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Abstract— Identification of genes whose regulation of expres-
sion is similar in both brain and blood cells could enable moni-
toring of significant neurological traits and disorders by analysis
of blood samples. We thus employed transcriptional analysis
of pathologically affected tissues, using agnostic approaches
to identify overlapping gene functions and integrating this
transcriptomic information with expression quantitative trait
loci (eQTL) data. Here, we estimate the correlation of genetic
expression in the top-associated cis-eQTLs of brain tissue and
blood cells in Parkinson’s (PD).

We introduced quantitative frameworks to reveal the com-
plex relationship of various biasing genetic factors in PD,
a neurodegenerative disease. We examined gene expression
microarray and RNA-Seq datasets from human brain and blood
tissues from PD-affected and control individuals. Differentially
expressed genes (DEG) were identified for both brain and
blood cells to determine common DEG overlaps. Based on
neighborhood-based benchmarking and multilayer network
topology aproaches we then developed genetic associations of
factors with PD.

Overlapping DEG sets underwent gene enrichment using
pathway analysis and gene ontology methods, which identified
candidate common genes and pathways. We identified 12
significantly dysregulated genes shared by brain and blood
cells, which were validated using dbGaP (gene SNP-disease
linkage) database for gold-standard benchmarking of their
significance in disease processes. Ontological and pathway
analyses identified significant gene ontology and molecular
pathways that indicate PD progression.

In sum, we found possible novel links between pathological
processes in brain and blood cells by examining cell path-
way commonalities, corroborating these associations using well
validated datasets. This demonstrates that for brain-related
pathologies combining gene expression analysis and blood cell
cis-eQTL is a potentially powerful analytical approach. Thus,
our methodologies facilitate data-driven approaches that can
advance knowledge of disease mechanisms and may enable pre-
diction of neurological dysfunction using blood cell transcript
profiling.
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I. INTRODUCTION

The difficulty of early diagnosis and discrimination
of neurodegenerative diseases such as Parkinson’s (PD),
Alzheimer’s (AD), Huntington’s (HD) and motor neuron
diseases (MND) mean that identifying robust biomarkers for
these conditions in blood samples is a long held goal. While
gene expression studies of peripheral blood mononuclear
cells cannot directly study the diseased central nervous
tissues at issue, it is an approach with the potential to
characterize the influences of systemic factors that similarly
affect both brain and blood cells. These influences includes
genetic factors, notably protein coding-gene mutations and
single nucleotide polymorphisms (SNPs), as well as other
systemic diseases (i.e., comorbidities) that are suffered by
neurodegenerative disease patients. The latter can be an
important consideration since many comorbidities are known
risk factors for neurodegenerative diseases. However, since
most genes are regulated differently in different tissues, to
obtain useful biomarkers among blood cell transcripts we
need to identify genes that are similarly regulated in brain
and blood cells. Achieving this could enable blood cell
transcript profiles to become a window for viewing some
of the pathological changes affecting the brain.

Genome-wide association studies (GWAS) have discov-
ered thousands of genetic variants associated with complex
traits and pathological conditions, including neurodegenera-
tive diseases [1], [2]. With advances in microarray and RNA-
Seq technologies, genome-wide sequencing together with
tissue gene expression data from relatively large numbers
of samples have been generated as part of attempts to
identify genetic variants that affect transcript abundance
[3], [4], i.e., expression quantitative trait loci (eQTLs). The
Genotype-Tissue Expression (GTEx) project [5] has provided
a large and increasingly comprehensive resource of data that
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enable investigation of the genetic causes of gene expression
variation across a broad range of tissues and cell types,
particularly including blood cells and brain tissue. Molec-
ular associations, evident from differential gene expression
patterns, protein-protein interactions (PPIs), gene ontologies
and common metabolic pathways can mediate the effects risk
factors that influence or drive development of a disease [6],
[7]. A risk factor (e.g., a pathogen or a comorbidity) and a
disease may reveal a mechanistic link if both cause altered
expression in a common set of genes [8], [9]. In addition,
from a proteomics and signaling pathways perpective, such
links may also be found through the demonstrations of
common biological modules such as PPIs, gene ontologies
or molecular pathways [10], [11]. We thus used a network
based analyses to identify the influence of genetic factors and
disorders in PD progression by utilizing the gene expression
profiling, PPI sub-network, gene ontologies and molecular
pathways. An extensive study regarding phylogenetic and
pathway analysis was also conducted to reveal the genetic
associations of the PD.

In this study, we have investigated PD, a progressively
developing degenerative disorder that mainly damages the
motor system of the central nervous system [12] suffered
by over 10 million people worldwide [13]. PD damages
dopaminergic neurons in the substantia nigra pars compacta
and forms Lewy bodies, neuronal cell soma inclusions con-
taining α-synuclein [14]. Subtle early symptoms seen in
PD affected individuals comprise shaking, rigidity, slowness
of movement and complications in mobility. PD patients
suffer from difficulties in walking, talking or even completing
simple daily activities, while sensory, sleep and emotional
problems may also be evident, and can lead to development
of dementia [15]. Currently the main causes or risk factors of
PD remain poorly understood [16]. For example, it unclear
why the risk of PD development is affected by gender or by
physical exercise [17]. To gain mechanistic insight into PD
(and potentially other central nervous system disorders) we
investigated PD-associated transcripts (from RNA-Seq and
microarray data) that are common to brain and blood cells,
then used human-expressed quantitative trait loci (eQTL)
data to identify biomarkers that are expressed under similar
genetic control in both cell types. Further screens and filter-
ing methods that employ human genetics and transcriptomics
databases (including microarray and RNAseq data), as well
as curated gold standard benchmark databases for PD was
used to reveal potential brain biomarker genes and cell path-
ways which behave similarly in blood. Our overall approach
aims to find overlapping pathways of potential clinical utility,
but with the possibility that we can also identify important
new pathways relevance to many neurological diseases by
examining blood cell transcripts.

II. MATERIALS AND METHODS

A. Overview of analytical approach

We present here, sumarised in Fig. 1, a systematic and
quantitative approach to using blood cell information to

predict neurological disorder at the early stages using avail-
able sources of mRNA expression, RNA-Seq, Genome Wide
Association Studies (GWAS) and expression of quantitative
trait loci (eQTL) datasets. This approach employs gene
expression analyses, signalling pathway information, Gene
Ontology (GO) data, disease–gene associations and protein-
protein interaction data to identify putative components of
common pathways for the neurological dysfunction evident
in brain and blood cells.
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Fig. 1: Flowchart of the pipeline that is used for the early
detection of the neurological dysfunction using blood cell
transcripts.

B. Datasets employed in this study
To investigate the molecular pathways involved in PD,

we first employed global transcriptome analyses (RNAseq
datasets) as well as gene expression microarray datasets
related to the blood and brain cells. In this study, we collected
raw data from the Gene Expression Omnibus of the Na-
tional Center for Biotechnology Information (NCBI) (http :
//www.ncbi.nlm.nih.gov/geo/). We selected 2 different
large human gene expression datasets for our study with
accession numbers GSE68719 and GSE22491. GSE68719
is an RNAseq dataset from a study of PD using brain
cells from healthy and PD individuals. GSE22491 is an
Affymetrix RNA array dataset from a study of normal and
PD individuals whole blood cells. We have also used GWAS
catalogues is the NHGRI-EBI Catalog of published genome-
wide association studies (https : //www.ebi.ac.uk/gwas/)
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and eQTL data (both blood and brain) from the GTExPortal
which is a database for the Genetic Association data (https :
//gtexportal.org/home/)

To get further insight into the molecular pathways of PD
that overlap between brain and blood cells, we performed
pathway and gene ontology analysis using the DAVID bioin-
formatics resources (https : //david − d.ncifcrf.gov/)
and KEGG pathways database [18]. We also generated a
protein-protein interaction (PPI) network for each disease-
pair datasets, using data from the STRING database string−
db.org citeamberger2017searching. Furthermore, we also
incorporated a gold bench mark verified dataset dbGaP
(www.ncbi.nlm.nih.gov/gap) in our study for validating
the proof of principle of our network based approach.

C. Analysis methods

Using RNAseq and RNA microarray technologies for
global transcriptome analyses, we compared the gene expres-
sion profiles of PD with that in brain and blood cells datasets.
All these datasets were generated by comparing diseased
tissue with normal to identify differentially expressed genes
(DEG) associated with their respective pathology PD. The
analysis was performed from the original raw datasets and
employed DESeq2 [19] and Limma [20] R Bioconductor
packages for the RNAseq and microarray data respectively.
To avoid the problems of comparing mRNA expression data
of different platforms and experimental systems, we normal-
ized and calibrated the gene expression data in each sample
(disease state or control) using the Z-score transformation
(Zij) for each disease gene expression matrix using:

Zij =
gij −mean(gi)

SD(gi)
(1)

where SD is the standard deviation, gij represents the
expression value of gene i in sample j. This transformation
allows direct comparisons of gene expression values across
samples and diseases. We applied a Studentised t-test statistic
between two conditions. Data were log2-transformed and
Student’s unpaired t-test performed to identify genes that
were differentially expressed in patients over normal samples
and significant genes were selected. A threshold of at least
1 log2 fold change and a p-value for the t-tests of < 5 ×
10−2 were chosen. In addition, a two-way ANOVA with
Bonferroni’s post hoc test was used to establish statistical
significance between groups (< 0.01).

For gene-disease associations, we applied neighborhood-
based benchmarking and topological methods.

III. RESULTS

A. DEG analysis of datasets

DEG analysis of human RNAseq and microarray datasets,
comparing disease affected tissues, was performed using
DESeq2 and Limma (Bioconductor packages). We used
publicly available RNAseq and microarray data for brain and
blood cells in PD affected individuals and controls. Such
studies compare affected vs unaffected individuals to reveal
differentially expressed genes (DEG) for each disease. Genes

with false discovery rate (FDR) below 0.05 and a threshold of
log

(
21) (2-fold) increase or decrease in transcript levels was

required for a gene to be accepted as a DEG. The numbers
of unfiltered DEG identified were 487 in brain and 1083 in
blood datasets.

We also performed cross comparative analysis to find the
common significant genes between brain and blood cells.
DEG common in brain and blood cells of PD affected people
were identified and are summarised graphically in Figures 1
and 2. We observed that the number of common positive
significant genes between brain and blood cells is 7, and
their log fold changes and negative log p-values are shown
in figure 1. Similarly the number of negative dysregulated
significant genes between brain and blood cells is 7, and
their log fold changes and negative logarithmic p-values are
shown in figure 2.
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Fig. 2: Identification of upregulated DEG that is observed inn
both brain and blood. A) log fold changes of the common
upregulated significant genes in brain and blood and B)
Negative log of p-value of the upregulated significant genes
common to brain and blood.

B. Identifying genes expressed in blood cells that mirror
those expressed in brain

eQTL databases link gene SNPs to gene expression. Few
such databases have been produced, but there are databases
for blood and brain cells; we used these from the GTEx
database to find genes with similar genetic control of ex-
pression in the two tissues using meta-analysis approaches.
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Fig. 3: Identification downregulated DEG in both brain and
blood. A) log fold changes of the common downregulated
significant genes in brain and blood and B) Negative log
of p-values of downregulated significant genes common to
brain and blood.

We have identified 673 such blood-brain co-expressed genes
(BBCG) using the correlation and meta-analysis approach as
explained in the method section.

C. Identifying genes in blood that influence PD development

We selected genes whose expression or gene sequence
variants (e.g., SNPs) reveal functional association with PD.
This utilises curated gold-benchmark databases OMIM and
GWAS catalogues. Using SNP and gene expression datasets
from both brain and blood cells we identified BBCG among
PD-associated genes. Similarly, using SNP and common cis-
eQTL in brain and blood cells we also identified BBCG
among PD-associated genes. Thus we identified 12 signifi-
cant genes, C10orf32, CCDC82, COL5A2, COQ7, GPNMB,
HSD17B1, KANSL1, NCKIPSD, PM20D1, SP1, FRRS1L
and IL1R2 that are commonly dysregulated between blood
and brain for the PD. Disease processes will alter their
expression but systemic disease factors may similarly affect
brain and blood cells.We used these potential PD biomarkers
to identify pathways of regulation that are active in PD
patients.

D. Identifying pathways in blood cells that mirror in brain

We performed pathway and gene ontology analysis on
DEG sets using DAVID bioinformatics resources. For path-

ways we used KEGG data enrichment was determined for
the identified potential signature genes for PD progression
in blood cells. To combine large scale, state of the art
transcriptome and proteome analyses, we then performed
a regulatory analysis in order to gain further insight into
the molecular pathways associated with these common
genes as well as predicted links to the affected pathways.
DEG and pathways were analysed using KEGG pathway
database (http : //www.genome.j/kegg/pathway.html)
and functional annotation analysis tool DAVID (http :
//niaid.abcc.ncifcrf.gov) to identify overrepresented path-
way groups amongst DEG sets and to group them into func-
tional categories. Pathways deemed significantly enriched
in the common DEG sets (FDR < 0.05) were reduced by
manual curation to include only those with known relevance
to the diseases concerned. These data are summarised on
Table I. We observed a number of relevant and significant
pathways including TGF-β and MAPK signaling pathways.

TABLE I: KEGG pathway analyses to identify significant
pathways for the identified potential biomarker for PD that
revealed among genes expressed in common by brain and
blood cells. Pathway genes and pathway adjusted p-values
are indicated.

To get further insight into the identified pathways,
enriched common gene sets were processed by
gene ontology methods using EnrichR (http :
//amp.pharm.mssm.edu/Enrichr/) which identifies
related biological processes and groups them into functional
categories. The list of processes were also curated for those
with known involvement with the diseases of interest. The
cell processes and genes identified are summarised on Table
II. We observed a number of significant pathways that
notably included regulation of neuron death and negative
regulation of neuron death.

E. Protein-protein interaction (PPI) analysis to identify
functional sub-networks

Dysregulation in a protein subnetwork may yield dysfunc-
tional multiple protein sub-networks. Several diseases may
be caused or influenced by the malfunction of a particular
protein complex. Thus, two or more genes are potentially
related to each other through their common association
in a protein-protein interaction network. Having identified
genes involved in pathways and processes common to brain
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TABLE II: Gene ontology identification of biological pro-
cesses common to brain and blood cells in PD disease.
KEGG pathway-enriched gene sets were employed in gene
ontology (GO) studies to identify potentially common pro-
cesses. GO terms were curated to identify those relevant to
brain and blood cells. Pathways genes and pathway adjusted
p-values are indicated.

and blood, we sought evidence for existing sub-networks
based on known PPI. Using the enriched common disease
genesets, we constructed putative PPI networks using web-
based visualisation resource STRING [21]. Clustering of
genes was also performed by the Markov cluster algorithm
(MCL) and it was notable that many of the PPI network
contained genes within one cluster, indicated in red on Fig.
4. This data provides evidence that PPI sub-network exist in
our enriched genesets, and confirm the presence of relevant
functional pathways.

IV. DISCUSSION AND CONCLUSIONS

In this study, we investigated transcriptomic evidence for
intersecting pathways in brain and blood cells and tissues
affected by PD disease. Employing global transcriptome
analyses, we investigated in detail common gene expression
profiles of PD evident in the both blood and brain cells.
We investigated possible common pathways from their com-
mon patterns of gene expression, and compared these with
pathways evident in validated datasets including dbGaP (see

Fig. 4: Protein-protein interaction (PPI) network of the PD.
These include significant pathways common to blood and
brain cells as indicated. Genes were identified by STRING
software tools. Colour indicates MCL analysis clusters of
proteins.

Table III) and from protein-protein interaction (PPI) data.
This network-based approach identified significant common
pathways influencing the both brain and blood. Moreover, we
used a novel computation-based approach to identify among
the common gene expression pathways that are profoundly
affected by the disease processes themselves as well as by
predisposing genetic and environmental factors.

TABLE III: Genes significant in PD that are potential mark-
ers in blood cell for PD. These genes are also significant
for in dbGaP database using single nucleotide polymorphism
association with diseases.

In this study, we have identified potential biomarkers
for PD which can be detected as trancripts in blood cells.
We examined how such DEG correlate with expression
of PD-associated genes to find key genes with expression
dysregulated in both brain and blood cells. These are the
first rationally designed candidate factors for PD evaluation
using blood cell transcripts, but clinical investigations in PD
patients are needed to evaluate their utility; nevertheless, their
identification employed standard informatics based analytical
logic and large gene expression datasets. What is novel is our
approach to find disease markers that are can be employed
in a tissue (blood) that is easily accessible in the clinic and
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does not require specialised methods of evaluation beyond
gene expression analysis. The nature of these biomarkers and
the the pathways they participate in may reveal new aspects
of PD development and progression, particularly since these
biomarkers are evident in cells outside the central nervous
system, and so reflect responses to systemic factors. While
the biomarkers may have practical utility it seems unlikely
that they could form the basis for therapeutic developments
since they do not have target tissue specificity.

In conclusion, our approach in identifying potential blood
markers for PD has potential for diagnostic utility and could
be similarly used to develop blood cell transcript-based
tests for other neurodegenerative diseases that cannot yet be
evaluated without detailed brain scans or surgically invasive
interventions.
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