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Abstract 29 

 30 

The healthy human fecal microbiota is too diverse to comprehensively study with the 31 

current throughput of proteomic methods. Shotgun sequencing technologies allow for much 32 

more comprehensive profiling. Here, we develop and apply MetaRibo-Seq, a method for 33 

simultaneous ribosome profiling of multiple taxa within a complex bacterial community. This 34 

approach captures taxonomic diversity in fecal samples. As expected, the detected ribosome-35 

bound transcripts are relatively enriched within coding regions and significantly correlate to 36 

detectable protein abundances. In a low diversity fecal sample, we show that MetaRibo-Seq is 37 

more strongly correlated than metatranscriptomic data to protein abundance. This significant 38 

correlation of metatranscriptomics and MetaRibo-Seq with protein levels is maintained, though 39 

with decreased strength as taxonomic diversity increases. Finally, we identify genes that are 40 

consistently regulated at the translational level across bacterial taxa within fecal communities. In 41 

conclusion, MetaRibo-Seq enables comprehensive translational profiling in complex bacterial 42 

communities for the first time.  43 
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Introduction 60 

 There is great interest in determining the potential functions of the human fecal microbiota. 61 

To date, methods have excelled at describing the taxonomy of such communities; however, 62 

assigning and defining functions of the community of bacteria or individual organisms within 63 

these communities has been challenging1. An ideal method to study functions within a complex 64 

community would allow simultaneous enumeration of all of the proteins, lipids, and other 65 

macromolecules within the mixture. Unfortunately, this is not feasible with current technologies. 66 

While 102 to 104 proteins can be simultaneously quantified with metaproteomics2, it is 67 

challenging to obtain accurate measurements of the full array of bacterial proteins that likely 68 

exist in human fecal samples, estimated to be 107 to 108 proteins3. Thus, current proteomic 69 

methods lack the dynamic range required to comprehensively study the human fecal microbiota4.  70 

 Given the challenges in direct protein measurement and need for databases of protein 71 

sequences, some have focused on enumerating the gene content of a community to determine the 72 

potential function; indeed, progress has been made in predicting genes present within a 73 

metagenome5. However, the presence of a gene in a complex bacterial community does not 74 

imply that the gene is transcribed or translated. Acknowledging this limitation, recent work has 75 

demonstrated that differential transcription of bacterial genes can be used to derive biologically 76 

meaningful insights6,7,8,9. Yet, we still have a very limited understanding of regulation occurring 77 

post-transcriptionally in the human fecal microbiota.  78 

 In contrast to transcriptomic profiling, ribosome profiling (Ribo-Seq) is a method that 79 

quantifies protein synthesis10. In eukaryotes, Ribo-Seq generally correlates more strongly to 80 

protein abundance than transcriptomics11,12,13;  this correlation has not been described in bacteria. 81 

Bacterial ribosome profiling studies have been performed in model organisms such as 82 

Escherichia coli and Bacillus subtilis, with minor modifications from the eukaryotic protocols, 83 

such as using chloramphenicol to inhibit translation and micrococcal nuclease (MNase) to enrich 84 

for ribosome footprints13,14,15,16,17. These methodological modifications enable a high-throughput 85 

snapshot of translation, but often compromise the ability to achieve codon-level resolution11.  86 

In bacteria, many genes are regulated at the translational level. For example, genes 87 

involved in translation itself are known to be regulated at a translational level via feedback 88 

mechanisms18,19,20,21,22. Translational regulation is critical for generating proteins at the correct 89 

stoichiometry for many protein complexes. For example, the multiprotein complex that forms 90 
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bacterial ATP synthase has multiple genes whose translation is regulated; the stoichiometry of 91 

this complex is best predicted by Ribo-Seq13,17. This even extends to pathway-specific enzyme 92 

stoichiometry in which protein synthesis remains conserved as compensation for transcript 93 

abundance and architecture divergence across taxa17. Moreover, specific translational regulation 94 

has been extensively observed upon a variety of perturbations to bacteria23,24,25,26,27,28,29. For 95 

example, bacteria employ translational quality control and regulation of amino acid biosynthesis 96 

in response to amino acid stress30. Thus, translation is a conserved, critical, dynamic, and 97 

regulated process in bacteria. However, this level of regulation has thus far been overlooked in 98 

mixed bacterial communities. Previous studies of protein synthesis in bacteria have been 99 

restricted to pure large-scale cultures (media and RNA inputs up to liters and milligrams, 100 

respectively). To date, studying translational regulation in mixed communities or in culture-free 101 

contexts has been hindered by low extraction yield, low purity, and the lack of informatic 102 

frameworks to study organisms without reference genomes. Consequently, we have a very 103 

limited understanding of how widespread bacterial translational regulation may be outside of 104 

cultured model organisms. 105 

In this work, we develop a method that allows for simultaneous ribosome profiling in a 106 

complex community of bacteria without the need for a large-scale, purified cultures. With three 107 

lines of evidence, we confirm that MetaRibo-Seq effectively enables translation to be studied in 108 

the fecal microbiota. First, the signal consists of footprints that capture the taxonomic diversity 109 

of metagenomics, while being locally enriched within coding regions. We identify most 110 

enrichment at gene start and stop codons, characteristic of chloramphenicol-treated ribosome 111 

profiling31. Second, ribosome footprint densities significantly correlate to detectable protein 112 

abundances and are significantly enriched in signal for these abundant proteins in these complex 113 

bacterial communities. In low diversity human fecal samples, we show that MetaRibo-Seq better 114 

correlates with protein abundance and E. coli ATP synthase stoichiometry than transcriptomics. 115 

Third, biological processes known to be translationally regulated, such as translation itself, are 116 

consistently detected as such across multiple samples and taxa. We catalog tens of thousands of 117 

genes with evidence of translational regulation in fecal samples across diverse taxa, providing a 118 

widespread view of consistent, bacterial translational regulation in these systems. Overall, we 119 

show that MetaRibo-Seq facilitates metagenome-wide measurement of bacterial protein 120 

synthesis across taxa directly in fecal samples. 121 
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 122 

Results 123 

 124 

The MetaRibo-Seq workflow. 125 

 126 

MetaRibo-Seq enables sequencing of ribosome-protected footprints directly from human 127 

fecal samples (see Methods, Figure 1A). First, we show ribosome profiling can be performed on 128 

frozen fecal samples stored in RNAlater32, 6 (Ambion), an RNA preserving solution.  Unlike 129 

some existing protocols33,16, our ribosome profiling protocol first introduces chloramphenicol 130 

during lysis. Bead beating lysis is performed to also lyse diverse Gram-positive bacteria34. An 131 

ethanol precipitation step post-lysis is introduced to both filter out fecal debris and concentrate 132 

RNA and any complexes bound. This has been demonstrated to effectively precipitate 133 

ribosomes35. MNase treatment is performed on an extremely crude purification of nucleic acids 134 

and complexes. Ribosome profiling performed here uses nearly an order of magnitude less RNA 135 

and MNase than isolate protocols typically use (see Methods)16, 33. After high-quality footprints 136 

are reliably generated using these methods, ribosome profiling converges to isolate protocols to 137 

purify monosomes and prepare libraries33. MetaRibo-Seq overcome challenges of sample 138 

storage, input requirement, bacterial purity, and uniform lysis to generate high quality RNA 139 

footprints from fecal samples. 140 

Computationally, dealing with short reads and poor or incomplete reference genomes is 141 

challenging. To overcome these challenges, we use a de novo approach to build references, 142 

annotate genes, and map reads to those references (see Methods, Figure 1B).  Mapping metrics to 143 

de novo references are provided (Table S1). We require perfect, unique matches of these 144 

ribosome footprints to references to ensure proper mapping. Multi-mapping varies sample to 145 

sample, ranging from 6.95 to 26.69 percent. We find that 4.1 - 10.4 percent of mapped reads 146 

from RNA technologies performed correspond to predicted coding regions. Given variable 147 

amounts of diversity and heterogeneity in any given sample, mapping statistics will vary sample 148 

to sample.  149 

 150 

MetaRibo-Seq signal retains taxonomic diversity in human fecal samples. 151 

 152 
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MetaRibo-Seq captures taxonomic bacterial diversity in human fecal samples via 153 

ribosome-protected footprints. We perform MetaRibo-Seq on four diverse fecal samples. Sample 154 

A is from a healthy individual. Sample B is from a patient with a hematological disorder who is 155 

undergoing treatment. Sample C is from a patient with a solid malignancy who is undergoing 156 

treatment. Sample D is from a patient with Alzheimer’s disease. We also perform MetaRibo-Seq 157 

on a low diversity fecal sample from a patient with a hematological disorder who is undergoing 158 

antibiotic treatment with metronidazole – Sample E. Metagenomic reads are subjected to de novo 159 

assembly and gene prediction and annotation for each sample (see Methods). These assemblies 160 

and gene predictions are provided (NCBI BioProject ####). Taxonomic differences at the genus 161 

level exist between technologies across samples, though most abundant taxa are largely 162 

consistent across technologies (Figure 2A).  Shannon diversity is also concordant between 163 

technologies, including MetaRibo-Seq (Figure 2B). Thus we conclude that MetaRibo-Seq signal 164 

faithfully recapitulates the diversity of organisms present in the mixed bacterial communities. 165 

 166 

MetaRibo-Seq signal is characteristic of bacterial ribosome profiling.  167 

 168 

We find that MetaRibo-Seq signal is locally enriched within coding regions. We show 169 

average signal across all coding predictions and flanking regions for Samples A, B, C, and D 170 

(Figure 3A-D). We visualize strong signal corresponding to predicted ORFs with pronounced 171 

signal drop off outside of the start and stop codons for samples A through D (Figure 3A-D).  172 

Start and stop codons represent the strongest signal. Surprisingly, MetaRibo-Seq also shows 173 

some weak signs of overall codon resolution (Figure S1). In a more targeted analysis, MetaRibo-174 

Seq can achieve stronger codon resolution of ribosomes in common genera. For Sample A and 175 

Sample B, assembled contigs of several shared genera are classified and binned appropriately 176 

(see Methods). Triplet periodicity is observed across footprint lengths in Bacteroides (Figure 177 

S2A), Faecalibacterium (Figure S2B), and Alistipes (Figure S2C).  Based purely on raw signal, 178 

these findings collectively suggest that MetaRibo-Seq is capturing ribosome-bound footprints as 179 

expected.  180 

 181 

MetaRibo-Seq outperforms metatranscriptomics as a proxy for protein abundance in a low 182 

diversity fecal sample. 183 
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 184 

In Sample E, we identify strong correlations of metatranscriptomics and MetaRibo-Seq to 185 

metaproteomics. First, Sample E is dominated by E coli. Interestingly, this E. coli is later isolated 186 

from the blood of the patient with no single nucleotide variants compared to fecal E. coli36.  This 187 

blood isolate has been sequenced and represents our isolate reference for downstream analyses. 188 

In a separate study demonstrating strain identity, this patient is denoted as Patient 3, and Sample 189 

E in this study is specifically 27 days prior to bacteremia36. For the 1503 genes that were 190 

proteomically-detected in Sample E, we show genus-level representation for 191 

metatranscriptomics, MetaRibo-Seq, and metaproteomics (Figure 4A). Of note, 812 of these 192 

proteins belong to E. coli, while the remaining 691 belong to other taxa. There is greater 193 

representation of proteins predicated to arise from Klebsiella and Enterococcus than transcripts 194 

or MetaRibo-Seq signal (Figure 4A). We show a Pearson correlation of 0.46 between MetaRibo-195 

Seq and metaproteomics across the 1503 detected proteins from the metagenomic Sample E 196 

(Figure 4B). The Pearson correlation is 0.64 when only considering the 928 detected proteins 197 

from the E. coli isolate reference (Figure 4C). We display correlations between 198 

metatranscriptomics, MetaRibo-Seq, and metaproteomics  (Figure 5D). Same technology 199 

correlations between the 812 identical protein predictions from the metagenomic and isolate E. 200 

coli analyses all retain Pearson correlations of 0.99. Correlations are weaker in the metagenomic 201 

context specifically due to relatively poorer predictions upon addition of the 691 proteins that do 202 

not belong to E. coli. No previous study to our knowledge provides a correlation between 203 

ribosome profiling and proteomics in E. coli or any other bacteria; however, this correlation of 204 

0.64 is stronger than any cited correlation between transcriptomics and proteomics in isolated, 205 

cultured, model E. coli37. ATP synthase is a well-characterized complex in terms of 206 

stoichiometry in E. coli (Figure 4E).  We show that MetaRibo-Seq signal better correlates with 207 

known ATP synthase stoichiometry than transcriptomics, as expected (Figure 4F-G). Among 208 

sequencing technologies, MetaRibo-Seq serves as a better proxy for protein levels and ATP 209 

synthase stoichiometry in Sample E E. coli.  210 

 211 

MetaRibo-Seq signal significantly correlates to protein abundance and is enriched in these 212 

proteins in mixed bacterial communities.  213 

 214 
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We find that MetaRibo-Seq significantly correlates to protein abundances as measured by 215 

shotgun metaproteomics. In Sample A, we detect 497 proteins. We measure a significant Pearson 216 

correlation of 0.32 between MetaRibo-Seq and metaproteomics (Figure 5A). MetaRibo-Seq is 217 

better correlated with protein abundance than metatranscriptomics in Sample A (Figure 5B). As 218 

expected, both metatranscriptomics and MetaRibo-Seq are significantly enriched in signal for 219 

these 497 proteomically-detected genes (Figure 5C). In Sample B, we detect 480 proteins and 220 

measure a Pearson correlation of 0.34 between MetaRibo-Seq and metaproteomics (Figure 5D). 221 

There is no significant difference in protein abundance prediction between metatranscriptomics 222 

and MetaRibo-Seq in Sample B (Figure 5E). Metaranscriptomics and MetaRibo-Seq are 223 

similarly enriched in signal for these proteins in Sample B (Figure 5F). These proteins detected 224 

by mass spectrometry represent highly abundant bacterial proteins in the fecal samples. These 225 

findings suggest that MetaRibo-Seq correlates well with highly abundant protein levels in mixed 226 

bacterial communities, and that MetaRibo-Seq signal may thus serve as a surrogate for protein 227 

abundance in the study of complex bacterial communities.  228 

MetaRibo-Seq signal characteristics and predictive power of protein abundance suggests 229 

that it may also prove useful in predicting proteins in taxonomically diverse fecal samples. As a 230 

preliminary demonstration of this, we predict small proteins using Prodigal38 with decreased  231 

length cutoff (see Methods). We show a histogram of the number of small predictions (20-29 232 

amino acids) and the number of those predictions with MetaRibo-Seq RPKM greater than 0.5 233 

across samples (Figure S4A).  Due to metaproteomic limitations, we are unable to validate these 234 

proteins directly. However, we can use a comparative genomic approach to identify clusters of 235 

small proteins, all with evidence of translation, that also possess evolutionary signatures 236 

indicative of coding regions. We cluster proteins at 70 percent amino acid identity (see 237 

Methods). We discover 21 clusters (with at least 4 members) of small proteins across Samples A, 238 

B, C, and D that contain both translational evidence among all members in the cluster and 239 

significant coding signatures determined via RNAcode39 (Figure S3B). We also show greater 240 

protein conservation among predictions with MetaRibo-Seq signal than by random chance 241 

(Figure S3D). Translational evidence of small proteins in diverse fecal samples decreases the 242 

number of predictions to a more conserved subset, suggesting it may be useful in gene 243 

prediction. 244 

 245 
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Consistent translational regulation is observed across samples and taxa. 246 

 247 

By contrasting metatranscriptomics with MetaRibo-Seq, we identify translationally 248 

regulated genes in fecal samples. This provides a widespread view of genes that are consistently 249 

translationally regulated within these systems. For Samples A, B, C, and D individually, we 250 

show the number of gene predictions and significantly translationally regulated genes  (Figure 251 

6A). We detect reasonable DESeq2 model fits in comparing between technologies, as shown by 252 

the dispersion plots for these analyses for each sample (Figure S4). These significantly 253 

translationally regulated genes are clustered at 70 percent amino acid identity for each sample 254 

(see Methods, Figure 6B).  In a combined analysis (Figure 6C), we define any cluster containing 255 

five or more sequences as consistently translationally regulated. The representative sequences for 256 

all of these consistently translationally regulated clusters are assigned GO terms with Blast2GO40 257 

(see Methods). The top 10 most common biological process associated GO terms are displayed, 258 

with translation being the top hit (Figure 6D).  These sequences and clusters are provided for 259 

reference (File S1).  Across samples, we catalog 42,267 differentially translated genes and 607 260 

consistently translationally regulated gene clusters in these fecal samples, many of which are 261 

involved in expected processes, like translation.  262 

Other approaches, albeit more biased to known gene annotations, are to rely on Prokka41 263 

annotations. We count the number of times a gene symbol appears as differentially translated 264 

(Figure S5) and input those that appear at least five times into a GO Analysis (see Methods, 265 

Figure S6). Translation remains the top hit.  For Samples A, B, C, and D, we provide GO 266 

analysis results of differential genes for each sample individually (Table S2). As a more 267 

pathway-oriented analysis, we also determine overrepresentation of pathways among globally 268 

differentially translated enzymes based on EC numbers assigned by Prokka41 (see Methods, 269 

Table S3). Amino acid biosynthesis is among the most consistent top hits across samples (Table 270 

S3). Thus several approaches lead to expected conclusions of pathways and processes that are 271 

translationally regulated. 272 

 273 

Discussion 274 

 275 
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One of the major limitations in advancing the functional knowledge of microbial 276 

communities is an inability to measure the macromolecular output of a given community in an 277 

unbiased manner. For example, until now, we have been unable to study fecal bacterial 278 

communities, or any in vivo system of bacteria, at the level of protein synthesis. Previous 279 

approaches have required in vitro growth of large, purified cultures; this limits both throughput 280 

and the diversity of the sample that can be studied. Here, we introduce a new method, MetaRibo-281 

Seq, and provide evidence that this method enables the human fecal microbiota to be studied at a 282 

translational level. In five taxonomically varied samples from human subjects with variable 283 

health status, we show MetaRibo-Seq signal retains the taxonomic diversity of the samples. The 284 

signal itself is as expected for a chloramphenicol-treated ribosome profiling library – including 285 

local enrichment within coding regions and greater enrichment across the start and stop codons 286 

of genes. This suggests we have a way to measure bacterial protein synthesis in vivo for the first 287 

time. 288 

To conduct a fair comparison, we perform MetaRibo-Seq on diverse samples but also a 289 

lower diversity fecal sample (Sample E) so that more representative protein quantifications of 290 

select taxa are achievable. In taxonomically diverse stool samples, MetaRibo-Seq is comparably 291 

predictive to protein abundance as metatranscriptomics. However, we show it can be 292 

significantly more predictive in a lower diversity scenario. We show that the addition of lower 293 

abundant taxa weaken overall correlations in mixed communities. Biologically, 294 

metatranscriptomics and MetaRibo-Seq are snapshots of gene transcripts or proteins synthesized, 295 

respectively, not direct measurement of the proteins that currently exists. Moreover, significant 296 

post-translational differences between taxa likely exist. Technically, it becomes challenging to 297 

obtain accurate protein abundances for lowly abundant taxa and proteins in a sample, making 298 

such correlations to protein abundance themselves less representative. We conclude that while 299 

MetaRibo-Seq can outperform metatranscriptomics within a highly abundant organism, this 300 

effect is diminished, perhaps both for biological and technical reasons, when considering all taxa 301 

together in diverse communities.   302 

There are several limitations to MetaRibo-Seq. First, MetaRibo-Seq does not include 303 

steps to degrade RNAs with secondary structure. This is a common issue for ribosome profiling 304 

protocols but exacerbated in this de novo, low input context10, 13. Though targeted approaches for 305 

specific bacteria have been successful for tRNA depletion,26 an untargeted approach, which 306 
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would be necessary here, has yet to be implemented in literature. Utilization of sucrose density 307 

gradients instead of size-exclusion chromatography columns may also prove valuable in 308 

removing various structured RNAs; however, downstream ribosome profiling input requirements 309 

likely make this challenging to address. This limitation may, however, enable other types of 310 

investigation; for example, signal corresponding to structured RNAs will likely be useful to 311 

predict novel structured RNAs in non-coding regions. Experimental modifications will also 312 

likely improve these limitations.  313 

 We anticipate that MetaRibo-Seq will enable a clearer functional view of the fecal 314 

microbiota. With increasing use of metatranscriptomics, we envision that MetaRibo-Seq will be 315 

applied to various disease states to better probe the microbiota and its functions. We especially 316 

anticipate MetaRibo-Seq will be used longitudinally to study translational regulation of 317 

genomically-stable, clinically-relevant taxa. MetaRibo-Seq signal provides unique features like 318 

enrichment within coding regions, greater enrichment at the start and end of genes, and, as we 319 

show, some signs of codon-level resolution in some taxa. Future work will likely include using 320 

these features for gene prediction, which is particularly challenging when studying metagenomic 321 

samples and small proteins42.  To validate such predictions, significant methods development and 322 

improvements in metaproteomics will be needed. With direct proteomic evidence often 323 

unattainable, coding potential, translational evidence, and conservation among predictions 324 

present themselves as the strongest lines of evidence proteins, especially small proteins, exists in 325 

the fecal microbiota (Figure S6 and File S2).  We also expect MetaRibo-Seq to be applied to 326 

other culture-free conditions, perhaps requiring other modifications. Overall, we show that 327 

translation can be comprehensively studied in mixed bacterial communities in a culture-free 328 

manner. This method also sheds light on consistently translationally regulated genes in vivo in a 329 

comprehensive, metagenome-wide analysis.  330 

 331 

Materials and Methods 332 

 333 

Subject Recruitment 334 

MetaRibo-Seq was performed on fecal samples from individuals from a variety of health 335 

states. Informed consent was obtained for all participants. None of the participants received 336 

bacterial translation inhibitors. All subjects were recruited at Stanford University as a part of one 337 
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of three IRB-approved protocols for tissue biobanking and clinical metadata collection (PIs: Dr. 338 

Ami Bhatt, Dr. Victor Henderson, Dr. David Miklos).  339 

 340 

Fecal Samples Storage 341 

Stool was immediately stored in 2 mL cryovials and frozen at -80 °C.  Stool was not 342 

thawed until lysis. For RNA extraction applications, 1.3 grams of fecal samples were preserved 343 

in 700 μL of RNALater (Ambion) at -80 °C.  344 

 345 

Cell Lysis for Metatranscriptomics and MetaRibo-Seq 346 

Stool (150 mg) was suspended in 600 μL Qiagen RLT lysis buffer supplemented with 347 

one percent beta-mercaptoethanol and 0.3 U/μL Superase-In (Invitrogen). For MetaRibo-Seq 348 

lysis, 1.55 mM of chloramphenicol was also added to this lysis solution, and the solution was 349 

incubated at room temperature for 5 minutes. The suspension was subjected to bead beating for 3 350 

minutes using 1.0 mm Zirconia/Silica beads. This was performed with a MiniBeadBeater-16, 351 

Model 607. The lysed solution was centrifuged at room temperature for 3 minutes at 21,000 x g 352 

to pellet cellular debris, and the supernatant was extracted to 2 mL tubes.  353 

 354 

Metagenomics 355 

DNA was extracted from fecal samples with DNA Stool Mini Kit (Qiagen) using 356 

manufacture protocols. Samples were exposed to bead beating for 3 minutes. 1 ng of DNA was 357 

used to create Nextera XT libraries according to manufacturer’s instructions (Illumina).  358 

 359 

MetaRibo-Seq 360 

The lysis supernatant was subjected to ethanol precipitation with 0.1 percent volume 3M 361 

sodium acetate and 2.5 volumes of 100 percent ethanol.  To precipitate, samples were incubated 362 

at -80 °C for 30 minutes, then centrifuged at 21,000 x g for 30 minutes at 4 °C. This was a rough 363 

purification specifically implemented to enable suspension of concentrated RNA from 364 

reasonable input of fecal sample. The pellet of RNA and RNA-protein complexes was 365 

resuspended in MNase buffer. The buffer contained 25 mM Tris pH 8.0, 25 mM NH4Cl, 10 mM 366 

MgOAc, and 1.55 mM chloramphenicol. To resuspend, we quickly broke the pellet apart with a 367 

pipette tip and vortexed for 15 seconds. 1 μL of solution was diluted 20 fold and quantified with 368 
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Qubit dsDNA HS Assay Kit (Invitrogen). MNase reaction mix was prepared as described33, 369 

except this was scaled down to an input of 80 μg of RNA and 1 μL of NEB MNase 500 U/μL in 370 

a total reaction volume of 200 μL. The MNase reaction was incubated at room temperature for 2 371 

hours. All following steps were performed identically33, except the tRNA removal steps were 372 

excluded. Briefly, 500 mL of polysome binding buffer was used to wash the Sephacryl S400 373 

MicroSpin columns (GE Healthcare Life Sciences) three times - spinning the column for 3 374 

minutes at 4 °C at 600 RPM.  Polysome binding buffer consisted of 100 μL Igepal CA-630, 500 375 

μL magnesium chloride at 1M, 500 μL EGTA at 0.5 M, 500 μL of NaCl at 5M, 500 μL Tris-HCl 376 

pH 8.0. at 1M, and 7.9 mL of RNase-free water. The MNase reaction was applied to the column 377 

and centrifuged for 5 minutes at 4 °C.  The flow through was purified further with miRNAeasy 378 

Mini Kit (Qiagen) using manufacture protocols. Elution was performed at 15 μL volume. rRNA 379 

was depleted using RiboZero-rRNA Removal Kit for Bacteria (Illumina) using manufacture 380 

protocol, except all reaction volumes and amounts were reduced by 50 percent. This was purified 381 

with RNAeasy MinElute Cleanup Kit (Qiagen), eluting in 20 uL. The reaction, in 18 μL volume 382 

at a total of 100 ng, was subjected to T4 PNK Reaction (NEB M0201S) with addition of 1μL 383 

Superase-In (Invitrogen), 2.2 μL 10X T4 PNK Buffer, and 1 μL T4 PNK (10U/μL). This 384 

reaction was purified again with RNAeasy MinElute Cleanup (Qiagen). The concentration was 385 

determined with Qubit RNA HS Assay Kit (Illumina). With 100 ng as input, libraries were 386 

prepared using NEBNext Small RNA Library Prep Set for Illumina (NEB, E7330), using 387 

manufacture protocols. DNA was purified using Minelute PCR Purification Kit (Qiagen).  388 

 389 

Small Metatranscriptomics of Fecal Samples 390 

We performed metatranscriptomics as follows: 15 μL of proteinase K (Ambion, 20 391 

mg/mL) was added to 600 μL of lysate. After incubation for 10 minutes at room temperature, 392 

samples were centrifuged at 21,000 x g for 3 minutes and the supernatant was collected. An 393 

equal volume of Phenol/Chloroform/Isoamyl Alcohol 25:24:1 (pH. 5.2) was applied and vortex 394 

for three minutes. The mixture was centrifuged at 21,000 x g for three minutes. The aqueous 395 

phase was extracted. This was repeated once more. The final aqueous phase was ethanol 396 

precipitated. The RNA was further purified using the RNAeasy Mini plus Kit (Qiagen) using 397 

manufacture protocols. Any remaining DNA was degraded via Baseline-ZERO-Dnase 398 

(Epicentre) using manufacture protocols. RNA was fragmented for 15 minutes at 70 °C using 399 
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RNA Fragmentation Reagent (Ambion) using manufacture protocols. At this point, the 400 

MetaRibo-Seq and small metatranscriptomics protocol completely converge. The fragmented 401 

RNA was purified with miRNAeasy Mini Kit (Qiagen) using manufacture protocols. Elution was 402 

performed at 15 μL. rRNA was depleted using RiboZero-rRNA Removal Kit for Bacteria 403 

(Illumina) using half reactions of manufacture protocol. This was purified with RNAeasy 404 

MinElute Cleanup Kit (Qiagen), eluting in 20 uL. The fragments, in 18 μL volume, were 405 

subjected to T4 PNK Reaction (NEB M0201S) with addition of 1μL Superase-In (Invitrogen), 406 

2.2 μL 10X T4 PNK Buffer, and 1 μL T4 PNK (10U/μL). This reaction was purified again with 407 

RNAeasy MinElute Cleanup (Qiagen). The concentration was determined with Qubit RNA HS 408 

Assay Kit (Invitrogen). With 100 ng as input, libraries were prepared using NEBNext Small 409 

RNA Library Prep Set for Illumina (NEB, E7330), using manufacture protocols. DNA was 410 

purified using MinElute PCR Purification Kit (Qiagen).  411 

 412 

Differential Centrifugation and FASP for Metaproteomics 413 

To remove human proteins, fecal samples were subjected to differential centrifugation. 414 

100 mg of fecal sample was suspended in 1x PBS in 1.7 mL Eppendorf tubes. The tubes were 415 

centrifuged at 600 x g for 1 minute at room temperature. The supernatant was collected in a clean 416 

Eppendorf tube and centrifuged at 10,000 x g for 1 minute at room temperature. The supernatant 417 

was decanted and the pellet was resuspended in 1 mL of PBS. The process was repeated once 418 

more. The final pellet was resuspended in 2% SDS, 100 mM DTT, and 20 mM Tris HCl, pH 8.8 419 

with protease inhibitor. These cells were subjected to bead beating for 3 minutes with a 420 

MiniBeadBeater-16, Model 607. 1mM zirconia/silica beads were used. Tubes were centrifuged 421 

for 3 minutes and clarified lysate in the supernatant was collected. Lysate was prepared using 422 

FASP 43 with the same minor modifications previously documented 44.  Every step involved a 423 

centrifugation step for 15 minutes at 14,000 x g. Samples were diluted tenfold in 8 M urea and 424 

loaded into Microcon Ultracel YM-30 filtration devices (Millipore). They were washed in 8 M 425 

urea, reduced for 30 minutes in 10 mM DTT, and alkylated in 50 mM iodoacetamide for 20 426 

minutes. Samples were washed three times in 8M urea and two times in 50 mM ammonium 427 

bicarbonate. Trypsin (Pierce 90057) (1:100 enzyme-to-protein ratio) was added and incubated 428 

overnight at 37 °C. Into a new collection tube, samples were centrifuged and further eluded in 50 429 

μL of 70 percent acetonitrile and 1 percent formic acid. The mixture was brought to dryness for 430 
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one hour using a Savant SPD121P SpeedVac concentration at 30°C, then resuspended in 0.2 431 

percent formic acid44.   432 

 433 

Metaproteomics 434 

LC-MS/MS analysis was performed by the Stanford University Mass Spectrometry 435 

Facility using the Thermo Orbitrap Fusion Tribrid. A Thermo Scientific Orbitrap Fusion coupled 436 

to a nanoAcquity UPLC system (Waters, M Class) was used to collect mass spectra (MS). 437 

Samples were loaded on a 25 cm sub 100 micron C18 reverse phase column packed in-house 438 

with a 80 minute gradient at a flow rate of 0.45 µL/min. The mobile phase consisted of: A (water 439 

containing 0.2% formic acid) and B (acetonitrile containing 0.2% formic acid). A linear gradient 440 

elution program was used: 0–45 min, 6–20 % (B); 45-60 min, 35 % (B); 60-70 min, 45 % (B); 441 

70-71 min, 70 % (B); 71-77 min, 95 % (B); 77-80 min, 2 % (B). Ions were generated using 442 

electrospray ionization in positive mode at 1.6 kV. MS/MS spectra were obtained using Collision 443 

Induced Fragmentation (CID) at a setting of 35 of arbitrary energy. Ions were selected for 444 

MS/MS in a data dependent, top 15 format with a 30 second exclusion time. Scan range was set 445 

to 400 – 1500 m/z. Typical orbitrap mass accuracy was below 2 ppm; for analysis. A 12 ppm 446 

window was allowed for precursor ions and 0.4 Da for the fragment ions for CID fragmentation 447 

detected in the ion trap. Prokka-predicted41 proteins were used as a reference database for protein 448 

detection using the Byonic proteomics search pipeline v 2.10.545. Byonic parameters include: 449 

spectrum-level FDR auto, digest cutter C-terminal cutter, peptide termini semi-specific, 450 

maximum number of missed cleavages 2, fragmentation type CID low energy, precursor 451 

tolerance 12.0 ppm, fragment tolerance 0.4 ppm, protein FDR cutoff 1 percent. These methods 452 

were performed by Stanford Mass Spectrometry Facility (SUMS). Using spectral count output, 453 

Normalized Spectral Abundance Factor (NSAF) was calculated by in house scripts. 454 

 455 

De Novo Assembly 456 

Quality trimmed metagenomic reads were assembled using metaSPAdes 3.7.047. For all 457 

samples, a maximum of 60 million metagenomic reads was used to generate assemblies. Samples 458 

sequenced to higher depth were randomly subsetted to 60 million for assembly purposes to both 459 

ensure relatively similar numbers of gene predictions and limit computational requirements in 460 

assembly and downstream predictions.  461 
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 462 

Read Mapping, Gene Prediction and Annotation 463 

Reads were trimmed with trim galore version 0.4.0 using cutadapt 1.8.146 with flags –q 464 

30 and –illumina. Reads were mapped to the annotated assembly using bowtie version 1.1.148. 465 

To avoid all possible conservation conflicts in downstream differential analysis, only perfect, 466 

unique short read alignments were considered. IGV49 was used to visualize coverage. Prokka 467 

v1.1241 was used to predict genes from the metagenomics assemblies using the –meta option. 468 

Annotations were facilitated by many dependencies38,50,51,52. For small protein predictions, 469 

prodigal38 was performed after lowering the size threshold from 90 bases to 60 bases.  470 

 471 

Read density as a function of position 472 

MetaRibo-seq reads were mapped to their metagenomic assemblies.  The assembly and 473 

aligned reads were analyzed with RiboSeqR53. CDSs (coding sequences) were predicted using 474 

the findCDS function. Ribosome profiling counts for predicted CDSs were determined with the 475 

sliceCounts function. CDSs were filtered to contain at least 10 reads.  476 

 477 

Taxonomic Classification of Technologies 478 

Reads mapping specifically to Prokka-predicted41 coding regions were counted. That 479 

entire genomic element was input into One Codex54 for classification equal to the number of 480 

reads mapping to it. This enabled fair comparisons between technologies, as the small 481 

metatranscriptomics and MetaRibo-Seq reads can be too small to classify individually with k-482 

mer-based approaches. Though metagenomic reads were long enough to be classified directly, 483 

they were also subject to the same analysis – entire genes are classified in equal number to the 484 

reads overlapping them. Thus, all taxonomy plots represent entire gene classifications and are 485 

dependent on the assembly.  486 

 487 

Differential Analysis 488 

The number of reads mapping to a given region were calculated with bedtools multicov59. 489 

Strandedness was enforced for metatranscriptomics and MetaRibo-Seq. All differential analyses 490 

were performed using these counts with all conditions performed in duplicate via DESeq260. A 491 

gene was considered differential if it had log2fold change above 1 or below -1, while also 492 
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reaching an FDR < 0.05. Results were displayed as volcano plots or tables. Heatmaps were 493 

created using gplots61. Reads per Kilobase Million (RPKM) calculations were performed using 494 

in house scripts. 495 

 496 

Statistical Analysis 497 

All Pearson correlations were calculated in R using the Hmisc package55. Scatterplots 498 

were created with ggplot256. Significance between Pearson correlations was assigned via cocor57. 499 

Significant differences between RPKM values were assigned using the Kruskal-Wallis test. 500 

Significance was assigned as * p value < 0.05, *** p value < 0.001.  Zou’s58 95 percent 501 

confidence intervals were assigned *** if there is no overlap with 0 in the interval.  502 

 503 

Protein Clustering Analysis 504 

For analyses independent of gene annotation, significantly translationally regulated 505 

proteins were clustered using Cd-hit62 with 70 percent amino acid identity. Representative 506 

sequences were input into Blast2GO40 using the nr database. Small protein predictions with 507 

translational evidence were also clustered using this same approach. Coding potential was 508 

assessed using RNAcode39 using the p value assigned to the predicted reading frame.  509 

 510 

Triplet Periodicity Analysis 511 

Using the same default parameters as read density as a function of position, triplet 512 

periodicity was called using RiboSeqR53. To analyze triplet periodicity of specific genera, 513 

assembled contigs were classified using One Codex54. Contigs that classified into a specific 514 

genus were binned together. Only reads mapping specifically to these bins were considered.   515 

 516 

GO Analysis 517 

Based on differential genes from DESeq260 analyses, UniProt63 genes annotated by 518 

Prokka41 were input into David Functional Annotation64,65. All species detected were used as 519 

background for these metagenomic analyses.  520 

 521 

Pathway Analysis 522 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/482430doi: bioRxiv preprint 

https://doi.org/10.1101/482430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Prokka41 predicted genes with associated EC (enzyme) numbers were considered. For a 523 

given sample, all the reads mapping to any gene with a specific EC number were summed for 524 

metatranscriptomics and MetaRibo-Seq. DESeq260 called differential enzymes using 525 

MicrobiomeAnalyst66. Network mapping is performed to identify pathways corresponding to 526 

differential enzymes.  527 

 528 
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  541 

Figure Legends  542 

 543 

Figure 1 544 

Workflow of ribosome profiling.  545 

(A) Experimental workflow of MetaRibo-Seq. Chloramphenicol halts translation, the bacterial 546 

community is lysed, MNase is used to create footprints, and footprints are converted to 547 

sequencing libraries.   548 

(B) Computational workflow of the multi-omics approach. De novo assemblies are created and 549 

annotated, predicted genes are quantified at multi-omic levels, and taxonomy, correlations, and 550 

differential abundance are determined from these results.  551 

 552 

Figure 2 553 
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MetaRibo-Seq signal captures diversity in a metagenomic context.  554 

(A) Genus-level classifications of all sequencing technologies performed on Samples A, B, C, D, 555 

and E. Replicates for metatranscriptomics and MetaRibo-Seq are shown for reproducibility. Taxa 556 

represented below three percent are grouped into “Other” for visual purposes.  557 

(B) Shannon diversities across technologies for these samples are displayed.  558 

 559 

Figure 3 560 

MetaRibo-Seq signal is characteristic of chloramphenicol-treated ribosome profiling in bacteria 561 

across diverse samples.  562 

(A-D) Average MetaRibo-Seq signal across genes and flanking regions for Sample A, B, C, and 563 

D, respectively. Every predicted open reading frame containing at least 10 reads are included in 564 

the analysis.  565 

 566 

Figure 4 567 

In a low diversity fecal sample, MetaRibo-Seq is a significantly better predictor than 568 

metatranscriptomics of protein abundance and ATP synthase stoichiometry in E. coli. 569 

(A) In Sample E, there are 1503 proteomically-detectable genes. Only focusing on these genes, 570 

we taxonomically classify the entire gene in equal number to the reads (for metatranscriptomics 571 

and MetaRibo-Seq) or spectral counts (for metaproteomics) assigned to it (see Methods).  572 

(B) Scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF log-scaled for these 1503 573 

genes.  574 

(C) Scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF log-scaled only for the 928 575 

proteomically-detected genes predicted from isolate E. coli.   576 

(D) Pearson correlations for pairwise comparisons across technologies. Blue bars indicate 577 

Pearson correlations pertaining to the entire metagenomic Sample E. The correlations between 578 

metatranscriptomics vs. MetaRibo-Seq, metatranscriptomics vs. metaproteomics, and MetaRibo-579 

Seq vs. metaproteomics are 0.85, 0.39, and 0.46, respectively. All are significant (p value < 2-16). 580 

MetaRibo-Seq is a significantly better predictor of protein levels with Zou’s58  95 % confidence 581 

interval between -0.0917 to -0.0487. Red bars indicate Pearson correlations pertaining to the 582 

isolated E. coli in the sample. The correlations between metatranscriptomics vs. MetaRibo-Seq, 583 

metatranscriptomics vs. metaproteomics, and MetaRibo-Seq vs. metaproteomics are 0.90, 0.53, 584 
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and 0.64, respectively. All are significant (p value < 2-16). MetaRibo-Seq is a significantly better 585 

predictor of protein levels with Zou’s58 95 % confidence interval between -0.1352 to -0.0868.  586 

(E) F0F1 ATP synthase in E. coli forms with a specific stoichiometry as visualized.  587 

(F) Correlation between log-scaled metatranscriptomics RPKM and expected ATP synthase 588 

stoichiometry in complex. The Pearson correlation is 0.56 (p value = 0.1475)  589 

(G) Correlation between log-scaled MetaRibo-Seq RPKM and expected ATP synthase 590 

stoichiometry in complex. The Pearson correlation is 0.92 (p value = 0.0012).  591 

  592 

Figure 5 593 

MetaRibo-Seq signal significantly correlates to metaproteomics and is enriched for these 594 

products  595 

(A) For Sample A, scatterplot of MetaRibo-Seq RPKM (Reads per Kilobase Million) and 596 

metaproteomics NSAF (Normalized Spectral Abundance Factor) both log10-scaled. 497 genes 597 

are displayed.  598 

(B) Pairwise Pearson correlations between log-scaled metatranscriptomics RPKM, MetaRibo-599 

Seq RPKM, and metaproteomics NSAF for these 497 genes. Pearson correlations are 0.88, 0.26, 600 

and 0.32 for metatranscriptomics vs. MetaRibo-Seq, metatranscriptomics vs. metaproteomics, 601 

and MetaRibo-Seq vs. metaproteomics, respectively. All are significant (p value < 2-16). 602 

MetaRibo-Seq is a significantly better predictor of protein levels than metatranscriptomics for 603 

these proteins in Sample A with a Zou’s58 95 % confidence interval between -0.1322 and -604 

0.0480.  605 

(C) Metatranscriptomics and MetaRibo-Seq RPKM for all predicted genes compared to those 606 

detected by metaproteomics. Both metatranscriptomic and MetaRibo-Seq signal for 607 

proteomically-detected proteins are significantly enriched (p value < 2-16).  608 

(D) For Sample B, scatterplot of MetaRibo-Seq RPKM and metaproteomics NSAF both log10-609 

scaled. 497 genes are displayed.  610 

(E) Pairwise Pearson correlations between log-scaled metatranscriptomics RPKM, MetaRibo-611 

Seq RPKM, and metaproteomics NSAF for these 480 genes. Pearson correlations are 0.89, 0.36, 612 

and 0.34 for metatranscriptomics vs. MetaRibo-Seq, metatranscriptomics vs. metaproteomics, 613 

and MetaRibo-Seq vs. metaproteomics, respectively. All are significant (p value < 2-16).  614 
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(F) Metatranscriptomics and MetaRibo-Seq RPKM for all predicted genes compared to those 615 

detected by metaproteomics. Both metatranscriptomic and MetaRibo-Seq signal for 616 

proteomically-detected proteins are significantly enriched (p value < 2-16).  617 

 618 

Figure 6 619 

Genes that are consistently translationally regulated emerged across samples and taxa.  620 

(A) For Samples, A, B, C, and D, we show the number of total gene predictions via Prokka41. We 621 

performed DESeq260 on these individually, comparing metatranscriptomics to MetaRibo-Seq. 622 

We show the number of those genes identified as translationally (absolute value(log2 fold 623 

change) > 1 and FDR < 0.05). We predict 223630, 196683, 272895, and 173624 genes from 624 

Sample A, B, C, and D, respectively. Among these, 11872, 6580, 15188, and 8647, respectively, 625 

are called significant translationally regulated genes.  626 

(B) Significant translationally regulated genes are converted to proteins and clustered at 70 627 

percent amino acid identity (see Methods). The number of clusters with specific numbers of 628 

sequences are displayed, jittered and color-coded for each sample.  629 

(C) The number of clusters with specific numbers of sequences combined across Samples A, B, 630 

C, and D  631 

(D) If the combined cluster contained at least 5 sequences, this gene is considered consistently 632 

translationally regulated. 607 clusters met this requirement. For these clusters, the representative 633 

sequence (see Methods) is selected to represent the entire cluster. These representatives were 634 

input into Blast2GO to assign GO terms based on protein sequence.  635 

 636 

Figure S1 637 

MetaRibo-Seq demonstrates some weak signs of overall codon-resolution.  638 

(A-D) Triplet periodicity across footprint lengths for Sample A, B, C, and D, respectively.  639 

Colors indicate which frame a read falls within.  640 

 641 

Figure S2 642 

MetaRibo-Seq demonstrates stronger codon resolution in taxa-specific analyses.  643 

(A) All contigs assigned to the genera Bacteroides are considered from Sample A and B, 644 

respectively. Only these contigs are considered in triplet periodicity analyses.  645 
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(B and C) The sampe triplet periodicity analysis for Faecalibacterium and Alistipes, respectively.  646 

 647 

Figure S3 648 

Small protein predictions with translational evidence demonstrate strong conservation.  649 

(A) Breakdown of small protein predictions across Samples A, B, C, and D, and those with 650 

translational evidence (MetaRibo-Seq signal above 0.5 RPKM).  651 

(B) Genus-level classification of small protein predictions across Samples A, B, C, and D. 652 

Relative proportions of small proteins including all predictions and only those with translational 653 

evidence are provided. 654 

(C) The 6,774 small proteins with translational evidence are clustered at 70 percent amino acid 655 

identity. 47 clusters with at least 4 members are identified. Among these, 21 clusters possess 656 

evolutionary signatures indicative of coding regions (p values < 0.001) via RNAcode39.  657 

 (D) In dark red, clustering with 70 percent protein identity of small proteins with translational 658 

evidence – 6,774 proteins across all samples. In orange, clustering with 70 percent amino acid 659 

identity of 6,744 small proteins randomly chosen from prodigal predictions; an equal number of 660 

proteins as those with translational evidence from each sample were randomly chosen. 661 

 662 

Figure S4 663 

DESeq2 models adequately fit dispersion in comparing metatranscriptomics to MetaRibo-Seq. 664 

(A-D) Dispersion plots of DESeq2 models fit to Samples A, B, C, and D, respectively. 665 

 666 

Figure S5 667 

Numerous genes are consistently translationally regulated in the fecal microbiota  668 

(A) For Samples A, B, C and D, we show genera level classifications of translationally regulated 669 

genes assigned UniProt31 protein IDs.  670 

(B-E) Volcano plots comparing metatranscriptomics and MetaRibo-Seq in Sample A, B, C, and 671 

D, respectively.  Significant genes are colored in red. The four most consistently translationally 672 

regulated genes are also denoted.  673 

 674 

Figure S6 675 
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In depth analysis of consistently translationally regulated genes with assigned names in the fecal 676 

microbiota across Samples A, B, C, and D.  677 

(A) Top 40 most common translationally regulated genes across samples. Heatmap intensity 678 

represents the number of times the gene appeared differential in a sample.  679 

(B) GO analysis including genes that are differentially translated at least 5 times across samples.   680 

 681 

Table S1 682 

Mapping statistics to de novo references. This table shows the number of reads, percentage of 683 

reads mapping to the assembly, and percentage of reads overlapping regions annotated as coding. 684 

 685 

Table S2 686 

GO analysis of significant translationally regulated genes for Samples A, B, C, and D. Only 687 

genes assigned UniProt63 protein IDs are considered. Significant IDs are called with DESeq260. 688 

These are input into David64.  689 

 690 

Table S3 691 

Pairwise comparison of metatranscriptomics to MetaRibo-Seq across Sample A, B, C, and D. 692 

Only predicted genes with EC numbers are considered. Significant differences in EC numbers 693 

are called with DESeq260. Negative log2FC means lower in the technology first listed in the tab 694 

under consideration.  EC numbers and their associated adjusted p value are input into 695 

MicrobiomeAnalyst66 to determine overrepresented pathways based on differential EC numbers.  696 

 697 

Table S4 698 

We display all correlations between replicates and technologies for Samples A, B, C, and D. For 699 

each sample, we provide correlations between metatranscriptomics replicates, MetaRibo-Seq 700 

replicates, metagenomics versus metatrancriptomics, metagenomics versus MetaRibo-Seq, 701 

metatranscriptomics versus MetaRibo-Seq, and metagenomics versus translation efficiency (TE 702 

– ratio of MetaRibo-Seq and metatranscriptomics).  703 

 704 

File S1 705 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/482430doi: bioRxiv preprint 

https://doi.org/10.1101/482430
http://creativecommons.org/licenses/by-nc-nd/4.0/


We provide sequences for every protein in Samples A, B, C, and D that are translationally 706 

regulated in the gut microbiota. Translationally regulated proteins (.faa) and 70 percent identity 707 

clustering (.cltsr) are provided for Samples A, B, C, and D. The representative sequences for 708 

clusters (.faa) with more than 5 sequences for samples are also provided. The sequence name 709 

itself denotes which sample the sequence is found in. Any sequence that begins with a specific 710 

identifier can be linked to a sample: HDALDHFB = Sample A, HENMDNCI  =Sample B, 711 

PJJNKMKO = Sample C, GPBGFMPE = Sample D. Blast2GO40 results for the representative 712 

sequences of consistent clusters are provided.  713 

 714 

File S2 715 

We contribute sequences of small proteins we identified. Small protein predictions using 716 

prodigal38 with lower size threshold (60 bp) for Samples A, B, C, and D individually (.faa) are 717 

provided. Small protein predictions with MetaRibo-Seq RPKM above 0.5 for the four samples 718 

individually (.faa) are given. Combined clustering of these small proteins with translational 719 

evidence are provided (.clstr). Those translated clusters with more than 3 sequences and with 720 

RNAcode p values  < 0.001 are provided in the “smallproteinsequences” folder named by the 721 

cluster they belong to.  722 
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