7 and McVean, 2007), a program that implements coalescent resampling methods to estimate
ags  historical recombination rates from SNP data. To reduce computation time, each chromo-
as0  some was split into windows, each containing 2000 SNPs. To counteract the overestimation

a0 of recombination rate produced at the ends of the windows, an overlap of 500 SNPs was left
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a1 between consecutive windows. The final window for each chromosome did not always match
s> the general scheme, so the final 2000 SNPs were taken (making the overlap with the second
a3 to last window variable, but never less than 500 SNPs) (Fig. 6). Once these windows were
a4 generated, LDhat was run over each window using 100 million iterations, sampling every
a5 10000 iterations (10000 total points sampled), with a block penalty of 5. Lookup tables
a6 with a grid of 100 points, a population mutation rate parameter (f) of 0.1 and a number
a7 of sequences (n) of 50 were used for all populations. We used the same 6 for all popula-
a8 tions since estimates from Cornejo et al. (2018) ranged from 7 = 0.27% to = = 0.37%, all
a0 comfortably within an order of magnitude of each other. The first 50 million iterations were
so discarded as burn-in. Once recombination rates were calculated, 250 positions were cut off
soo from both windows involved in each overlap, so that the estimates for the first half of the
s2 overlap was taken from the end of the preceding window and the estimates for the second
so3 half of the overlap were taken from the beginning of the following window. The final overlap
soa in each chromosome was split in order to remove 250 SNPs from the second to last window,
sos regardless of the remaining size of the last window. The remaining rate estimates were then
sos merged in order to obtain recombination rates for the entire chromosome. This was done for
soz each chromosome of each population.

508 The estimation of recombination rates with LDhat is approximated using a sampling
so0  scheme with a Markov Chain Monte Carlo (MCMC) algorithm as implemented in the interval
s10 routine. The inference of recombination rates is the result of the integration of estimated
si1 parameter values across iterations with the routine stats. In the majority of recent studies
si2. where LDhat or LDhelmet are used (Myers et al., 2005; Auton et al., 2012; Brunschwig et al.,
si3 2012; Paape et al., 2012; Auton et al., 2013; Choi et al.; 2013; Singhal et al., 2015; Stevison
sie et al., 2016), whether there is convergence of the Markov chains has not been explicitly
si5 investigated. One study that we are aware of has used simulations to asses whether their

s16  small sample size affected their ability to obtain reliable estimates of recombination using
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LDhelmet (Booker et al., 2017), but did not assess the uncertainty of the estimates from
the MCMC process itself. We argue that evaluation of convergence is important to assess
the confidence in the estimated reported values, especially if there is interest in analyzing
the differences in recombination rate along the genome. Visual inspection of pilot runs of
the analysis demonstrated that convergence was not achieved after running 40M iterations,
which is why the length of the chains was increased to 100M iterations. Additionally we
explored the uncertainty in the estimates of recombination site-wise by integrating over the
trace of the estimates for recombination rate to infer the 95% Credibility Interval. We then
estimated the 95% interval of recombination estimates range across all sites in the genome
to have an overall measure of uncertainty that we compared to the median 95% Credibility
Interval for the trace of each position.

In order to compare recombination rates, the effective population size (N,) calculated for
each population (Cornejo et al., 2018) was used to convert rates in N.r/kb to r/kb. Differ-
ences in the mean genome-wide recombination rate between populations were then tested
using the Kruskal-Wallis test (kruskal.test function from the stats package in R) (R Core
Team, 2018). There were 45 comparisons, making the Bonferroni correction cutoff value:
a = 0.0011. To transform per population recombination rates from r/kb to ¢M/Mb, we
divided each chromosome into windows of 100 SNPs and used the Kosambi mapping func-
tion (Kosambi, 1943). The median for the windows of a chromosome was then calculated,
and the average of each population’s chromosomes was taken as that population’s average

recombination rate in c¢M/Mb.

Comparing recombination hotspot locations between populations

Recombination hotspots were estimated with LDhot (Auton and McVean, 2007), a likelihood-

based program that tests whether a single distribution model or a two distribution model
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sa3  better explains the observed recombination rates in 1 kb sliding windows (default), for each
saa chromosome. FEach chromosome was run in its entirety, with the number of simulations
sss  (nsims) set to 1000. The resulting potential hotspots were refined by an alpha of 0.001, and
sa6 overlapping hotspots were merged. This method therefore detects hotspots by comparing
sz rates in 1 kb windows to the rates in the surrounding regions.

548 To determine the set of consensus hotspots, the hotspots from all populations were
se0  merged. Two hotspots from different populations were considered to be shared if they both
sso overlapped with the same hotspot in the consensus set. To summarize all shared hotspots, a
ss1 Boolean matrix was constructed, in which a population having a hotspot that overlaps with
ss2  a hotspot in the consensus list leads to an indication of presence of the consensus hotspot
ss3 in that population. This matrix was used to determine hotspots shared by two or more
ssa  populations.

555 A Fisher’s exact test was run for each pair of populations in order to determine whether
sse hotspots for the pair of populations overlap significantly more than expected. The BED
ss7  files containing the location of the recombination hotspots for each pair of populations were
sss  compared using Bedtools:fisher (Quinlan and Hall, 2010). The number of comparisons was
sso 45, making the the Bonferroni correction cutoff value: o = 0.0011.

560 In order to compare the relationships between populations based on shared hotspots we
se1 calculated Jaccard distances (distance function, philentropy package, R) (Drost, 2018)
ss2 and compared them to a published Fsr matrix (Cornejo et al., 2018) using a Mantel test
se3 (mantel.rtest function, ade4 package, R) (Chessel et al., 2004; Dray and Dufour, 2007;
sea  Dray et al., 2007; Bougeard and Dray, 2018). The Fsr estimates from Cornejo et al. (2018)
ses  were generated using Weir and Cockerham’s estimator Weir and Cockerham (1984).

566 The Boolean matrix for shared hotspots was also used to explore the relationship be-
se7 tween hotspot similarities and genetic covariances from a previous study (Cornejo et al.,

ses  2018). Singletons were removed from the hotspot matrix, which was converted to a corre-
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seo lation matrix using the mixed.cor function from the psych package in R (Revelle, 2018).
s70  The mixed.cor function was used due to its ability to calculate Pearson correlations from
s1 - dichotomous data. We then used the eigen function in R (R Core Team, 2018) to generate
sz eigenvectors for the hotspot correlation matrix and the genetic covariance matrix. Pearson
s3 - correlations between the first and second eigenvector of the genetic covariance matrix and the
sz hotspot correlation matrix were then calculated (cor.test function, stats package, R)(R
s7s Core Team, 2018). This analysis was done once with all populations included, and once with
s76  the Criollo population excluded before correlations were calculated.

577 In order to model the presence or absence of hotspots along a drift tree, a multiple
s7s  correspondance analysis was used on the Boolean matrix of shared hotspots using the MCA
s7o function from the FactoMineR package in R Lé et al. (2008). Nine dimensions were retained
ss0 and used as traits along a previously generated drift tree (Cornejo et al., 2018). Using the
ss1 Rphylopars package in R (Goolsby et al., 2016), the dimensions were modeled as Brownian
ss2 motion and as an Ornstein-Uhlenbeck process. The fit of the two models were compared
ss3 using the AIC values for the best fitting models of each type.

584

585 Identifying DNA sequence motifs associated with the locations of recombination hotspots
586

587 Motifs associated with hotspots were found using RepeatMasker (Smith et al., 2016).
sss 'The entire genome, the set of consensus hotspots, and a set of ubiquitous hotspots (hotspots
ss0 shared by at least eight of the populations) were examined with RepeatMasker, using normal
soo  speed and "theobroma cacao" in the species option. In order to determine whether ubiqui-
so1  tous hotspots were enriched for particular DNA sequences, a set of the same number and size
so2  of sequences was randomly selected from the genome using Bedtools:shuffle (Quinlan and
so3 Hall, 2010) and examined with RepeatMasker. This simulation was repeated one thousand

soa  times and a null distribution against which observed values were compared was constructed
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sos from the results.

596

507 Identifying genomic features associated with the location of recombination hotspots

508

509 Testing whether recombination hotspots were overrepresented near particular genomic
soo features was done by using a resampling scheme to establish null expectations and then
so1 comparing the observed value to the empirical distribution. For each feature, locations were
s02 retrieved and the number of observed hotspots that overlap with this feature were counted.
603 To determine whether this amount of overlapping hotspots was unusually high or low, a set of
e hotspots that matched the number of hotspots and the size of each hotspot was simulated.
s0s These simulated hotspots were placed randomly along the chromosome, using a uniform
s0s distribution. The simulation was run 1000 times and the number of simulated hotspots that
ez overlap with the true genomic features was measured for each simulation. The simulations
sos generate an expected distribution of overlap with the genomic feature, and the true value
soo  was then compared to the distribution. When simulated hotspots overlapped, the location
s10 of one of them was sampled again. Features tested were: Transcriptional start sites (T'SSs),
11 transcriptional termination sites (T'TSs), exons, and introns. T'SSs and T'TSs are considered
s12 to be the 500bp upstream and downstream of coding regions respectively.

613 The reason for the proposed novel resampling scheme is that, if the size and distribution
s14 of genomic features and hotspots were not taken into account, it would set unrealistic expec-
s15 tations for the overlap between features under a null model of no association. In this sense,
s16 the null model would be inappropriate and potentially inflate the false positive rate.

617

618 Data and code availability

619

620 Rate and summary files from LDhat runs as well as hotspots for each population will
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be placed in a Dryad repository. Scripts for LDhat and LDhot runs as well as the re-
sampling schemes used and additional analysis is available in the following github repository

ejschwarzkopf /recombination — map.
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« lables

Population Mean Mean Mean  Median Lower Bound Upper Bound Mean
4Ner/kb  Ne r/kb r/kb  (Mean r/kb) (Mean r/kb) ¢M/Mb

Amelonado 1.58 15744 2.51e-05 2.40e-09 2.48e-05 2.54e-05 4.04e-06
Contamana 8.53 61102 3.49e-05 4.92e-06 3.48e-05 3.50e-05 7.74e-05
Criollo 14.60 695  5.25e-03 4.27e-03 5.23e-03 5.27e-03 3.91e-03
Curaray 10.36 58213 4.45e-05 1.78e-05 4.44e-05 4.46e-05 1.18e-04
Guianna 8.66 4651  4.65e-04 7.74e-06 4.63e-04 4.67e-04 2.74e-04
Iquitos 4.23 49984 2.11e-05 5.88e-09 2.10e-05 2.12e-05 1.84e-05
Maranon 4.09 34037 3.01e-05 1.64e-08 2.99e-05 3.02e-05 1.68e-05
Nacional 4.66 26060 4.47e-05 9.76e-08 4.44e-05 4.49e-05 4.10e-05
Nanay 6.82 42429 4.02e-05 1.51e-07 4.00e-05 4.04e-05 1.33e-05
Purus 5.95 17357 8.57e-05 7.74e-06 8.54e-05 8.60e-05 1.23e-04

Table 1: Recombination rates in 4 N.r/kb, r/kb, and ¢cM /Mb for all ten T cacao populations.
The N, that was used for the transformation is also reported for each population, as are the
lower and upper bounds of a 95% confidence interval for r/kb.
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Population  Position Position Genome Genome Position Genome
L95 U95 L95 U95 Range Quotient Range Quotient
Amelonado 6.35e-10 7.67e-08 2.33e-10 3.13e-04 120.75 1.34e+06
Contamana 1.63e-06 1.34e-05 1.40e-09 2.64e-04 8.22 1.88e+05
Criollo 8.75e-04 4.31e-03  5.35e-07 1.66e-02 4.92 3.11e+04
Curaray 5.15e-06  2.63e-05 2.72e-09  2.02e-04 5.11 7.40e+04
Guianna 9.76e-06 1.26e-04 1.81e-09 2.96e-03 12.90 1.63e+06
Iquitos 3.50e-10  6.52e-08 1.58e-10  2.45e-04 186.29 1.55e+06
Maranon 1.98¢-09 7.40e-07 2.31le-10  3.52e-04 373.35 1.52e+06
Nacional 4.80e-10  6.50e-08  2.76e-10  3.66e-04 135.60 1.33e+06
Nanay 1.65e-09  3.06e-07 2.06e-10  3.52e-04 185.32 1.71e+06
Purus 3.98e-08  5.24e-06  2.00e-09  6.35e-04 131.87 3.18e+05

Table 2: The median of the upper and lower bounds of the 95% Credibility Interval for the
trace of estimates of r from all positions in the genome are presented for each population
(i.e. Position L95 and Position U95). The upper and lower bounds of the 95% probability
interval for the median estimate of r for each population is also presented (i.e. Genome L95
and Genome U95). The quotients of the upper and lower bounds for each of the two intervals
point to a much larger genome-wide variation in r than per-position variation in the trace

for the estimate of 7.

Population | Ame Con Cri Cur Iqu Nac Nan
Amelonado - - - - - - -
Contamana | <2e-07 - - - - - -
Criollo <9e-05 | <be-13 - - - - -
Curaray <3e-05 | <3e-37 | <bHe-08 - - - -
Guianna | <3e-06 | <1e-37 | <7e-07 | <4e-20 - - -
Iquitos <4e-08 | <6e-87 | <2e-11 | <3e-16 | <2e-29 - - -
Maranon | <6e-13 | <7e-77 | <2e-11 | <2e-20 | <be-33 | <4e-64 - - -
Nacional 0.0015 | <2e-43 | 0.0212 | <Te-14 | <3e-06 | <6e-14 | <3e-13 - -
Nanay 0.0004 | <2e-44 | <9e-11 | <4e-16 | <2e-21 | <3e-39 | <2e-38 | <9¢-06 -
Purus 0.1782 | <4e-117 | <2e-05 | <2e-29 | <le-33 | <2e-39 | <8e-43 | <6e-27 | <2e-21

Table 3: Fisher’s exact test p-values for

locations between populations of T'. cacao
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Measures Observed % | Observed % | Observed % | Mean % % Sim
ubiquitous HS all HS whole genome Sim >ubiquitous HS
Retroelements 2.34 9.45 11.12 11.11 99.9
DNA transposons 1.94 1.64 1.10 1.10 5.4
Total 4.28 11.09 12.21 12.22 99.7

Table 4: Percentage of DNA sequences identified as either retroelements or DNA transposons,
and total interspersed repeats. Observed values for the entire 7. cacao genome, for all
recombination hotspots (HS), and ubiquitous hotspots (hotspots in the same location in at
least eight different populations). Also presented are mean percentage of these sequences
for 1000 simulations of hotspots equivalent in size and count as the ubiquitous set and the
percentile at which the observed value for the ubiquitous set is found in the distribution of
the simulated set (Sim).

TSSs TTSs | Exon | Intron

(500bp) | (500bp)
Amelonado 1 1 0.602 | 0.527
Contamana 1 1 0.000 | 0.000
Criollo 1 1 0.000 | 0.000
Curaray 1 1 0.346 | 0.058
Guianna 1 1 1.000 | 1.000
Iquitos 1 1 0.000 | 0.000
Maranon 1 1 0.000 | 0.000
Nacional 1 1 0.000 | 0.000
Nanay 1 1 0.027 | 0.237
Purus 1 1 0.004 | 0.000

Table 5: Proportion of simulated chromosomes that presented a lower amount of hotspots
intersecting with TSSs, TTSs, exons, and introns than the observed chromosomes. TSSs
and TTSs are considered to be the 500bp upstream and downstream of transcribed regions,
respectively.
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Population | Mean Hotspot | Hotspot

Size (kb) Count
Amelonado 6.9 1324
Contamana 6.1 5184
Criollo 6.1 887
Curaray 5.8 2303
Guianna 8.6 3655
Iquitos 7.0 3258
Maranon 6.8 3296
Nacional 6.9 2202
Nanay 7.6 3818
Purus 6.3 3972

Average 6.9 2989.9

Table 6: Average hotspot size (in kb) and count for hotspots detected in each population
and average for all populations.
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= Flgures

Nacional
Criollo
Curaray
Amelonado
. Nanay
Maranon
B Guianna
Iquitos
Purus
Contamana

0.01

Figure 1: Drift tree constructed using TreeMix (Pickrell and Pritchard, 2012) for the 10
T. cacao populations. Distances between populations are based on the drift parameter.
Modified from Cornejo et al. (2018)
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Figure 2: Distribution of log;g recombination rates (log(r/kb)) along the genomes of the ten
T. cacao populations.
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Figure 3: The third chromosomes of the Nanay (A) and Purus (B) populations were se-

lected to exemplify the differences between populations in recombination rates (r/kb) and
recombination hotspot locations (vertical bars above rates).
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Figure 4: Boxplots of recombination hotspot sizes (logio(bp)) by population. The horizontal
line in the box represents the median value, while the points represent potential outliers.
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Figure 5: Upset plot showing number of hotspots in different subsets. Horizontal bars
represent total hotspots detected in a population, each dot on the matrix indicate that
the vertical bar above it is the count of hotspots unique to that population, connected dots
indicate that the vertical bar above them represents hotspots shared between the populations
represented by the connected dots. The 25 largest subsets are shown.
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Figure 6: Example of the window layout for a 10,750 SNP chromosome. The 2,000 SNP
long windows are represented by alternating horizontal and vertical lines and the overlaps
between them are represented by square crosshatches. Braces above the chromosome indicate
the regions from which recombination rates are extracted to generate the chromosome-wide
recombination rates.
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