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ABSTRACT 29 

Markerless and accurate tracking of mouse movement is of interest to many biomedical, 30 

pharmaceutical, and behavioral science applications. The additional capability of tracking body 31 

parts in real-time with minimal latency opens up the possibility of manipulating motor feedback, 32 

allowing detailed explorations of the neural basis for behavioral control. Here we describe a 33 

system capable of tracking specific movements in mice at a frame rate of 30.3 Hz. To achieve 34 

these results, we adapt DeepLabCut – a robust movement-tracking deep neural network 35 

framework – for real-time tracking of body movements in mice. We estimate paw movements of 36 

mice in real time and demonstrate the concept of movement-triggered optogenetic stimulation by 37 

flashing a USB-CGPIO controlled LED that is triggered when real time analysis of movement 38 

exceeds a pre-set threshold. The mean time delay between movement initiation and LED flash 39 

was 93.44 ms, a latency sufficient for applying behaviorally-triggered feedback. This manuscript 40 

presents the rationale and details of the algorithms employed and shows implementation of the 41 

system using behaving mice. This system lays the groundwork for a behavior-triggered ‘closed 42 

loop’ brain-machine interface with optogenetic stimulation of specific brain regions for feedback. 43 

 44 

Keywords: movement tracking, optogenetics, closed loop, real-time tracking 45 
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INTRODUCTION 46 

 Real-time movement tracking is a challenging computer vision problem that is crucial for 47 

constructing precise movement-triggered systems and brain-machine interfaces (BMIs). Most 48 

BMIs use electroencephalograms (EEGs) as inputs 1 to systems that provide feedback in near 49 

real time. We sought to explore methods by which we could precisely track movements of 50 

specific body parts in real time using computer vision techniques, to investigate whether video-51 

based movement tracking could be used in BMIs. 52 

 53 

 Significant progress has been made in movement tracking and it is now possible to 54 

estimate and analyze poses in humans 2. Marker less, accurate tracking of specified movements 55 

without having to manually label large datasets as inputs for training 3 is possible. In particular, 56 

the approach presented by Mathis et al.’s (2018) “DeepLabCut” generalizes well across animals, 57 

and allows movement schemas to remain accurate across different mice. The flexibility offered 58 

by this approach is important for real-time movement tracking; instead of tracking movement 59 

based on databases of stereotyped movement data – such as those used by Insafutdinov et al. for 60 

pose estimation (2016).  The DeepLabCut approach 3 generates models that can be more 61 

sensitive to the movements of animals under our specific laboratory conditions. Such sensitivity 62 

will help us overcome the limitations of a computer vision approach for measuring movement 63 

activity compared to more traditional BMI techniques, such as those utilizing EEG data 1 or 64 

single-neuron input data 4. Additionally, a robust, customizable framework for real-time tracking 65 

of specific body parts in atypical subjects (such as specific animals) would have many 66 

applications in psychiatry, rehabilitation engineering, and other fields that make use of BMIs. 67 

Our main motivation for developing a real-time movement tracking framework is to enable 68 
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optogenetic 5,6 or sensory stimulation based on classification of movements of specific body 69 

parts. This framework may provide insight into the operations of the cortical regions involved in 70 

the coordination and planning of movements when used in combination with optogenetics7–9. 71 

 72 

 Although our aim is to employ optogenetics, we must first show that we can track the 73 

movement of specific body parts in real time. However, virtually all current real-time tracking 74 

systems used for animal tracking are based on blob detection algorithms 10,11 which, while more 75 

lightweight than pose estimation algorithms, are better suited to whole-body tracking than body 76 

part tracking. As such, while previous approaches to real-time tracking are effective for 77 

examining social interactions or holistic body movements, they are typically unable to discern 78 

small-scale movements – such as whisker or nose movements – which are crucial as inputs to an 79 

appropriately robust BMI. Therefore, here we discuss adaptations we have made to DeepLabCut 80 

3, a precise movement tracking framework, in order to leverage it for real-time movement 81 

tracking and analysis on individual body parts in mice.  82 

 83 

MATERIALS AND METHODS 84 

Animals and surgery. Animal protocols (A13-0336 and A14-0266) were approved by the 85 

University of British Columbia Animal Care Committee and conformed to the Canadian Council 86 

on Animal Care and Use guidelines and animals were housed in a vivarium on a 12 h day light 87 

cycle (7 AM lights on). For head fixation experiments animals were anesthetized with isoflurane 88 

(2% in pure O2) and body temperature was maintained at 37°C using a feedback-regulated 89 

heating pad monitored by a rectal thermometer while they received a cranial window. Mice 90 

received an intramuscular injection of 40 μl of dexamethasone (2 mg/ml) and a 0.5 ml 91 
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subcutaneous injection of a saline solution containing buprenorphine (2 μg/ml), atropine (3 92 

μg/ml), and glucose (20 mm), and were placed in a stereotaxic frame. After locally anesthetizing 93 

the scalp with lidocaine (0.1 ml, 0.2%), the skin covering the skull was removed and replaced by 94 

dental cement 7,12,13. A metal screw was attached to the chamber for future head fixation during 95 

recordings. At the end of the procedure, the animal received a second subcutaneous injection of 96 

saline (0.5 ml) with 20 mM of glucose and recovered in a warmed cage for 30 min.  97 

 98 

 For movement recordings, the heads of awake mice were stabilized by attaching a skull-99 

mounted screw to a pole mounted on a base-plate while the body was resting on a running wheel. 100 

We used a USB 3.0 webcam (Logitech BRIO, Logitech, Lausanne, Switzerland, 60 Hz) or a 101 

Raspberry Picam’s RGB sensor (Raspberry Pi Foundation, Cambridge, UK, 60 Hz) to capture 102 

body movements.  103 

 104 

Training movement tracking models 105 

We use DeepLabCut 3 as the basis for our movement tracking framework. Using the 106 

standard protocol developed by Mathis et al. (https://github.com/AlexEMG/DeepLabCut), we 107 

train models to analyze movement of each mouse’s nose, left and right barrel, and left and right 108 

paws. All image processing, tracking, and LED output was carried out on a computer with 64 109 

GB of RAM, 3.3 GHz and an Nvidia Titan Xp GPU; however, we also conducted a number of 110 

trials on another computer with 128 GB of RAM. 111 

 112 

 113 

 114 
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Implementing real-time tracking 115 

We examine two approaches to streaming video for real time tracking. In both 116 

approaches, we primarily investigate and collect data for the left and right paw movement; this is 117 

because, for the purposes of developing a robust real-time movement tracking paradigm, larger 118 

movements are easier to track. Additionally, the relatively high speed of paw movement enabled 119 

us to verify the fidelity of tracking. In the first approach, we stream a frontal video of the mouse 120 

(in the same position and under the same conditions as the videos on which the models were 121 

trained) via TCP, using a Raspberry Picam RGB sensor. We use a Python server script on the 122 

Raspberry Pi and a Python client script on the computer with DeepLabCut to accomplish this. In 123 

the second approach, we stream a video through the same neural network and video 124 

configuration as described above using a USB 3.0 webcam connected directly to the computer on 125 

which the DeepLabCut neural network model operates. Image retrieval, pre-processing, 126 

analysing and saving in serial loop is slow. To speed-up the real-time tracking, we split these 127 

serial operations into parallel tasks. An independent thread continuously captures the current 128 

frame from the camera and makes it available for pre-processing. Pre-processing and analysis 129 

processes run in serial and the results, along with the frame as passed to another independent 130 

thread that saves them. De-coupling 1) reading the frame from camera and 2) saving the frames 131 

and results from the main analysis process resulted in six-fold boost in the speed. 132 

 133 

 For each approach, we integrate our client script with DeepLabCut’s movement analysis 134 

functions. As each video frame arrives on the computer, we convert it to an 8-bit unsigned byte 135 

format and pass it to DeepLabCut’s pose analysis function. This function returns a set of six 136 

predicted locations on the body part being analyzed. Optionally, we then render these 137 
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coordinates onto the newly analyzed frame using matplotlib (https://matplotlib.org/) and display 138 

the frame or save the frame. In the second approach, we shift the plot rendering process to a 139 

discrete thread in order to improve performance, and plot the coordinates using opencv2 140 

(https://opencv.org/). We measure analysis performance through visual inspection and 141 

comparison of frame rates. The stream’s frame rate indicates the computational weight of the 142 

analysis; we optimize the computational environment in order to maximize the frame rate. We 143 

also manipulate lighting intensity and direction, camera position, stage position, resolution, and 144 

cropping: all of these factors have been observed to affect tracking accuracy. 145 

 146 

Prototyping optogenetic stimulation 147 

In each approach, we calculate either a dynamic (cumulative standard deviation) or static 148 

threshold for movement classification. We then check if the average movement of the six points 149 

tracked on the selected body part exceeds this threshold. 150 

 151 

 In the first approach, if movement exceeds this threshold, we pass a packet containing “1” 152 

over UDP (over ethernet) to the Raspberry Pi, triggering the LED connected to the Raspberry Pi. 153 

If movement does not exceed this threshold, we extinguish the LED by sending a packet 154 

containing “0” over UDP (over ethernet) to the Raspberry Pi. In this approach, all LED 155 

operations are carried out asynchronously. 156 

 157 

 In the second USB 3.0 approach, if movement exceeds the threshold, we directly pass a 158 

command to turn the LED on or off over USB via an Adafruit FT232h breakout board (Adafruit 159 
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Industries, New York, NY). In this approach, all LED operations are carried out asynchronously 160 

using a discrete thread. 161 

 162 

Code Availability 163 

We have released our modifications to DeepLabCut and pyftdi, which enable real-time 164 

pose estimation and LED testing, at https://github.com/bf777/DeepCutRealTime. 165 

 166 

RESULTS 167 

We have evaluated several approaches for real-time tracking using DeepLabCut.  The 168 

performance of each model was evaluated on frame rate over 120 seconds, through visual 169 

inspection, and through average likelihood of each prediction being correct. For the TCP 170 

approach using Raspberry Pi, the mean frame rate across all trials (N = 17) with frame recording 171 

was 1.73 Hz, SD = 0.10 Hz; the best performing model with frame recording was 2.00 Hz. For 172 

the wired approach using the USB 3.0 webcam, the mean frame rate across all trials (N = 37, 3 173 

mice) with frame recording was 30.3 Hz, SD = 0.53 Hz. When LED feedback was not 174 

implemented, the mean frame rate across all trials (N = 3) without frame recording was 50.87 Hz, 175 

SD = 8.79 Hz; the best performing model under these conditions was 56.67 Hz.  176 

 177 

 We evaluated the performance of the optogenetic stimulation prototype by inspecting the 178 

delay between movement initiation and LED illumination in the behavioral video frames we 179 

recorded. Across all trials, the mean delay between movement initiation and LED illumination 180 

across trials (N = 37, 3 mice) was 93.44 ms, SD = 22.99 ms (Fig. 3，Supplementary video 1). 181 

 182 
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 183 

DISCUSSION 184 

We have adapted DeepLabCut for real-time tracking of behavior. We found that the USB 185 

3.0 approach enabled a much higher frame rate than the TCP/UDP approach. Additionally, we 186 

were able to use threading to virtually eliminate any latency introduced by labelling frames. 187 

Shifting from matplotlib (Hunter, 2007) to native opencv2 (Bradski, 2000) plotting functions 188 

also appeared to contribute to the performance improvement.  A number of factors could 189 

potentially affect the quality of the tracking. While tracking was typically robust, the most 190 

prominent of these factors was lighting; deviations from the lighting conditions of the videos on 191 

which we trained our models resulted in tracking of spurious body parts (such as the ear) or 192 

arbitrary points. In particular, regions of the video with high contrast relative to the intended 193 

body parts tended to be the focus for tracking when lighting conditions were incorrect. This may 194 

be a function of how the scoremap calculations that are involved in pose estimation are carried 195 

out within DeepLabCut 3. Additionally, fast running movements resulted in blurred body part 196 

tracking, which decreased quality; this is likely a function of the frame rate, which was 197 

influenced by 1) the GPU’s processing power, 2) the RAM of the computer, 3) the throughput of 198 

the connection between the camera and the computer (e.g. USB 3.0 vs. USB 2.0), and 4) the 199 

threading strategy used for image processing and LED control. As such, frame rate was 200 

improved by 1) upgrading the computer’s GPU and 2) upgrading its RAM, 3) switching from a 201 

USB 2.0 to a USB 3.0 webcam, and 4) switching from merely asynchronous plotting and LED 202 

operations to fully threaded versions of these operations. A smaller factor was the contrast level 203 

set on the webcam (likely for similar reasons to the effects of different lighting). 204 

 205 
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 The relatively short delay between movement initiation and LED illumination is 206 

promising for further development of a movement-triggered biofeedback system with 207 

optogenetics. We have determined that, with only trivial modification, our existing mechanism 208 

can also interact with a trigger connected to a laser for optogenetic stimulation. However, this 209 

delay could be shortened by examining the hardware latency of our breakout board. The pyftdi 210 

library is one of the lowest-level interfaces between a computer and an LED; however, the 211 

breakout board is connected via USB 2.0, which presents a hardware bottleneck compared to the 212 

USB 3.0 technology used for our camera. As such, for future optogenetic work we need to 213 

account for and minimize this delay, perhaps by quantifying the delay and appropriately altering 214 

the frame rate to ensure that each LED flash is synchronized with a frame. 215 

 216 

 Further progress can likely be made by streamlining the deeper-level analytical 217 

operations of DeepLabCut and by further tweaking the threading strategy used. This would 218 

require deeper investigation into the most computationally intensive aspects of DeepLabCut; an 219 

especially important area to focus on would be parallelization of pose estimation operations in 220 

DeepLabCut. Additionally, it would be beneficial to batch the frames that are streamed into the 221 

pose estimation framework, in order to enable parallel processing of frames (which would then 222 

be sorted chronologically).  223 

 224 

 Our aim of integrating movement tracking with optogenetics will leverage recent 225 

advances in understanding of the mouse brain’s motor planning circuits14. Further directions for 226 

this research may combine movement tracking with two-photon microscopy to investigate 227 
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whether real time DeepLabCut can be used to condition motor behaviours in mice through 228 

closed-loop feedback with the potential goal of understanding and localizing motor memory15,16. 229 

 230 

Conclusion 231 

 Our framework for real-time tracking based on DeepLabCut is capable of relatively high-232 

speed tracking while maintaining performance. We demonstrate a movement magnitude 233 

classifier that can be used to trigger an LED, therefore prototyping a biofeedback brain-machine 234 

interface (BMI) that integrates optogenetic stimulation with movement tracking. This project 235 

forms the basis for future work on building a robust brain-machine interface that, through 236 

optogenetic stimulation that could be employed in forms of closed loop brain stimulation 17,18 237 

and used to explore the function of various movement-related and somatosensory activities in the 238 

brain 19, including behavioural conditioning in mice via optogenetic stimulation 20. Such 239 

exploratory research could contribute to more advanced and effective BMIs that leverage both 240 

neural and non-neural data, adding greater diversity to the types of information that are 241 

integrated to treat somatosensory dysfunction. 242 
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FIGURE LEGENDS: 243 

Fig. 1. An overview of the video collection, pose estimation, and movement classification and 244 

feedback processes in our study.  245 

Fig. 2. Overview of the parallel frameworks used to compute pose estimates and output a GPIO 246 

signal. a.) Mouse activity is recorded by webcam for 15 seconds. b.) A previously trained model 247 

of movement in the desired body part is selected. c.) Each frame of video from the webcam is 248 

sent over USB 3.0 to the computer; based on the previously trained video, DeepLabCut 249 

(operating on the GPU) estimates body part locations in each frame. d.) The estimated body part 250 

locations are then output to three CPU threads. The first thread collects each frame from the 251 

webcam and prepares it for processing. The second thread plots estimated body part locations on 252 

each frame before saving each frame – this step carries a negligible performance impact. If 253 

horizontal movement in a specified body part exceeds a pre-set threshold (defined as 254 

x �20 px�, the third thread is used to output a high signal output to a specified port on the 255 

breakout board using GPIO (e.). The LED connected to this port will then light up when the 256 

movement exceeds the threshold and be recorded by the behavioral video. Separately, all pose 257 

estimation data is saved to a CSV file (f.), and output frames can be set to render all points of 258 

tracking (g.) or an average of all points of tracking (h.). 259 

Fig. 3. A). A visualization of the typical latency between movement initiation and the LED flash. 260 

B). The mean frame rate across all trials (N = 37, 3 mice) with frame recording was 30.3 Hz, SD 261 

= 0.53 Hz. the mean delay between movement initiation and LED illumination across trials (N = 262 

37, 3 mice) was 93.44 ms, SD = 22.99 ms. C). LED flashes – as detected by changes in a region 263 

of interest on the region of the head where the LED flashes – are plotted against the x-axis 264 

movement on the left paw for an example run. The threshold is set as a difference of 12 px 265 
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between the current frame and the last. D). GPIO output triggered average on LED flash of 266 

different experiments. The onset of LED flash is defined by 3*SD of baseline.  267 

Video 1. Real-time tracking and feedback LED flash. The time indicates the delay between 268 

movement initiation and LED flash in ms.  269 
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