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Abstract

Motivation: Alzheimer’s disease (AD) is currently incurable and the causative risk factors are still poorly
understood, which impedes development of effective prevention and treatment strategies. We propose a
network-based quantitative framework to reveal details of the complex interaction between the various
genetic contributors to AD susceptibility. We analyzed gene expression microarray data from tissues
affected by AD, advanced ageing, high alcohol consumption, type II diabetes, high body fat, high dietary fat,
obesity, high dietary red meat intake, sedentary lifestyle, smoking, and control datasets. We developed
genetic associations and diseasome networks for these factors and AD using the neighborhood-based
benchmarking and multilayer network topology approaches.
Results: The study identified 484 genes differentially expressed between AD and controls. Among these,
27 genes showed elevated expression both in individuals in AD and in smoker datasets; similarly 21 were
observed in AD and type II diabetes datasets and 12 for AD and sedentary lifestyle datsets. However,
AD shared less than ten such elevated expression genes with other factors examined. 3 genes, namely
HLA-DRB4, IGH and IGHA2 showed increased expression among the AD, type II diabetes and alcohol
consumption datasets; 2 genes, IGHD and IGHG1, were commonly up-regulated among the AD, type
II diabetes, alcohol consumption and sedentary lifestyle datasets. Protein-protein interaction networks
identified 10 hub genes: CREBBP, PRKCB, ITGB1, GAD1, GNB5, PPP3CA, CABP1, SMARCA4, SNAP25
and GRIA1. Ontological and pathway analyses genes, including Online Mendelian Inheritance in Man
(OMIM) and dbGaP databases were used for gold benchmark gene-disease associations to validate the
significance of these putative target genes of AD progression.
Conclusion: Our network-based methodologies have uncovered molecular pathways that may influence
AD development, suggesting novel mechanisms that contribute to AD risk and which may form the basis
of new therapeutic and diagnostic approaches.
Contact: mohammad.moni@sydney.edu.au

1 Introduction
Alzheimer’s disease (AD) is the most common form of dementia and is
characterized by gradual degeneration in memory, cognitive processes,
language use, and learning capacity Duthey (2013); Rahman et al.
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(2018b). Initial indications begin with a reduced ability to retain recent
memories, but with progression all cognitive functions are inevitably
affected, resulting in complete dependency for basic daily activities and
greatly increased risk of premature death Serrano-Pozo et al. (2011);
Rahman et al. (2018c). AD is irremediable that accounts for 60% to
80% of all dementia cases and estimated to affect over 24 million people
worldwide. In the United States, 93,541 deaths resulting from AD were
officially recorded in 2014, which is ranked sixth among all causes of death
in the United States and fifth among all causes of death after 65 years of
age. The premature death rate of AD sufferers increased by 89% within
the five years up to 2010, whereas death rates associated with other major
morbidities such as cardiac disease, stroke, breast and prostate cancer, and
AIDS all declined in that frame. Currently, one new case of the AD is
developed in every 66 seconds, a rapid rate of development expected to
double by 2050 Association et al. (2017); Rahman et al. (2018a).
The pathogenesis of the AD is not clearly understood, but it is hypothesized
that both genetic and environmental factors are the primary causes.
Genes encoding amyloid precursor protein (APP), presenilin 1 (PSEN1)
and presenilin 2 (PSEN2) have been identified as associated with AD
development Waring and Rosenberg (2008). Age is found to be the most
influential risk factor for AD, along with a sedentary lifestyle. Typically
AD develops after the age of 65 years and almost half individuals over
85 years old have AD Lindsay et al. (2002). Obesity also increases
the risk of dementia and eventually AD Kivipelto et al. (2005). Type
II diabetes, hypertension, smoking and dietary fats can increase the
risk of developing AD Mayeux and Stern (2012) Janson et al. (2004)
Morris et al. (2003); Rahman et al. (2018a). Meta-analysis of prospective
studies suggests that alcohol consumption in late life yields reduced
the risk of dementia and hence reduced the risk of AD Anstey et al.
(2009). AD is a complex polygenic disorder, and many of the associated
factors are yet to be identified. For these reasons, there are many
problems with accurate diagnosis, characterizing heterogeneous groups
of patients who may respond differently to treatment and complicate
decisions regarding effective treatment. With such poor understanding of
a disease the discovery of further genetic factors could be an important
avenue to development of improved diagnostic profiles, and a clearer
understanding of the disease process Tilley et al. (1998). The key genetic
factors associated with susceptibility to complex diseases can be effectively
unravelled by genome-wide association studies, and the usefulness of
this approach has been proven empirically. Our methodology employed
here aims to identify genetic factors influencing common and complex
conditions against the background of the random variation seen in a
population as a whole Altshuler et al. (2008); Moni and Liò (2015).
Molecular association analyses, including differential gene expression
determination, protein-protein interactions (PPIs), gene ontologies (GO)
and metabolic pathways can ascribe gene activity-based relationships
between AD and various risk factors for the disease Rzhetsky et al. (2007)
Moni and Liò (2014a). Differentially expressed transcripts seen in studies
comparing control individuals with individual affected by a disease (or
disease risk factor) identify putative disease-associated genes of interest; a
differentially expressed gene identified in AD can be more strongly linked
to AD when it is shared with AD risk factor differentially expressed genes
Goh et al. (2007) Feldman et al. (2008); Moni et al. (2018). From a
proteomics point of view, genes are also associated through biological
modules such as PPIs, gene ontologies or molecular pathways Lage et al.
(2007) Suthram et al. (2010); Satu et al. (2018).
Recently there has been many advances in network-based integrative
analytical methods used by researchers to identify possible roles of
biomolecules in complex diseases Moni and Liò (2014b) Moni and Lio’
(2017) Torkamani et al. (2008). A number of transcriptomic and genetic
studies have been conducted on AD Bertram et al. (2010) Logue et al.
(2011) Seshadri et al. (2010); Hossain et al. (2018a). However, most

of these findings have been limited at the transcript level, since the
functional interactions among the gene products have not commonly been
considered. Since biological molecules interact with each other to carry out
functions in biological processes in cells and tissues, integrative analysis
within network medicine context is essential to understand the molecular
mechanisms behind diseases and to identify critical biomolecules. Thus,
we have used a network-based analysis to determine the genetic influence
of associated risk factors and disorders for AD progression, including
studies of gene expression profiling, PPI sub-network, gene ontologies
and molecular pathways. An extensive study regarding phylogenetic
and pathway analysis was therefore conducted to reveal the genetic
associations of the AD. Significance of these genes and pathways in AD
processes were also validated with gold benchmarking datasets including
Online Mendelian Inheritance in Man (OMIM) and dbGaP gene-disease
associations databases.

2 Materials and Methods

2.1 Data

We have analyzed gene expression microarray datasets to identify the
association of different factors with the AD at the molecular level.
All the datasets used in this study were collected from the National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus
database (https://www.ncbi.nlm.nih.gov/geo/). Ten different datasets with
accession numbers: GSE1297, GSE23343, GSE15524, GSE25941,
GSE1786, GSE68231, GSE6573, GSE25220, GSE52553, and GSE4806
were analyzed for this study Blalock et al. (2004) MacLaren et al. (2010)
Raue et al. (2012) Radom-Aizik et al. (2005) Kakehi et al. (2015) Misu
et al. (2010) Herse et al. (2007) Hebels et al. (2011) McClintick et al.
(2014) Büttner et al. (2007); Hossain et al. (2018b). The AD dataset
(GSE1297) is obtained by gene expression profiling of hippocampal tissues
on 31 separate microarrays from nine control subjects and 22 AD patients
with varying severity. The type II diabetes dataset (GSE23343) contains
gene expression data obtained through extensive analysis after conducting
liver biopsies in humans. The source of the obesity dataset (GSE15524)
is subcutaneous and omental adipose tissue analyzed through expression
profiling of 20,000 probes in 28 tissue samples. The advanced age dataset
(GSE25941) consists of a global microarray data from skeletal muscle
transcriptome of 28 different subjects. The sedentary lifestyle dataset
(GSE1786) was obtained by expression profiling array from the vastus
lateralis muscle using needle biopsies. The high-fat diet (HFD) dataset
(GSE68231) is the expression data from human skeletal muscle identifying
accumulation of intramyocellular lipid (IMCL). The high body fat (HBF)
dataset (GSE6573) is an Affymetrix human gene expression array data
from the abdominal fat tissue. The red meat dietary intervention dataset
(GSE25220) is an Agilent-014850 whole human genome microarray data
from human colon biopsies before and after participating in a high red-
meat dietary intervention. The alcohol consumption dataset (GSE52553)
is an Affymetrix human gene expression array data of Lymphoblastoid
cells from 21 alcoholics and 21 control subjects. The smoking dataset
(GSE4806) is a gene expression profiles of T-lymphocytes from smokers
and non-smokers.

2.2 Method

Analyzing oligonucleotide microarray data for gene expression is known
to be an effective and responsive approach to identify new molecular
determinants of human diseases. In this study, we used this methodology
along with global transcriptome analysis to investigate the gene expression
profiles of the AD with 8 risk factors and type II diabetes. To mitigate
the problems involving messenger RNA (mRNA) data comparison using
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different platforms and experimental set-ups, we normalized each gene
expression data for each disease using the Z-score (or zero mean)
transformation for both disease and control state Sakib et al. (2018). Each
sample of gene expression matrix was normalized using mean and standard
deviation. The expression value of gene i in sample j represented by gij
was transformed into Zij by computing

Zij =
gij −mean(gi)

SD(gi)
(1)

where SD is the standard deviation. Comparing values of gene expression
for various samples and diseases are made possible by this transformation.
Data were transformed using log2 and differentially expressed genes for
both disease and control states were obtained by performing unpaired
student t-test, and significant genes were identified by using threshold
values. A threshold for p-value and absolute base two log fold change
(logFC) values were set to at most 0.05 and at least 1.0 respectively. We
built two infectome-diseasome relationships networks using Cytoscape
(v3.5.1) Smoot et al. (2010); Moni et al. (2014) for both up-regulated and
down-regulated genes focusing on the AD. Each node of the networks
are either diseases or associative factors. These networks can also be
considered as bipartite graphs where diseases or factors are connected
when they share at least 1 differentially expressed gene.
We used the web-based visualization software STRING Szklarczyk et al.
(2016) for the construction and analysis of the Protein-Protein Interaction
(PPI) network which was further analyzed by Cytoscape. An undirected
graph representation was used for the PPI network, where the nodes
indicate proteins and the edges symbolize the interactions between the
proteins. We performed a topological analysis using Cyto-Hubba plugin
Chen et al. (2009) to identify highly connected proteins (i.e., hub proteins)
in the network and the degree metrics were employed Calimlioglu et al.
(2015); Xu et al. (2015). For further introspection into the metabolic
pathways of the AD, we incorporated the pathway and gene ontology
analysis on all the differentially expressed genes that were common
between the AD and the other risk factors datasets using the web-based
gene set enrichment analysis tool EnrichR Kuleshov et al. (2016). In this
analysis, the Gene Ontology (GO) Biological Process (BP) and KEGG
pathway databases were selected as annotation sources. For statistical
significance, the highest adjusted p-value was considered 0.05 to obtain
enrichment results. Obtained GO and pathway were further analyzed by
Cytoscape. Moreover, two gold bench mark validated datasets, OMIM
(https://www.omim.org/) and dbGaP (https://www.ncbi.nlm.nih.gov/gap)
were included in our study to validate the principle of our network based
approach.

3 Results

3.1 Gene Expression Analysis

To identify dysregulated genes linked to AD the gene expression patterns
from hippocampal CA1 tissues of AD patients were analyzed and
compared with normal subject using the NCBI GEO2R online tool
(https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE1297) Blalock et al.
(2004). 484 genes (p-value at most 0.05 and absolute log2 fold change
value at least 1.0) were found to be differentially expressed compared to
healthy subjects where 336 genes were up-regulated and 148 genes were
down-regulated.
In order to investigate the relationship of the AD with 8 risk factors and type
II diabetes, we performed several steps of statistical analysis for mRNA
microarray data regarding each risk factors and disease. Thus, we selected
the most significant over and under regulated genes for each risk factor
and disease. Our analysis identified a large number of dysregulated genes,
namely 958 genes in advanced ageing, 1405 in high alcohol consumption,

824 in high body fat (HBF), 739 in high fat diet (HFD), 381 in obesity,
482 in high dietary red meat, 800 in sedentary lifestyle, 400 in smoking
and 1438 in diabetes type II datasets.

Fig. 1. Diseasome network of the AD with type II diabetes, ageing, sedentary lifestyle,
HFD, HBF, high dietary red meat, high alcohol consumption, obesity and smoking. Red-
colored octagon-shaped nodes represent categories of factors and or disease, and round-
shaped sky blue-colored nodes represent up-regulated genes that are common for the AD
with the other risk factors and or diseases. A link is placed between a risk factor or disease
and gene if alteration expression of that gene is associated with the specific disorder.

Fig. 2. Diseasome network of the AD with type II diabetes, ageing, sedentary lifestyle,
HFD, HBF, dietary red meat, high alcohol consumption, obesity and smoking. Red-colored
octagon-shaped nodes represent categories of factors and or disease, and round-shaped
yellow-colored nodes represent down-regulated genes that are common for the AD with the
other risk factors and or diseases. A link is placed between a risk factor or disease and gene
if altered expression of that gene is associated with the specific disorder.

The over- and under- expressed genes identified as in common between
AD and other risk factors and diseases were also detected through a
cross-comparative analysis. The findings demonstrated that AD shares

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 4, 2018. ; https://doi.org/10.1101/482844doi: bioRxiv preprint 

https://doi.org/10.1101/482844


i
i

“output” — 2018/12/5 — 2:26 — page 4 — #4 i
i

i
i

i
i

4 Sample et al.

a total of 35, 34, 18, 15, 13, 10, 8, 7 and 4 significant differentially
expressed genes with type II diabetes, alcohol consumption, sedentary
lifestyle, ageing, HFD, obesity, smoking, HBF and dietary red meat
datasets respectively. Two infectome-diseasome associations networks
centered on the AD were built using Cytoscape to identify statistically
significant associations among these risk factors and diseases. Network
shown in Figure-1 interprets the association among up- regulated genes
and another network shown in Figure-2 depicts relations between among
down regulated genes. Notably, 3 significant genes, HLA-DRB4, IGH
and IGHA2 are commonly up-regulated in the AD, type II diabetes and
alcohol consumption datasests; 2 significant genes IGHD and IGHG1,
were commonly up regulated among the AD, type II diabetes, alcohol
consumption and sedentary lifestyle datasets. It is noteworthy that a
relatively higher number of differentially expressed genes was identified
as in common between the AD and type II diabetes datasets, whereas the
AD and high dietary red meat shared only 4 differentially expressed genes.

3.2 Protein-Protein Interaction Network Analysis

The PPI network was constructed using all the distinct 108 (from total
144) differentially expressed genes that were identified as in common
between the AD and other risk factors and disease datasets (Figure-3).
Each node in the network represents a protein and an edge indicates the
interaction between two proteins. The network is also grouped into 9
clusters representing risk factors and diseases to depict the protein links. It
is notable that KCNJ5 protein belongs to the highest number (3) of clusters
indicating that it is gene most commonly found among the AD, alcohol
consumption, HFD and sedentary lifestyle datasets and interacts with other
proteins from different clusters. In addition the protein products of PLK4,
PRKCB, E2F5, GAD1, VSNL1, RGS5, ITGB1, CABP1 and NEFM
belong to two clusters each, and interact with other proteins in the network.
For topological analysis, a simplified PPI network was constructed using
Cyto-Hubba plugin to show 10 most significant hub proteins (Figure-4),
which are CREBBP, PRKCB, ITGB1, GAD1, GNB5, PPP3CA, CABP1,
SMARCA4, SNAP25 and GRIA1. The most significantly identified hub
protein CREBBP (CREB binding protein) plays major role during the
evolution of central nervous system. Alteration of CREBBP activity is
known to be implicated in AD progression Rouaux et al. (2004).

3.3 Pathway and Functional Correlation Analysis

In order to identify the molecular pathways associated with the AD and
predicted links to the affected pathways, we performed pathway analysis
on all the differentially expressed genes that were common among the
AD and other risk factors and diseases using the KEGG pathway database
(http://www.genome.jp/kegg/pathway.html) and the web-based gene set
enrichment analysis tool EnrichR Kuleshov et al. (2016). A total of
115 pathways were found to be over-represented among several groups.
Notably, nine significant pathways that are related to the nervous system
were found which are Long-term potentiation (hsa04720), Synaptic vesicle
cycle (hsa04721), Retrograde endocannabinoid signaling (hsa04723),
Glutamatergic synapse (hsa04724), Cholinergic synapse (hsa04725),
Serotonergic synapse (hsa04726), GABAergic synapse (hsa04727),
Dopaminergic synapse (hsa04728), and Long-term depression (hsa04730).
These pathways along with some other common pathways found are shown
in Table 1. A gene and pathway association is analyzed by constructing a
network for the resulted pathways using Cytoscape (Figure-5).

We identified over-represented ontological groups by performing
gene biological process ontology enrichment analysis using EnrichR
on the commonly dysregulated genes between the AD and other
risk factors and diseases. Total 215 significant gene ontology groups
including peripheral nervous system neuron development (GO:0048935),
neurotransmitter transport (GO:0006836), neuromuscular synaptic

Table 1. Some significant KEGG pathways that are related to the nervous
system and common among the AD and other risk factors and diseases.
(Ag=Ageing, T2D=Type II Diabetes, Ob=Obesity, Sm=Smoking,RM=Red
Meat, AC=Alcohol Consumption, SL=Sedentary Lifestyle.)

KEGG ID Pathway Genes in pathway Risk
fac./dis.

hsa04720 Long-term
potentiation

GRIA1, PRKCB,
GRIN1, CREBBP,
PPP3CA

Ag, Ob,
T2D, HBF,
HFD

hsa05014 Amyotrophic
lateral sclerosis
(ALS)

GRIA1, NEFL,
NEFM, NEFH,
PPP3CA

Ag, AC,
HBF, Ob,
SL

hsa04728 Dopaminergic
synapse

KCNJ5, COMT,
GNAL, PRKCB,
GNB5

AC, T2D,
HBF, RM

hsa05031 Amphetamine
addiction

GRIA1, PRKCB,
GRIN1, PPP3CA

Ag, T2D,
HBF, Ob

hsa04662 B cell receptor
signaling pathway

PRKCB, CD22,
PPP3CA

T2D, HBF,
Ob

hsa04940 Type I T2D mellitus GAD1, PTPRN2 Ag, HFD,
SL

hsa05100 Bacterial invasion
of epithelial cells

ITGB1, MET HBF,
HFD, Sm

hsa05140 Leishmaniasis HLA-DRB4,
PRKCB, ITGB1

T2D, HBF,
HFD

hsa05146 Amoebiasis GNAL, PRKCB,
LAMB1,

T2D, HBF,
Ob

hsa00250 Alanine, aspartate
and glutamate
metabolism

FOLH1, GAD1 Ag, HFD

hsa04014 Ras signaling
pathway

PRKCB, RASAL2,
GRIN1, GNB5

T2D, RM

hsa04310 Wnt signaling
pathway

PRKCB, PPP3CA,
WIF1

HBF, Ob

hsa04360 Axon guidance ITGB1, MET HBF, Sm
hsa04370 VEGF signaling

pathway
PRKCB, PPP3CA HBF, Ob

hsa04512 ECM-receptor
interaction

ITGB1, LAMB1 HBF, Ob

hsa04514 Cell adhesion
molecules (CAMs)

HLA-DRB4,
SELE, CD22,
ITGB1

T2D, HBF

hsa04721 Synaptic vesicle
cycle

SNAP25, SNAP25 Ag, Sm

hsa04723 Retrograde
endocannabinoid
signaling

PRKCB, GNB5 HBF, RM

hsa04727 GABAergic
synapse

PRKCB, GNB5 HBF, RM

hsa04730 Long-term
depression

GRIA1, PRKCB Ag, HBF

transmission (GO:0007274), peripheral nervous system development
(GO:0007422), negative regulation of neurological system process
(GO:0031645), regulation of neurotransmitter secretion (GO:0046928),
regulation of neuronal synaptic plasticity (GO:0048168), autonomic
nervous system development (GO:0048483), sympathetic nervous system
development (GO:0048485), neuromuscular process controlling balance
(GO:0050885), neuron apoptotic process (GO:0051402), regulation
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Fig. 3. Protein-Protein interaction network of commonly dysregulated genes among AD and other risk factors and diseases. Each cluster indicates the gene belongings.

of neurotransmitter transport (GO:0051588) and neuroepithelial cell
differentiation (GO:0060563) were observed (see Table 2). A gene and
gene ontology association network is constructed for the obtained gene
ontology using Cytoscape (Figure-6).

4 Discussion
In this study, we sought novel molecular mechanisms that may affect
AD that are made evident by genetic associations with risk factors and
diseases that are known to predispose individuals to AD. For this purpose,
we conducted analysis in gene expression of AD patients, molecular
key pathways, gene ontologies and PPIs. These analyses that employ
network-based approach can uncover novel relationships between AD and
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Fig. 4. The simplified PPI network of the commonly dysregulated genes among between
AD and other risk factors and diseases. The 10 most significant hub proteins are marked as
red, orange and yellow respectively.

Fig. 5. The gene and pathway association network for all pathways obtained for the
dysregulated genes common to the AD and other risk factor datasets. Sky blue-colored
octagon-shaped nodes represent genes, and round-shaped pink-colored nodes represent
pathway (KEGG Id). A link is placed when a gene belongs to a pathway.

other susceptibility/risk factor. The findings presented here have not been
identified by any previous individual studies. Our study identified several
significant genes that may be usefully investigated in other further work,
and the hub genes may identify targets for therapeutic interventions in
AD. Besides this, our analysis also identified and characterized a number
of biological functions related to these genes that throw light on processes
that lead to AD.

Our gene expression analysis showed that the AD is strongly associated
with type II diabetes (35 genes), alcohol consumption (34 genes), sedentary
lifestyle (18 genes) and ageing (15 genes) as they share the maximum
dysregulated genes. We constructed and analyzed the PPI network to have
a better understanding of the central mechanism behind the AD. For this
reason, to construct a PPI network around the differentially expressed
genes for our study, we have combined the results of statistical analyses
with the protein interactome network. For finding central proteins (i.e.,
hubs), topological analysis strategies were employed. These identified
Hubs proteins might be considered as candidate biomarkers or potential

Table 2. Significant GO ontologies that are related to nervous system,
and common between the AD and other risk factors and diseases.
(Ag=Ageing, T2D=Type II Diabetes, Ob=Obesity, Sm=Smoking,RM=Red
Meat, AC=Alcohol Consumption, SL=Sedentary Lifestyle.)

GO ID Pathway Genes in
pathway

Risk
fac./ dis.

GO:0045110 Intermediate filament
bundle assembly

NEFL,
NEFM,
NEFH

Ag, AC,
HBF,
Ob, SL

GO:0002455;
GO:0006909;
GO:0006911;
GO:0006958;
GO:0050851;
GO:0050853;
GO:0050864;
GO:0050871;
GO:0051251

Humoral immune
response mediated
by circulating
immunoglobulin;
Phagocytosis;
Phagocytosis, engulfment;
Complement activation,
classical pathway;
Antigen receptor-
mediated signaling
pathway; B cell receptor
signaling pathway;
Regulation of B cell
activation; Positive
regulation of B cell
activation; Positive
regulation of lymphocyte
activation

IGHG3,
IGHM,
IGHG1,
IGHV4-
31, IGHD,
IGHA1,
IGHA2

AC,
T2D, SL

GO:0006836 Neurotransmitter transport SNAP25 Ag, Sm
GO:0050890 Cognition CHRNA4,

HRH3
SL, Sm

GO:0050885;
GO:0060563

Neuromuscular process
controlling balance;
Neuroepithelial cell
differentiation

USH1C Ag

GO:0046928;
GO:0048168;
GO:0048935;
GO:0051588

Regulation of
neurotransmitter
secretion; Regulation
of neuronal synaptic
plasticity; Peripheral
nervous system neuron
development; Regulation
of neurotransmitter
transport

MCTP1 T2D

GO:0006968 Cellular defense response ITGB1 HFD
GO:0007274 Neuromuscular synaptic

transmission
CHRNA4 SL

GO:0007422 Peripheral nervous system
development

NFASC Sm

drug targets. From the PPI network analysis, it is observed that 10 hub
genes (CREBBP, PRKCB, ITGB1, GAD1, GNB5, PPP3CA, CABP1,
SMARCA4, SNAP25 and GRIA1) are involved in the AD.

In addition, disease-related genes play a vital role in the
human interactomes via the pathways. In this study, we identified
nine significant pathways that are associated with the nervous
system which include Long-term potentiation, Synaptic vesicle
cycle, Retrograde endocannabinoid signaling, Glutamatergic synapse,
Cholinergic synapse, Serotonergic synapse, GABAergic synapse,
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Fig. 6. The gene and gene ontology association network for all the gene ontologies obtained
for commonly dysregulated genes between the AD and other risk factors and diseases. Sky
blue-colored octagon-shaped nodes represent genes, and round-shaped pink-colored nodes
represent gene ontology (GO Term). A link is placed when a gene belongs to an ontology.

Dopaminergic synapse, and Long-term depression. Our study also
identified several gene ontology groups including peripheral nervous
system neuron development, neurotransmitter transport, neuromuscular
synaptic transmission, peripheral nervous system development, negative
regulation of neurological system process, regulation of neurotransmitter
secretion, regulation of neuronal synaptic plasticity, autonomic
nervous system development, sympathetic nervous system development,
neuromuscular process controlling balance, neuron apoptotic process,
regulation of neurotransmitter transport and neuroepithelial cell
differentiation. It can be noted that many of these are closely related to the
nervous system.
We have also analyzed the differentially expressed genes of each risk factor
and type II diabetes with OMIM and dbGaP databases using EnrichR
to validate our identified results using the valid gold benchmark gene-
disease associations Rana et al. (2018). Table 3 shows the genes of each
risk factor/disease that are resulted to be associated with the AD. These
results corroborate that, the differentially expressed genes of 8 risk factors
and type II diabetes are responsible for the AD. As a whole, our findings
potentially fill a major gap in understanding AD pathophysiology. They
will also open up opportunities to determine the mechanic links between
the AD and various risk factors and diseases.

5 Conclusions
In this study, transcriptomic data was considered to identify the genetic
association of various diseasome relationships with AD. Our findings
suggest that these network methods can illustrate disease progression
that yields a potential advancement towards having better insight into the
origin and development of the AD. Detecting the complex relationship
of various risk factors with the disease may disclose novel and useful
information for having a better understanding of overall mechanism as
well as planning new therapeutic strategies for AD. Using gene expression
analysis may be a basis for future accurate disease diagnosis and effective
treatment which can be enhanced by the approaches employed in this

Table 3. Gene-disease association analysis of differentially expressed genes of
8 risk factors and type II diabetes with AD using OMIM and dbGaP databases.

Risk factor/
disease

Genes Adjusted
p-value

Ageing PLAG1, HMGA2, DNAH11, CR1,
VSNL1, DCHS2, F13A1, DISC1,
SLC28A1

4.34E-02

Alcohol
Consumption

GNAQ, GNAS, ARNT, APBB2,
ADCY2, ADCY1, IGF1R,
MS4A6A, RTN1, ATXN1, PIEZO2,
ST3GAL1

4.72E-01

Type II
Diabetes

AKAP13, HNF4A, HMGA2, BUB1,
IGF1R, CR1, DIAPH3, TENM4,
CADPS, NEDD9, NPAS3

4.66E-01

HBF PTGIR, THRA, HMGA2, ADCY2,
PSEN1, DRD1, BUB1, DBT,
PIEZO2

1.18E-01

HFD AKAP13, CREBBP, HNF4A,
HMGA2, DNAH11, COL22A1,
PIEZO2, RORA, GFRA2, CD33

5.17E-01

Obesity RYR2, RBFOX1, VSNL1, NR2F1,
HMGA2

1.94E-01

Red Meat HFE, HMGA2, ADCY2, F13A1 4.41E-01
Sedentary
Lifestyle

TFAP2A, HSP90AA1, CREB1,
THRA, HFE, APOE, TSHR, RYR2,
DIAPH3, DCHS2, DBT, CLU

1.01E-01

Smoking A2M, OPRD1, SMAD1, ACE,
BUB1, CNTNAP2

8.45E-02

study. This enhancement may lead to new forms of personalized medicine
for increasingly precise insights into disease detection, treatment and
remediation for AD.
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