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Abstract1

We propose a general framework of abundance estimation based on spatially replicated quan-2

titative measurements of environmental DNA in which production, transport, and degradation of3

DNA are explicitly accounted for. Application to a Japanese jack mackerel (Trachurus japonicus)4

population in Maizuru Bay revealed that the method gives an estimate of population abundance5

comparable to that of a quantitative echo sounder method. These findings indicate the ability of6

environmental DNA to reliably reflect population abundance of aquatic macroorganisms and may7

offer a new avenue for population monitoring based on the fast, cost-effective, and non-invasive8

sampling of genetic information.9

10

Knowledge on the distribution and abundance of species is crucial for ecology and related11

applied fields such as wildlife management and fisheries. The detection and quantification of12

environmental DNA (eDNA) is an emerging methodology for ecological studies and could enhance13

the ability of investigators to infer occurrence and abundance of species. This approach has been14

applied, especially but not limited to, to aquatic species such as fish and amphibians and has been15

identified as a powerful and yet cost-effective tool for species detection (Bohmann et al. 2014, Rees16

et al. 2014, Thomsen & Willerslev 2015, Goldberg et al. 2016, Deiner et al. 2017, Hansen et al.17

2018). Challenges remain, however, in quantitative applications of eDNA. Since earlier studies18

revealed positive correlations between species abundance and eDNA concentration (Takahara et al.19

2012, Thomsen et al. 2012, Goldberg et al. 2013, Pilliod et al. 2013, Eichmiller et al. 2014), it has20

been expected that local population abundance may be inferred by measuring the concentration of21

eDNA at a given locality. Indeed, an analytical framework proposed recently for eDNA-based22
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abundance estimation assumes a probability distribution that represents the quantitative relation23

between eDNA concentration and the underlying population size (Chambert et al. 2018).24

Nonetheless, such a definite relation may not always be present, possibly depending on e.g. the25

shedding rate, transport, and exogenous input of eDNA (Pilliod et al. 2013, Eichmiller et al. 2014,26

Lacoursière-Roussel et al. 2016, Yamamoto et al. 2016, Jo et al. 2017).27

The fundamental factors that underlie such context dependency are the ‘ecology of eDNA’:28

the distribution of eDNA in space and time stems from processes governing the origin, state,29

transport, and fate of eDNA particles (Barnes & Turner 2016). Thus, in applications of the eDNA30

methodology, detailed information about such processes may be critical. Without relevant knowledge31

of these processes, for example, the spatial and temporal scales of information provided by eDNA32

remain largely uncertain (Thomsen & Willerslev 2015, Goldberg et al. 2016, Hansen et al. 2018).33

Therefore, here, our purpose was to develop a general approach to eDNA-based abundance34

estimation that can fully account for the ecology of eDNA, i.e. the rate of production and35

degradation of eDNA as well as the transport of eDNA within a flow field in an aquatic area of36

interest. We use a tracer model: a numerical hydrodynamic model that can simulate the distribution37

of eDNA concentrations within an aquatic area. Under certain assumptions, the behaviour of the38

model can also be regarded mathematically as a linear function of an input vector representing the39

distribution of population abundance levels (densities) within the area. The inference of population40

abundance then boils down to Bayesian estimation of coefficients of a generalised linear model (see41

Methods for details).42

We applied this approach to a population of the Japanese jack mackerel (Trachurus japonicus,43

a commercially important fish species) in Maizuru Bay, Japan (Fig. 1). The bay has a surface area44

of ∼22.87 km2 with a maximal water depth of approximately 30 m, where the jack mackerel is45

numerically the most dominant fish species. The field work was conducted during a season in which46

the jack mackerel population in the bay is dominated by new recruits. We cruised the bay on two47

days in June 2016 to collect water samples at 100 stations and to conduct an acoustic survey. On the48

basis of the eDNA concentration measurements and a tracer model configured for Maizuru Bay, we49

obtained an estimate of fish population abundance in the bay. This estimate was then verified via a50

parallel estimate of abundance obtained by a quantitative echo sounder method.51

The abundance estimates yielded by the two methods were comparable; the point estimate of52

the eDNA method was of the same order of magnitude as that of the quantitative echo sounder53

estimate, which was covered by the 95% highest posterior density interval (HPDI) of the54

eDNA-based estimate (Table 1). Moreover, we could identify a coordinate of grids in which density55

of jack mackerels was estimated to be unrealistically high; fish abundance in this location was56

estimated at as much as tens of millions of individuals (posterior median and 95% HPDI: 1.35× 10757

[0.00 to 1.77× 107] individuals; Fig. 1b). It is located next to a wholesale fish market (Fig. 1a),58

which has been suspected as a significant source of exogenous jack mackerel eDNA in Maizuru Bay59

(Yamamoto et al. 2016, Jo et al. 2017). We therefore regarded the extreme estimates in these cells as60

resulting from a massive eDNA input from the market and excluded them from the inference of the61

bay scale fish abundance. This correction reduced the estimate of fish abundance in the bay, whereas62

the 95% HPDI still covered the echo sounder estimate (Table 1).63

The eDNA methods are rapidly developing technologies that have a great potential to64

facilitate the understanding and management of aquatic species, although their quantitative65
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Method Abundance estimates 95% Bayesian credible interval

eDNA + hydrodynamic model 3.31 ×107 (2.32 ×107, 6.32 ×107)
(fish market cells omitted) 2.23 ×107 (0.77 ×107, 5.29 ×107)

Quantitative echo sounder 3.91 ×107 —

Table 1. Estimates of Japanese jack mackerel abundance in Maizuru Bay. The second
row of the eDNA method gives the abundance estimate that excluded the grid cells close to the
wholesale fish market (indicated in Fig. 1a), which were identified as extraordinary eDNA sources.
The point abundance estimates and credible intervals are presented as posterior medians and highest
posterior density intervals, respectively. In both estimation methods, estimates are obtained under
the assumption that the size of jack mackerel individuals was 3 cm in body length and 1 g in body
weight (see Methods).

applications are still the critical step. A number of quantitative eDNA applications uncovered a66

positive association between eDNA concentration and abundance of a target species (Takahara et al.67

2012, Thomsen et al. 2012, Goldberg et al. 2013, Pilliod et al. 2013, Eichmiller et al. 2014,68

Lacoursière-Roussel et al. 2016, Yamamoto et al. 2016, Jo et al. 2017). With the aid of a69

well-designed sampling scheme and an associated statistical model, such relations can help to70

quantify abundance at multiple locations, especially in lentic systems where advection of eDNA is71

limited (Chambert et al. 2018). This study presents a novel approach to abundance estimation based72

on quantitative eDNA measurements into which a numerical hydrodynamic model (i.e. the tracer73

model) is incorporated to explicitly account for the details of the ecology of eDNA. It may be74

flexibly applied to a wide array of aquatic systems in which hydrodynamics and rates of eDNA75

shedding and degradation are modelled, thereby broadening the scope of the general idea76

implemented recently in a one-dimensional lotic system with a single eDNA source (Sansom &77

Sassoubre 2017) and in a river network system with multiple eDNA sources (Carraro et al. 2018).78

The application of the proposed approach to the Japanese jack mackerel population in Maizuru Bay79

indicates that abundance of species can be reliably estimated by means of eDNA in a mesoscale lotic80

system. Furthermore, the results revealed that the method can distinguish major exogenous sources81

of eDNA, which have been recognised as a nuisance factor in eDNA applications especially for82

species subject to fishery (Yamamoto et al. 2016, Jo et al. 2017).83

The proposed framework, however, has several limitations in its current form. It requires84

several key assumptions, such as the stationarity (i.e. demographic closure) of the population and85

homogeneity of individuals in terms of their rate of eDNA shedding. In addition, the number of86

eDNA samples may typically be smaller than the number of grid cells in the tracer model, thus87

requiring some sort of models explaining the association between population density and measured88

covariates and/or regularisation (i.e. prior specification) to make a statistical inference (see89

Methods). Although our results indicated that the method can be applied even with these90

limitations, further methodological development would be warranted. A promising approach among91

quantitative eDNA applications is to combine eDNA measurements and classical protocols for92

abundance estimation (Chambert et al. 2018); this strategy is also likely to improve the general93

approach proposed here.94

It has been argued that in an application of the eDNA method, careful consideration of95
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details of the ecology of eDNA is critical (Bohmann et al. 2014, Rees et al. 2014, Thomsen &96

Willerslev 2015, Barnes & Turner 2016, Goldberg et al. 2016, Deiner et al. 2017, Hansen et al. 2018).97

We implemented this idea in a quantitative eDNA method, leading to integration of eDNA98

concentration measurements and hydrodynamic modelling for abundance estimation. Because the99

research on aquatic eDNA of macroorganisms is still in its infancy since its discovery (Ficetola et al.100

2008), more work is needed to elucidate the processes that determine a distribution of eDNA in the101

field; knowledges on the ecology of eDNA will help to improve the accuracy of quantitative eDNA102

approaches. The relatively less explored field of quantitative eDNA applications lies in the103

multispecies context, which involves eDNA metabarcoding rather than the targeted quantitative104

PCR (qPCR) method (Deiner et al. 2017). A quantitative metabarcoding technique (Ushio et al.105

2018) may hold great promise for enabling researchers to analyse many aquatic species at a time.106

Exploring between-species differences in the rate of eDNA shedding and degradation may therefore107

be worthwhile. In addition to remarkable efficiency in species detection, we expect that eDNA108

methodologies can enhance the ability of investigators to gain quantitative insights into aquatic109

ecosystems.110

Methods111

A general framework for abundance estimation112

The tracer model as a linear projection function113

Here, we define a tracer model as a numerical hydrodynamic model that simulates generation,114

transport, and decay of particles (i.e. eDNA) on the basis of a flow field determined by given115

physical conditions within an aquatic area of interest. In this study, we assume a tracer model for a116

three-dimensional discrete space in which the entire aquatic area of interest is discretised into grid117

cells of known volume. A tracer model can in principle simulate the ecology of eDNA and thus118

derives a spatial distribution of eDNA within the aquatic area, given that per capita and unit time119

shedding rates of eDNA, degradation rates of eDNA, and density (or equivalently, abundance) of120

organisms in each grid cell are specified, in addition to the flow field. The main idea that underlies121

the framework we propose is that we can regard a tracer model as a function that takes a vector of122

cell level density of organisms as an input and outputs eDNA concentration in each grid cell at a123

point in time; thus, the inference of abundance is an inverse problem: finding an input vector of a124

tracer model (i.e. density of organisms in each grid cell) that best explains measurements of eDNA125

concentration that are collected at a point in time and are replicated spatially within the aquatic126

area of interest.127

Nevertheless, such a problem is difficult to solve under the general conditions where both the128

environment and abundance vary in a complex manner. We therefore make several key assumptions129

that simplify the problem. Firstly, we assume that during two time points t and s (< t), key130

environmental variables for hydrodynamic processes are known from some observations and/or131

model prediction so that the flow field can be determined and plugged in to the tracer model. Here,132

t refers to the point in time at which eDNA concentration is observed at multiple locations within133

the aquatic area, and s denotes some point in time sufficiently far away from t such that eDNA134

concentration at t is virtually independent from that at s. Secondly, we assume that the rates of135
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production and degradation of eDNA are known in each grid cell during the period between s and t.136

They may either be regarded as constant across space and time or assumed to vary depending on137

known environmental variables, such as water temperature, salinity, and pH, so that the rates of138

generation and disappearance of eDNA can be determined completely in the tracer model. In139

addition, we assume that these rates are independent of the eDNA concentration, and thus both140

production and degradation of eDNA are linear processes. Third, we suppose that in each grid cell,141

all eDNA particles arise exclusively from individuals of the target species that are identical in their142

eDNA-shedding rate. Finally, we assume that abundance is stationary in each grid cell throughout143

the period between s and t (i.e. the demographic closure assumption; Williams et al. 2002).144

Under these assumptions, a tracer model can be regarded as a linear function. We denote145

density of organisms in cell i (i = 1, . . . ,M) by xi and define x = (x1, x2, . . . , xM ). Let us denote the146

water volume of each cell by v = (v1, v2, . . . , vM ) so that abundance in mesh i and in the whole147

aquatic area is expressed as vixi and v⊤x, respectively (here, a⊤ means the transpose of vector a).148

The tracer model predicts eDNA concentration in each grid cell at time point t that results from the149

generation, advection, diffusion, and degradation of eDNA occurring between s and t within a given150

flow field, which we denote (without an explicit index of t) by w = (w1, w2, . . . , wM ). If aij is defined151

as the (per unit density) contribution of mesh j to eDNA concentration in mesh i at time t, then152

eDNA concentration can be expressed as wi = ai1x1 + ai2x2 + · · ·+ aiMxM . If we designate153

A = (aij)M×M , then this equation can be written in a matrix form as w = Ax. Thus, although a154

tracer model indeed represents temporal evolution of eDNA concentration within the period between155

s and t according to some differential equations (presented below), its behaviour can be described156

simply — under the assumptions noted above — by matrix A, which projects the vector of density x157

onto the vector of eDNA concentration w. For i = 1, . . . ,M , the ith column of A can be obtained158

numerically as a result of execution of the tracer model between time points s and t with a vector of159

density in which cell i has a unit density and all other cells have 0 density.160

Fitting the tracer model to eDNA concentration data161

We assume that eDNA concentration was measured in N samples collected within the aquatic area162

of interest at a point in time (or, in practice, within a sufficiently short period). Let us denote the163

observed eDNA concentration in sample n by yn (n = 1, . . . , N) and express it with vector164

y = (y1, . . . , yN ). In the following text, we suppose that all eDNA measurements are positive (i.e.,165

yn > 0). Note, however, that negative samples could also be included in the analysis given that the166

detection process of eDNA is modelled jointly (Carraro et al. 2018). We define i(n) as an index167

variable that means the index of the cell in which sample n was obtained. If we let B = (ai(n)j)N×M ,168

the prediction of the tracer model for the data vector, as a function of density vector x is then169

expressed as Bx.170

Because the tracer model yields a linear predictor for y, we can apply the (generalised) linear171

modelling approach (McCullagh & Nelder 1989) to estimate density vector x; in particular, we can172

regard B and x as a design matrix and a vector of coefficients of a linear regression model,173

respectively (note that because x represents density, the searches for estimates should be within the174

space of parameters such that xi ≥ 0 for all i). For example, we can consider the following normal175

linear model:176
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y ∼ N
(
Bx, σ2IN

)
. (1)

where N (µ,Σ) is a multivariate normal distribution with mean vector µ and covariance matrix Σ,177

σ2 is a residual variance of the linear model, and Im is a m×m identity matrix. A maximum178

likelihood estimation gives estimate x̂ that minimises the residual square error |y −Bx̂|22.179

Alternatively, we can fit the model on a logarithmic scale; this approach may be more reasonable180

than the above model when a lognormal error structure better represents eDNA concentration data181

as is often the case in quantitative eDNA studies (e.g. Takahara et al. 2012, Thomsen et al. 2012,182

Eichmiller et al. 2014, Wilcox et al. 2016, Jo et al. 2017). The alternative model can be written as183

logy ∼ N
(
logBx, σ2IN

)
, (2)

which is a generalised linear model with an exponential link function: a less popular but still184

appropriate within the generalised linear modelling framework given that xi ≥ 0 for all i (McCullagh185

& Nelder 1989). The maximum likelihood method for this model yields estimate x̂ that minimises186

the residual square error | logy − logBx̂|22.187

The standard maximum likelihood approach is, however, not applicable to these models when188

M > N because the maximum likelihood estimate of x is not uniquely identified in this setting. This189

may be a typical situation at a reasonable level of spatial discretisation for the tracer model and190

sampling effort of eDNA. When some covariates, assumed to covary with density, are available for191

each cell, a (generalised) linear model for density can be introduced to effectively reduce the number192

of unknown parameters (Carraro et al. 2018). Specifically, density of the target species can be193

modelled, for example, as logx = Zβ, where Z is a matrix of covariates, and β is a vector of194

coefficients (including an intercept). Otherwise, additional regularisation is necessary to make an195

inference based on such singular models. The regularisation method often employed for regression196

models is to impose a penalty on the size of regression coefficients; a typical example includes ridge197

regression and lasso, which can be interpreted in general as a Bayesian inference of the model with a198

specific prior on the regression coefficients (Hastie et al. 2009). Thus, inference can be achieved via a199

Bayesian model-fitting approach such as empirical Bayes and the full-Bayesian inference (Karabatsos200

2018).201

An application to a marine fish population202

The Japanese jack mackerel in Maizuru Bay203

The study was conducted in Maizuru Bay (Kyoto prefecture, Japan; 35°29′N, 135°23′E) to estimate204

abundance of the jack mackerel (T. japonicus) via concentration of eDNA. The bay has a surface205

area of ∼22.87 km2 with a maximum water depth of approximately 30 m, and connects with Wakasa206

Bay through a narrow bay mouth in its north (Fig. 1).207

According to long-term underwater visual surveys, the jack mackerel is numerically the most208

dominant fish species in shallow (< 10 m in depth) coastal waters in this area (Masuda 2008); their209

body size ranges from 10 to 45 mm in standard length offshore and 40–120 mm standard length in210

the shallow rocky reef habitat (Masuda et al. 2008). The study was conducted during the peak211

season of jack mackerel recruitment from the offshore pelagic zone to a coastal shallow reef habitat,212
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where the jack mackerel population in the bay is dominated by new recruits. In the following213

analysis, we therefore assumed that the population is represented by individuals of size ∼ 3 cm214

(body length) and ∼ 1 g (body weight; see Supplementary information).215

Measurement of eDNA concentration216

We conducted the water sampling on 21 and 22 June 2016 from a research vessel at 100 stations217

located approximately on ∼400 m grids in Maizuru Bay (Fig. 1). Samples were collected at 53218

stations in the eastern part of the bay on the first day and at 47 stations in the western part on the219

second day. The average water depth at the 100 stations was ∼15m. On both days, the survey began220

from the mouth of the bay and ended in the inner most part of the bay. The survey was approved by221

the harbourmaster of Maizuru Bay (Permission number 160 issued on 5th May 2016).222

At each sampling station, we captured sea water at three depths: the surface, middle, and223

bottom. The middle and bottom depths were defined as 5 m from the surface, which was just below224

the pycnocline, and 1 m above the sea floor, respectively. Water samples were collected with a ladle225

for surface water and vanDorn samplers for middle and bottom water. For each station and depth, a226

1 L water sample was placed in a plastic bottle, which was rinsed in advance with a subset of227

captured water. We then immediately added 1 mL of 10% benzalkonium chloride to the samples and228

mixed them gently to prevent degradation of DNA (Yamanaka et al. 2017). The bottles of water229

samples were stored in opaque containers to avoid sunlight.230

We filtered water samples on the same day of the field survey through a 47 mm diameter glass231

microfiber filter (nominal pore size 0.7 µm, GE Healthcare Life Science [Whatman]) using an232

aspirator in a laboratory at Maizuru Fisheries Research Station, Kyoto University. The filters were233

folded so that the filter surface faced inward and were wrapped into aluminium foil to store at234

−20°C until eDNA extraction. It took less than 7 h to complete all operations from the water235

collection to the filtration. To prevent carryover of eDNA, filtration devices were bleached by means236

of 0.1% sodium hypochlorite for at least 5 min and then were washed and rinsed with tap water and237

distilled water, respectively, to clear the remaining sodium hypochlorite. This bleaching process was238

validated by a series of negative controls of filtration undertaken for every sequence of 15 filtrations239

in which 1 L of distilled water was filtered with bleached equipment.240

All samples and negative controls of filtration were subjected to eDNA extraction and241

subsequent quantitative PCR (qPCR). eDNA extraction was conducted by following the procedure242

of Yamamoto et al. (2016), which eventually yielded 100 µL of a DNA solution. We determined the243

concentration of mitochondrial cytochrome b (CytB) of the jack mackerel by qPCR on a LightCycler244

96 machine (Roche). The primers and probe used in the qPCR were as follows: forward primer,245

5′–CAG ATA TCG CAA CCG CCT TT–3′; reverse primer, 5′–CCG ATG TGA AGG TAA ATG246

CAA A–3′; probe, 5′–FAM-TAT GCA CGC CAA CGG CGC CT–TAMRA–3′ (Yamamoto et al.247

2016). This primer set amplifies 127 bp of the CytB gene. The PCR reaction solution was 20 µL: 2248

µL of the extracted DNA solution, a final concentration of 900 nM forward and reverse primers and249

125 nM TaqMan probe in 1 × TaqMan master mix (TaqMan gene expression master mix; Life250

Technologies). The thermal program for the qPCR was as follows: 2 min at 50°C, 10 min at 95°C,251

and 55 cycles of 15 sec at 95°C and 1 min at 60°C. To draw quantification standard curves, we252

simultaneously performed PCR on 2 µL of artificial DNA solutions that contained 3× 101 to 3× 104253

copies of our target sequence. qPCR was carried out in triplicate for each sample and standard. In254
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addition, a 2 µL pure water sample was analysed simultaneously in triplicate as a negative control of255

PCR. In all the runs, R2 values of calibration curves were more than 0.99, the range of slopes was256

between −3.859 and −3.512, and the range of y-intercepts was between 38.34 and 40.36. No eDNA257

of the jack mackerel was detected in any negative control sample of filtration and PCR.258

Development of the tracer model259

To obtain the flow field in Maizuru Bay, we configured the Princeton ocean model (POM) with a260

scaled vertical coordinate (i.e. the sigma coordinate system; Mellor 2002) for the bay. The model261

represented Maizuru Bay by 20,484 grid cells. Specifically, the bay was discretised by 2,276262

horizontal lattice grids at a resolution of 100 m, and the grids had nine non uniform vertical layers,263

with finer resolution near the surface; the sigma coordinate was set as σ = 0.000, −0.041, −0.088,264

−0.150, −0.245, −0.374, −0.510, −0.646, −0.796, and −1.000. The configuration of the model was265

achieved by means of the bottom topography of the bay, data and model estimates of surface266

meteorological conditions, estimated river discharges, and the model results of Wakasa Bay as the267

open boundary conditions (Yoon & Kasai 2017); additional details are described elsewhere (Kasai &268

Yoon 2018). The model simulated flow fields within the bay from 1 June 2016, under the initial269

conditions interpolated from the model results of Yoon & Kasai (2017), to the final day for the water270

sampling (i.e. 22 June 2016). Time steps of the simulation were set to 0.1 s for the external mode271

and 3 s for the internal mode.272

We then incorporated eDNA of jack mackerels into the POM configured for Maizuru Bay as a273

passive tracer to simulate its concentration within the flow field. The evolution of eDNA274

concentration in a grid cell, denoted by c, is represented as275

dc

dt
= −λc+ βx+Adv + Diff, (3)

where x is the density of jack mackerels in the cell, λ represents a degradation rate of eDNA, and β276

is a per-capita shedding rate of jack mackerel DNA. Adv and Diff are the advection and diffusion277

terms, respectively, which were determined implicitly by running the POM for Maizuru Bay. The278

eDNA degradation rate was assumed to be constant and was adopted from an estimate obtained in279

tank experiments where the same species-specific primer set was employed (λ = 0.044 h−1; Jo et al.280

2017). The eDNA shedding rate of the jack mackerel was assumed to be constant; it was derived281

mathematically and found to be β = 9.88× 104 copies per individual per hour, according to the282

results of tank experiments conducted by Maruyama et al. (2014) and Jo et al. (2017). Details of283

this derivation are provided in Supplementary information.284

Estimation of jack mackerel abundance based on eDNA and the tracer model285

We fitted the logarithmic model (Eq. 2) to the eDNA concentration data collected in Maizuru Bay.286

During the model fitting, we omitted negative samples in which the number of remaining287

observations was N = 729. For vector of density x, we specified an independent lognormal prior with288

unknown prior mean µ and standard deviation τ :289

logx ∼ N
(
logµ1M , τ2IM

)
, (4)
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where 1M represents a vector of all ones with length M . Because N was significantly smaller than290

M , we were pessimistic about estimating the spatial variation in cell level density with reasonable291

precision. Our main goal of the inference was therefore to quantify the bay level abundance v⊤x292

along with its uncertainty.293

With uniform positive priors on µ, τ , and σ, we fitted the model via a fully Bayesian294

approach. Posterior samples were obtained by the Markov chain Monte Carlo (MCMC) method295

implemented in Stan (version 2.18.1; Carpenter et al. 2017) in which three independent chains of296

10,000 iterations were generated after 1,000 warm-up iterations. Each chain was thinned at intervals297

of 10 to save the posterior sample.298

Convergence of the posterior was checked for each parameter with the R̂ statistic. Posterior299

convergence was achieved at a recommended degree (R̂ < 1.1; Gelman et al. 2013) in almost all300

parameters except log x in four cells. We decided, however, that the results are solid because the301

posterior of the bay level abundance — the target of the inference — fully converged. The302

goodness-of-fit assessment of the model, measured by the χ2-discrepancy statistic (Conn et al. 2018),303

gave no clear indication of a lack of model fit (Bayesian p value: 0.404).304

Estimation of jack mackerel abundance from quantitative echo sounder data305

An independent estimate of jack mackerel abundance was obtained based on a calibrated306

quantitative echo sounder by a standard acoustic survey method (Simmonds & MacLennan 2005).307

The acoustic survey was conducted during the survey cruise for the water sampling (described308

above). We used the KSE300 echo sounder (Sonic Co. Ltd., Tokyo, Japan) with two transducers309

(T-182, 120 kHz, and T-178, 38 kHz; beam type, split-beam; beam width, 8.5°; pulse duration, 0.3310

ms; ping rate, 0.2 s), which were mounted off the side of the research vessel at a depth of 1 m. The311

acoustic devices were operated during the entire survey cruise to record all acoustic reflections,312

except when the research vessel stopped at each sampling station where the recording was stopped313

to avoid reflection from the sampling gear and cables. The research vessel ran at ∼4 knots, on314

average, between the sampling stations. The echo intensity data were denoised and cleaned in315

Echoview ver. 9.0 (Echoview Software Pty. Ltd., Tasmania, Australia). We omitted signals between316

the sea bottom and 0.5 m above it to exclude the acoustic reflection from the sea floor. Additionally,317

we eliminated signals from sea nettles (Chrysaora pacifica) by filtering reflections of −75 dB.318

From the obtained acoustic data, the reflections of jack mackerel were extracted by the319

volume back scattering strength difference (∆SV ) method (Miyashita et al. 2004, Simmonds &320

MacLennan 2005). ∆SV was defined as the difference in the volume backscattering strength (SV )321

between the two frequencies as follows:322

∆SV = SV 120 kHz − SV 38 kHz. (5)

According to field validation in Maizuru Bay combining acoustic surveys and visual confirmation of323

jack mackerel schools by snorkelling, we assumed the range of ∆SV of jack mackerel between −6.4324

and 5.2 dB. This criterion discriminates the jack mackerel from larval Japanese anchovy (Engraulis325

japonicus), the subdominant species in the bay (Masuda 2008), which reflects the high frequency326

echo strongly as compared to low frequency (Ito et al. 2011) and was used to determine SV of the327

jack mackerel in 1 m3 water cubes in Echoview ver. 9.0.328
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Density of jack mackerel in a 1 m3 water cube, denoted by D, was estimated as329

D =
10

SV 120 kHz
10

10
TS
10

(6)

where TS is the target strength of an individual jack mackerel. By assuming that jack mackerel330

population in the bay was dominated by individuals of the size 3 cm, we chose TS = −59.6 dB331

(Nakamura et al. 2013, Yamamoto et al. 2016). The fish density on the echo sounder track lines was332

then matched with the grid specification of the tracer model by a box averaging method. In333

particular, fish density in each grid cell was estimated by a geometric mean of D taken over a 500 m334

square block that surrounds the grid cell. For grid cells in which any D was not available in their335

square block owing to a lack of the acoustic data, fish density was estimated by means of a geometric336

mean of the fish density taken across the other grid cells. Finally, the bay level abundance was337

estimated as a sum of the product of grid level density and water volume of each cell.338

Data availability339

The datasets generated and analysed during the current study are available from the corresponding340

author upon reasonable request.341
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Fig. 1. Maizuru bay, the study site. a, The 2,276 horizontal lattice grids for the eDNA tracer
model (grey boxes) and the 100 water-sampling stations (blue circles). The grid in which estimates
of jack mackerel density were extremely high is highlighted in red. The building of the fish market,
overlapping with the red lattice grid, is depicted by a filled black box. b, Fish abundance estimates
in the 2,276 horizontal lattice grids. Abundance estimates in nine vertical cells were pooled for each
grid. The lattice grid next to the market is highlighted in red. c, The Japanese jack mackerel (T.
japonicus) in Maizuru bay (photo credit: R. Masuda).
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Supplementary information470

Body size of the Japanese jack mackerel471

On 23rd June 2016, the day following the survey cruise, a trawl net (79 cm in diameter, 2.4 m long,472

5 mm mesh size) was towed horizontally at four locations in Maizuru Bay where strong sonar signals473

were detected. The size of the collected jack mackerels (n = 6) was 35.3 ± 2.5 mm (mean ± SD) in474

standard length and 0.77 ± 0.13 g in body weight. Underwater observation was also conducted on475

the same day, where approximately 50 individuals of jack mackerel juveniles, of the size 20–30 mm in476

body length, were found during a 10 min observation period. They were all associating with sea477

nettles (Chrysaora pacifica) either singly or by forming a small group. Given that the study was478

conducted during the peak season of jack mackerel recruitment from an offshore pelagic zone to a479

coastal shallow reef habitat where the jack mackerel population in the bay is dominated by new480

recruits, we supposed that the size of the jack mackerel in the population can effectively be481

represented by ∼30 mm in body length and 1 g in body weight.482

Derivation of the eDNA shedding rate of the Japanese jack mackerel483

The eDNA shedding rate of the jack mackerel was derived mathematically from the results of tank484

experiments conducted by Maruyama et al. (2014) and Jo et al. (2017).485

In the study by Jo et al. (2017), three adult Japanese jack mackerels ca. 15 cm in total length486

and ca. 40 g in body weight, on average, had been kept in three 200 L tanks. Filtered seawater was487

injected into the tanks as inlet water at a rate of 0.9 L min−1. Then, the eDNA concentration in the488

rearing water (c) can be expressed as489

dc

dt
= −(λ+ α)c+ β′x (7)

where λ is a degradation rate of eDNA, which had been identified in the experiment as 0.044 h−1 (Jo490

et al. 2017), α is the exponential decay constant due to water injection (0.54 h−1), β′ means the491

eDNA shedding rate of the adult jack mackerels, and x denotes the fish density in the rearing tank492

(0.015 individuals per litre).493

We assume that the eDNA concentration had reached an equilibrium in experiments by Jo494

et al. (2017), and had been determined as c0 = 25365 copies per litre of seawater (Jo et al. 2017).495

The eDNA shedding rate of juvenile Japanese jack mackerels (β) is then estimated as496

β =
β′

10
=

c0(λ+ α)

10x
= 9.88× 104 copies individual−1 h−1, (8)

where we assumed that the eDNA shedding rate per fish body weight is four-fold higher in the497

juvenile fish than in the adult fish (Maruyama et al. 2014); this finding indicates that the eDNA498

shedding rate of adult individuals of size ∼ 15 cm and weight ∼ 40 g (β′) was 10-fold greater than499

that of jack mackerel juveniles of size ∼ 3 cm and weight ∼ 1 g (β).500
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