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Abstract 

When an action is familiar, we are able to anticipate how it will change the state of the world. 

These expectations can result from retrieval of action-outcome associations in the hippocampus 

and the reinstatement of anticipated outcomes in visual cortex. How does this role for the 

hippocampus in action-based prediction change over time? We used high-resolution fMRI and a 

dual-training behavioral paradigm to examine how the hippocampus interacts with visual cortex 

during predictive and nonpredictive actions learned either three days earlier or immediately before 

the scan. Just-learned associations led to comparable background connectivity between the 

hippocampus and V1/V2, regardless of whether actions predicted outcomes. However, three-day-

old associations led to stronger background connectivity and greater differentiation between neural 

patterns for predictive vs. nonpredictive actions. Hippocampal prediction may initially reflect 

indiscriminate binding of co-occurring of events, with action information pruning weaker 

associations and leading to more selective and accurate predictions over time. 
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Introduction 

As you open the door to a familiar room, you are able to anticipate that specific objects 

that will come into view. A neural source of such predictions may be pattern completion in the 

hippocampus1–3. Repeated experience and interaction allows associative learning mechanisms in 

the hippocampus to bind recurring patterns of objects and actions over space and time4,5. Once 

these links are formed, making an action in response to a familiar cue may prompt the 

hippocampus to retrieve a conjunctive representation of past events. These representations could 

contain information about the cue and action, but additionally the yet-to-occur sensory 

consequences of the action. These retrieved consequences could in turn get reinstated via 

feedback to sensory systems — a form of memory-based predictive coding of action outcomes. 

A recent study provided suggestive evidence for this mechanism, discovering a link 

between pattern completion in the hippocampus and predictive coding in visual cortex3. 

Participants were trained behaviorally on cue-action-outcome sequences: in response to a visual 

cue, they chose between two manual actions that were either predictive or nonpredictive of the 

visual outcome that next appeared. The day after training, participants were scanned with fMRI 

while performing the same task with the pre-learned associations. However, on a subset of trials 

in the scanner, the outcome stimulus was omitted and replaced by a blank screen. For predictive 

actions (i.e., actions that determine an outcome given a cue), multivariate pattern decoding 

revealed that the hippocampus represents the full cue-action-outcome sequence and that this is 

related within and across participants to evidence of the same outcome in early visual cortex 

(EVC), as measured with a separate classifier trained on outcome-only trials. No reliable 

decoding effects were obtained in either the hippocampus or EVC for nonpredictive actions (i.e., 

actions that did not determine which outcome appeared after a cue). 

This role for the hippocampus in action-based predictive coding can be interpreted in two 

ways. First, it could be explained in terms of the unique computational repertoire of the 
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hippocampus, with processes like multimodal binding and pattern completion serving an 

important function in prediction regardless of the more canonical role of the hippocampus as a 

memory system6,7. Second, the hippocampus may have been involved because the associations 

had been learned very recently, and this role would diminish over time with the neocortex 

playing a more autonomous role as a result of systems consolidation8–10 (cf. 11). The previous 

study was unable to disentangle these possibilities because all associations had been learned at a 

fixed time in the past. Therefore, in the current study we tested the role of the hippocampus in 

action-based prediction over two timescales. Moreover, whereas the previous study was 

suggestive of hippocampal-neocortical interactions during prediction, this was based on the 

correlation of static information present in both systems. Here we more directly measured these 

interactions using a “background connectivity” approach that quantifies the temporal dynamics 

and covariance of the hippocampus and EVC12,13. We hypothesized that background connectivity 

between the hippocampus and EVC would depend on both the lag between training and scanning 

and the predictiveness of actions, and that this would relate to the representational contents of 

these areas. 

 Participants learned cue-action-outcome sequences in a first training session three days 

before an fMRI scan and in a second training session immediately before the scan (Fig. 1A). 

Separate sets of cues and outcomes were used in each training session and actions were either 

predictive or nonpredictive of outcomes depending on the cue (Fig. 1B). For predictive actions, 

one outcome reliably followed the cue after a left button press and a different outcome reliably 

appeared after a right button press; explicit memory of predictable outcomes was at ceiling on 

verbal tests administered during each training session and before and after the fMRI scan (Fig. 

1C). For nonpredictive actions, the two outcomes followed the cue with equal probability when 

either the left or right button was pressed. After both training sessions, participants performed the 

same task in the fMRI scanner, with stimuli from the two training sessions presented separately 
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in alternating runs, and cues with predictive vs. nonpredictive actions presented separately in 

alternating blocks within each run type. Background connectivity was calculated for each of 

these blocks and then collapsed within condition, resulting in four key measures of hippocampal-

EVC interaction: 3-day vs. no delay learning of predictive vs. nonpredictive actions. 

 

Results 

Verbal tests of explicit memory 

To verify that predictive actions had been learned during training and remembered across 

the delay, participants were required to be 100% accurate in identifying expected outcomes of 

predictive actions in verbal outcome-identification tests outside of the fMRI scanner. Participants 

who did not reach this accuracy criterion on each test were excluded from the fMRI scan. Thus, 

by definition, all 24 scanned participants reached perfect accuracy. Two additional participants 

completed training but did not participate in the fMRI scan because of accuracy less than 100% 

even after repeating a pre-scan test. 

Choice RT for predictive and nonpredictive actions 

Throughout training and in the scanner, we measured choice response time (RT) as the 

time it took for participants to press the left or right button in response to a cue. During training 

sessions outside of the scanner, choice RT did not differ among the conditions (all ps > .26). The 

lack of a timescale difference between training sessions is not surprising, as these conditions 

were equivalent at this point in the study. However, in the scanner, we observed a reliable 

interaction between timescale and predictiveness (F(1, 22) = 5.49, p = .03; Fig. 1D). For no-

delay sequences, choice RT was comparable for predictive and nonpredictive actions (t(23) = 

0.18, p = .86), whereas for 3-day delay sequences, choice RT was faster for predictive vs. 

nonpredictive actions (t(23) = 3.96, p < .001). 
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Figure 1. Design and behavior. (A) The first training session was proctored three days before the 
fMRI scan, while the second training session was proctored immediately before the scan. To reduce 
interference, fractal stimuli in each session were masked to be either squares or diamonds in shape. 
The fMRI scan included 4 runs for each of the two training sets. (B) For predictive actions, given the 
cue, one outcome appeared with 95% probability when the left button was pressed and the other with 
95% probability when the right button was pressed. For nonpredictive actions, given the cue, either 
outcome appeared with 50% probability when the left or right button was pressed. (C) In verbal tests 
outside the scanner, participants spoke aloud either “top” or “bottom” to indicate which outcome was 
expected given the cue and action. (D) For each trial in the fMRI scanner, participants chose to press 
either a left-hand or right-hand button to replace a cue with an outcome. While choice RT was similar 
for predictive and nonpredictive actions immediately after training, it was faster for predictive vs. 
nonpredictive actions after a 3-day delay. Error bars indicate ±1 SEM of the difference between 
predictive and nonpredictive actions at each timescale. ***p < .001; *p < .05. 
 
 

Stimulus-evoked responses 

A general linear model (GLM) containing finite impulse response (FIR) basis functions 

was used to estimate evoked blood-oxygen level-dependent (BOLD) activity in the hippocampus 

Fig 1. Design and behavior
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and EVC (Fig. 2A). Stimulus-evoked activity for each condition was averaged within block to 

capture the peak response. Although activity in the hippocampus was marginally reduced for 

both predictive and nonpredictive actions after the 3-day delay (F(1, 22) = 4.09, p = .05), no 

other main effects or interactions were observed in either ROI (ps > .35). 

ROI background connectivity 

Task-specific background connectivity between the hippocampus and EVC was 

measured after removing stimulus-evoked activity and confounding variables through linear 

regression in a multistep procedure published previously12,14–17. We first used a GLM to regress 

out white matter and ventricle activity along with motion parameters from preprocessing, and 

then used FIR basis functions to capture and remove the average timing and shape of the 

hemodynamic response in each voxel in a data-driven way. Background connectivity was 

measured as correlations in the residual timeseries of each ROI. There were no differences across 

hemispheres in background connectivity between the hippocampus and EVC (ps > .61). 

Critically, we observed a reliable interaction between timescale and predictiveness (F(1, 23) = 

8.28, p = .008; Fig. 2B). This interaction was driven by a reliable difference between predictive 

and nonpredictive actions for sequences learned three days before the fMRI scan (t(23) = 2.90, p 

= .008), with no hint of an effect of predictiveness on sequences learned immediately before the 

scan (t(23) = 0.12, p = .90). When predictive and nonpredictive events were separately compared 

across delay conditions, enhanced background connectivity over time for predictive actions was 

not significant (t(23) = 1.67, p = .11), while diminished background connectivity over time for 

nonpredictive actions was significant (t(23) = 2.34, p = .03).  
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Figure 2. Stimulus-evoked responses and background connectivity. (A) Within each ROI, 
stimulus-evoked BOLD activity was similar during blocks of predictive and nonpredictive actions, 
both immediately after training and three days after training. Each block contained five trials (gray 
bars). (B) For both left and right the hippocampus, background connectivity with EVC was stronger 
for predictive vs. nonpredictive actions three days after training but not immediately after training. 
(C) Control correlations across runs with matching stimuli and timing did not differ between any of 
the conditions. Error bars indicate ±1 SEM of the difference between predictive and nonpredictive 
actions at each timescale. **p < .01; *p < .05. 

 

Control correlations across matched runs 

The goal of background connectivity is to remove stimulus-evoked responses to isolate 

idiosyncratic fluctuations that reveal how experimental conditions modulate functional 

connectivity. To verify that the residualizing approach above was effective, we performed an 

across-run control analysis12. Each training condition was tested in two runs that used the same 

Fig 2. Stimulus-evoked responses and background connectivity 
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block order and the same cue-stimulus-outcome sequences. If the key findings above were 

confounded by unmodeled stimulus-evoked responses, the residual activity in the hippocampus 

in one run should be correlated with the residual activity in EVC in the other run. However, there 

were no reliable interactions or main effects when computing connectivity across runs (ps > .17; 

Fig. 2C); moreover, connectivity was reliably lower for each condition when it was calculated 

across vs. within run (ps < .01). 

Voxelwise background connectivity 

To what extent are timescale and predictiveness differences in background connectivity 

between the hippocampus and EVC specific to these regions vs. widespread in the brain? To 

assess the anatomical specificity of the effects, we performed exploratory analyses using the 

residual timeseries from bilateral hippocampus and EVC ROIs (Fig. 3A) to calculate background 

connectivity with all voxels in the partial volume collected for each participant. After registering 

these correlation maps to MNI space, we conducted nonparametric randomization tests of their 

reliability across participants. Immediately after training, predictiveness did not reliably 

modulate background connectivity anywhere in the partial volume when the hippocampus or 

EVC served as the seed (Fig. 3B). Conversely, for sequences learned three days before the scan, 

several clusters showed reliably greater background connectivity with each seed during blocks of 

predictive vs. nonpredictive actions (Fig. 3C). Specifically, predictiveness enhanced the 

background connectivity of the hippocampus with left (-9, -87, -13) and right (19, -91, -10) 

occipitotemporal cortex and left (-20, 6, -3) and right (25, 18, -4) putamen, and enhanced the 

background connectivity of EVC with anterior (-30, -12, -27) and posterior (-21, -42, -7) left 

hippocampus (bilateral at uncorrected threshold), left parahippocampal gyrus (-17, -52, 2), and 

left posterior cingulate cortex (-9, -55, 14). At each timescale, no voxels showed stronger 

background connectivity with the hippocampus or EVC for nonpredictive actions. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2018. ; https://doi.org/10.1101/483115doi: bioRxiv preprint 

https://doi.org/10.1101/483115
http://creativecommons.org/licenses/by/4.0/


	

	 10 

 
 
Figure 3. Voxelwise background connectivity. (A) Hippocampal and EVC seed regions were 
defined on high-resolution anatomical scans. (B) Predictiveness did not reliably modulate 
hippocampal or EVC background connectivity anywhere in the field of view immediately after 
training. (C) However, we observed several clusters of enhanced background connectivity after the 
3-day delay, including bilateral V1 and V2 for the hippocampal seed, and anterior and posterior left 
hippocampus for the EVC seed. Contrasts are visualized on the MNI152 template and corrected at p 
< .05 (TFCE) for the partial volume of functional scans outlined by purple/green boxes. 

 

Time-lagged background connectivity 

Background connectivity between the hippocampus and visual cortex during predictive 

action is agnostic to the direction of the interaction. Such questions can only be addressed 

definitively with techniques that allow for causal interventions. Moreover, the slow sampling rate 

of fMRI and the temporal autocorrelation of BOLD activity severely limit the analysis of 

temporal dynamics. Nevertheless, it is possible to test whether there exists any evidence for a 

temporal asymmetry in the signals between these regions3 that would be consistent with 

processing in one region preceding the other. Specifically, we hypothesized that insofar as the 

hippocampus is relying on learned predictiveness to reinstate expected outcomes in visual cortex, 

Hippocampus Early visual cortex

3-day delay (Predictive > Nonpredictive)

A

Fig 3. Voxelwise background connectivity

Seed regions

y = -18

x = -8

Hippocampal seed

Hippocampal seed
C

No delay (Predictive > Nonpredictive)
EVC seed

EVC seed

y = -18

B

x = -8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2018. ; https://doi.org/10.1101/483115doi: bioRxiv preprint 

https://doi.org/10.1101/483115
http://creativecommons.org/licenses/by/4.0/


	

	 11 

the activity in the hippocampus at one time point should predict activity in visual cortex at the 

next time point, at least more than the reverse. Indeed, we were able to replicate the main 

timescale by predictiveness interaction reported above when EVC was lagged by one time point 

with respect to the hippocampus (F(1, 22) = 4.77, p = .04). This interaction reflected a reliable 

difference in background connectivity between predictive and nonpredictive actions for 

sequences learned three days before the fMRI scan (t(23) = 2.98, p = .007) and not for sequences 

learned immediately before the scan (t(23) = -0.33, p = .74). Critically, using nonpredictive 

blocks as the baseline controls for the possibility that BOLD activity merely peaks later in visual 

cortex than the hippocampus. In contrast, no such interaction was found when the hippocampus 

was lagged with respect to EVC (t(23) = 0.04, p = .84), with no differences between predictive 

and nonpredictive actions at either timescale (ps > .21). 

 

 
 

Figure 4. Time-lagged background connectivity. (A) Hippocampus leads EVC: For each block we 
computed the correlation between earlier background activity in the hippocampus (0–33 s) with later 
background activity in EVC (1.5–34.5 s); a similar pattern of results emerged as for non-shifted 
background connectivity. (B) EVC leads hippocampus: For each block we correlated earlier 
background activity in EVC (0–33 s) with later background activity in the hippocampus (1.5–34.5 
s); there were no reliable differences among conditions. Error bars indicate ±1 SEM of the difference 
between predictive and nonpredictive actions at each timescale. **p < .01; *p < .05. 
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Multivariate pattern similarity 

We have shown that background connectivity between the hippocampus and EVC 

strengthens over time for predictive relative to nonpredictive actions. How does this relate to the 

information represented in each ROI? Specifically, we hypothesized that greater connectivity for 

predictive actions after three days should be accompanied by greater information about expected 

outcomes. We tested this by measuring the neural similarity between sequences in which the 

same cue appeared but was followed by different outcomes (Fig. 5A). Insofar as these 

overlapping sequences are more differentiated after three days vs. immediately after training, it 

would imply that the actions led to a stronger and/or clearer prediction of the outcome. To 

calculate pattern similarity, we correlated spatial patterns of parameter estimates in the 

hippocampus and EVC obtained from an event-related GLM, as a function of which cue was 

presented, whether it was associated with predictive vs. nonpredictive actions, and at what 

timescale it was learned. 

Consistent with a prior study3, neural representations of the two sequences associated 

with each predictive cue were less similar to one another than those of each nonpredictive cue in 

both the hippocampus (F(1, 23) = 17.77, p < .001) and EVC (F(1, 23) = 32.16, p < .001), 

suggesting that predictive actions helped disambiguate action outcomes in these regions. 

Importantly, this differentiation effect was modulated by delay condition in both the 

hippocampus (F(1, 23) = 4.26, p = .05) and EVC (F(1, 23) = 5.36, p = .03). In the hippocampus, 

pattern similarity was reliably reduced for predictive vs. nonpredictive cues and actions trained 

three days before the scan (t(23) = 4.73, p < .001), but did not differ for actions trained 

immediately before the scan (t(23) = 1.61, p = .12). In EVC, despite a reliable interaction, the 

difference in pattern similarity for predictive and nonpredictive actions was reliable both after the 

3-day delay (t(23) = 5.60, p < .001) and immediately after training (t(23) = 3.42, p = .002). 

Unlike background connectivity, pattern similarity did not significantly differ between immediate 
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and 3-day delay conditions within just predictive or just nonpredictive actions in either ROI (ps 

> .10). 

 

 

Figure 5. Multivariate pattern similarity. (A) Within-cue pattern similarity was measured as the 
correlation across voxels for sequences that shared the same cue but contained different outcomes. 
Hippocampal and EVC within-cue similarity was lower for predictive than nonpredictive actions 
after a 3-day delay, compared to no delay. (B) Across-cue pattern similarity was measured between 
sequences with non-overlapping stimuli. Delay interval did not modulate across-cue similarity in 
either the hippocampus or EVC. Error bars indicate ±1 SEM of the difference between correlations 
for predictive and nonpredictive actions at each timescale. ***p < .001; **p<.01; *p<.05; ~p = .05. 

 

Do predictive events become more neurally distinct than nonpredictive events 

specifically when they share a cue (and thus initially overlap), or do they become more neurally 

distinct in general? To test whether differences in pattern similarity extend to non-overlapping 

events, we measured similarity between sequences with different cues (Fig. 5B). In the 

hippocampus, there was no difference in pattern similarity between predictive vs. nonpredictive 

Fig 5. Multivariate pattern similarity

W
ith

in
-c

ue
 s

im
ila

rit
y 

(z
)

3-day delayNo delay

Ac
ro

ss
-c

ue
 s

im
ila

rit
y 

(z
)

3-day delayNo delay

W
ith

in
-c

ue
 s

im
ila

rit
y 

(z
)

3-day delayNo delay

Ac
ro

ss
-c

ue
 s

im
ila

rit
y 

(z
)

Hippocampus

3-day delayNo delay

0

0.3

Hippocampus Early visual cortex

Press
left / right

D1

E1

Press
left / right

D1

F1

Press
left

B1

A1
Press
right

C2

A2

Press
left / right

D1

E1

Press
left / right

D2

F2

Press
left

B1

A1

Shared cue stimulus

Distinct cue stimuli

Nonpredictive

Predictive

Within-cue
similarity

Within-cue
similarity

Across-cue
similarity

Across-cue
similarity

B

A

Nonpredictive

Predictive

Press
right

A1

C1

Early visual cortex

n.s.

***

*
*****

~
***n.s.

1.3

1.8

1.3

1.8

0

0.3

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2018. ; https://doi.org/10.1101/483115doi: bioRxiv preprint 

https://doi.org/10.1101/483115
http://creativecommons.org/licenses/by/4.0/


	

	 14 

actions when both the cues and the outcomes were distinct (F(1, 23) = 0.00, p = .97). 

Conversely, this difference was reliable in EVC (F(1, 23) = 17.24, p < .001), with reduced 

similarity between sequences with predictive vs. nonpredictive actions. However, unlike the 

differentiation effect between overlapping sequences, across-cue similarity did not interact with 

delay condition in either the hippocampus (F(1, 23) = 1.74, p = .20) or EVC (F(1, 23) = 0.96, p 

= .34). Across-cue pattern similarity also did not reliably differ between immediate and 3-day 

delay conditions within just predictive or just nonpredictive actions in either ROI (ps > .16). 

 

Discussion 

Using high-resolution fMRI and a multi-session training paradigm, we examined how 

functional interactions between the hippocampus and early visual cortex change over the early 

periods of a memory. Results build upon recent evidence of a link between hippocampal pattern 

completion and predictive coding in visual cortex3, but suggest that the role of the hippocampus 

in visual prediction depends on the age of the knowledge on which the prediction was based. 

Specifically, interactions between the hippocampus and visual cortex became weaker for 

nonpredictive actions (and relatively stronger for predictive actions) three days after learning 

compared to immediately after learning. Over the same timescale, predictive actions led neural 

representations in these regions to become more differentiated for sequences with overlapping 

stimuli. Hippocampal prediction may be based at first on indiscriminate binding of co-occurring 

stimuli, with time and offline processing leading to gradual pruning of weaker associations, in 

this case associations without informative actions. 

Immediately after training, hippocampal-neocortical interactions were the same for 

predictive and nonpredictive actions. At first glance, the absence of a difference in background 

connectivity between these conditions may appear to be odds with previous MVPA findings in 

which classifier accuracy was at chance in both the hippocampus and EVC for nonpredictive 
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actions while above chance for predictive actions3. Critically, however, background connectivity 

and multivariate pattern decoding are differentially sensitive to prediction in this task. 

Specifically, although participants cannot accurately predict outcomes of nonpredictive actions, 

they may nonetheless inaccurately predict outcomes. For example, the less predictable 

transitions for these cues may encourage hypothesis testing or other attempts to continue 

learning, or they may be predicting both outcomes associated with the cue (which each still co-

occur 50% of the time, far higher than any other outcome). Less differentiated patterns in visual 

cortex may in fact reflect less differentiated neural predictions, as opposed to a lack of 

prediction. Likewise, in any of these cases, a multivariate classifier will seek evidence of the 

correct outcome, and so performance will be at chance on average. However, to the extent that 

background connectivity between the hippocampus and visual cortex reflects the process of 

prediction, whether accurate or inaccurate, it may be enhanced for both predictive and 

nonpredictive actions.  

Voxelwise background connectivity, corrected for multiple comparisons across the 

acquired field of view, converged with the ROI findings. Immediately after training, predictive 

actions did not reliably modulate voxelwise background connectivity with seeds for either the 

hippocampus or EVC. However, after a 3-day delay, predictive actions significantly modulated 

hippocampal background connectivity with voxel clusters in V1 and V2, as well as EVC 

background connectivity with voxel clusters in the hippocampus. While voxelwise background 

connectivity largely overlapped with the a priori ROIs, a few other interesting findings emerged 

including enhanced hippocampal background connectivity for predictive actions with the left and 

right putamen and with object-selective visual areas in posterior fusiform and lateral occipital 

cortex. The putamen is especially intriguing because it has frequently been linked with action 

selection18 and with offline motor-sequence learning19. Moreover, this finding converges with 

previous MVPA findings for action decoding in the right putamen3. 
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Along with background connectivity, multivariate pattern similarity within the 

hippocampus and visual cortex depended on the combination of predictiveness and delay 

interval. In the hippocampus, consistent with hippocampal models of episodic memory that 

emphasize the importance of representational overlap for neural differentiation20,21, reduced 

pattern similarity for predictive relative to nonpredictive actions was observed only between 

sequences that shared the same cue stimulus. In early visual cortex, predictive actions led to 

more distinctive neural patterns at each time scale for both overlapping sequences (that shared a 

cue stimulus) and non-overlapping sequences (in which both the cue and outcome differed). 

However, for non-overlapping sequences, reduced EVC pattern similarity for predictive vs. 

nonpredictive actions was the same after a 3-day delay as immediately after training. In contrast, 

delay condition significantly modulated the effect of predictiveness on EVC pattern similarity 

between overlapping sequences. Thus, the passage time modulated neural differentiation effects 

in EVC in the same way as predictably observed in the hippocampus, further linking these 

regions together.  

Explicit memory, measured through verbal outcome-identification tests, did not differ 

between predictive and nonpredictive actions either during the training sessions or immediately 

before or after the fMRI scan. Yet, three days after training, participants were significantly faster 

in making predictive actions than nonpredictive actions in the scanner. Dissociations in 

background connectivity and multivariate pattern similarity may thus reflect changes across time 

in the perceptual fluency of cue-action-outcome sequences, as opposed to changes in the explicit 

memory of stimulus outcomes. Critically, however, perceptual fluency in the action-based 

prediction of upcoming stimuli may be distinct from perceptual fluency in the recognition of 

static visual stimuli22,23. While skill acquisition in purely perceptual tasks such as texture 

discrimination24 and visual contour integration25 may be independent of the hippocampus, 

hippocampal function is necessary for learning arbitrary associations among stimuli26. Notably, 
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however, the statistical learning required for action-based prediction may involve different 

pathways within the hippocampus than other forms of hippocampally dependent learning5,26. 

Interactions between timescale and predictiveness update consolidation-based models of 

memory and offline learning that posit a reduced role for the hippocampus over time8,27, 

suggesting that reduced hippocampal involvement may apply first to nonpredictive associations. 

That is, predictive action may provide a mechanism for prioritizing which representations are 

either strengthened through synaptic potentiation or weakened through synaptic depression 

during periods of offline rest28,29. Activity-dependent synaptic potentiation and depression may 

in turn be mediated by offline replay within the hippocampus30,31 and between the hippocampus 

and neocortex32,33. By transforming noisy recent associations into sparser remote associations, 

this offline processing may increase the efficiency and utility of hippocampal associations over 

time34,35. Ultimately, sparser hippocampal representations may increase the signal-to-noise of the 

hippocampal-neocortical interactions during action-based prediction.  

By revealing consolidation-related effects on visual prediction, our findings further 

develop the link between hippocampal representation2,36 and models of predictive coding in 

visual cortex37,38. While feedback across layers of visual cortex may be sufficient to fill-in 

adjacent elements of a sequence or scene, top-down connections such as from the hippocampus 

may be needed to simultaneously predict multiple elements in a sequence39,40 and to make 

predictions based on prior co-occurrence and arbitrary associations3,7. Indeed, time-lagged 

background connectivity here converges with previous MVPA findings in which sequence 

information in the hippocampus temporally preceded outcome information in EVC during 

mnemonic prediction3. When calculating temporal asymmetries in the interaction of 

hippocampus and EVC, we accounted for potentially confounding differences in the shape and 

timing of the hemodynamic response by removing evoked activity with data-driven FIR models 

and by conducting control analyses with nonpredictive blocks and across-run correlations. The 
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timescale by predictiveness interaction observed for background connectivity was preserved 

when hippocampal background activity was shifted earlier to lead EVC, while it was eliminated 

when hippocampal background activity was shifted later to trail EVC. Although the causal 

direction of the relationship between the hippocampus and EVC cannot be established with 

correlational measures such as fMRI, converging data across this experiment and a previous 

study3 are at least consistent the hippocampus reinstating expected outcomes in visual cortex.  

In sum, interactions between the hippocampus and early visual cortex, and 

representations in these areas, strengthen over time for predictive actions relative to 

nonpredictive actions. Hippocampal prediction may occur by default, based at first on 

indiscriminate binding of co-occurring of stimuli. Time and offline processing may gradually 

prune weaker associations, in this case ones without informative actions, so that hippocampal 

reinstatement becomes increasingly specific to predictive events. 

 

Methods 

Participants 

 Twenty-four individuals (19 female, aged 18–33 years) from the Princeton University 

community participated in the study. Each participant was right-handed and had normal or 

corrected-to-normal vision. Two additional participants completed the training sessions but did 

not participate in the fMRI component of the experiment due to below-criterion accuracy on 

verbal outcome-identification tests prior to the scan. Participants were paid $20 per hour and 

provided informed consent to a protocol approved by the Princeton University Institutional 

Review Board. 

Stimuli 

The primary stimulus set included 24 fractal-like images that were masked to be either 

square or diamond in shape. An additional 144 unique fractal and phase-scrambled images were 
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included in a localizer to identify V1/V2 voxels reliably responsive to the experimental stimuli. 

All fractal images were created using ArtMatic Pro (www.artmatic.com). Both square- and 

diamond-masked stimuli subtended ∼4° of visual angle in diameter on the training/testing laptop 

computer, and 4.5° in the scanner. We counterbalanced the assignment of images to 3-day delay 

and no delay conditions and to sequences containing either predictive or nonpredictive actions, 

and randomly assigned images to serve as cues or outcomes. The Psychophysics Toolbox41 for 

MATLAB (MathWorks) was used for stimulus presentation and response collection. 

First training session (3-day delay) 

The first training session was proctored three days before the fMRI scan on a laptop 

computer in a behavioral testing room. As in previous studies involving the same action-based 

training paradigm, the training session began with an exploratory training phase, followed by a 

verbal outcome-identification test, and finally a directed training phase3,42. The exploratory 

training phase included 320 trials in which a cue stimulus appeared on the computer screen for 

1,000 ms and then a double-headed arrow appeared below the cue. Participants were allowed an 

unlimited amount of time for each trial to make either a left button-press or a right button-press, 

in order to replace the cue with an outcome stimulus that appeared for 1,000 ms. A meter at the 

bottom of the screen tracked the proportion of left and right button presses throughout the 

exploratory training phase, and participants were instructed to keep the meter pointer within a 

specified central zone, in order to roughly equate the frequency of actions and outcomes.  

The directed training phase included 160 trials in which the onset of the cue was followed 

by a single-headed arrow that instructed participants to make a left or right button-press for that 

trial. Directed training was included in order to equate the stimulus frequencies and transitional 

probabilities of the two outcomes associated with each cue throughout training. For example, if 

participants responded left more than right during the exploratory training, they were more likely 

to be instructed to respond right in the directed training. 
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Second training session (no delay) 

The second training session was also proctored on a laptop computer in a behavioral 

testing room, but immediately before the fMRI scan and with new cue and outcome stimuli. To 

minimize interference between stimulus sets from different sessions, we masked one set with 

squares and the other with diamonds, with the order counterbalanced across participants. The 

structure of the second training session was identical to the first, with an exploratory training 

phase, then a verbal outcome-identification test, and finally a directed training phase. 

Predictive actions 

For half of the sequences within each training session, actions were highly predictive of 

the outcome. For instance, given the predictive cue A, outcome B appeared with 95% probability 

when the left button was pressed, and outcome C appeared with just 5% probability. Similarly, 

when the right button was pressed, outcome C appeared with 95% probability and outcome B 

appeared with just 5% probability. Within each training session, participants were exposed to 

two different cue stimuli for which actions were highly predictive of outcomes.  

Nonpredictive actions 

Randomly intermixed with the predictive action trials, the remaining half of the 

sequences within each training session contained nonpredictive actions: the two outcomes for 

each cue appeared with equal probability, irrespective of which button was pressed. That is, 

given the nonpredictive cue D, outcome E or outcome F appeared with 50% probability when 

either the left or right button was pressed. Within each training session, participants were 

exposed to two different cue stimuli for which actions were nonpredictive of outcomes.  

Scan task 

The task in the fMRI scanner resembled the training sessions. Participants were 

instructed to continue to keep track of probabilistic relationships between button presses and 

fractal pairs while in the scanner and they knew to expect a final set of behavioral tests after the 
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scan. A total of 320 sequence trials were organized into eight 6-minute runs. Each run contained 

sequences from either the first training session or the second training session, alternating 

between runs. Within each run, four blocks of predictive actions alternated with four blocks of 

nonpredictive actions. Pairs of runs for each participant contained the same stimuli and block 

order, with the trial order randomized. Each block included five trials and lasted 22.5 s, followed 

by 18 s of fixation. To match the outcome probabilities during the scan with the trained 

probabilities, participants were instructed to balance their left and right responses, and one block 

of predictive actions in each run contained a trial with an incorrectly predicted outcome 

(modeled separately and excluded from analysis). 

As during exploratory training, each trial in the scanner involved three parts: a cue 

stimulus for 1000 ms, an action prompt consisting of a double-headed arrow below the cue that 

remained on screen until a button press or until the 1500 ms response window elapsed, and an 

outcome stimulus for 1000 ms. Participants used a separate response box for each hand to press 

the left and right buttons. If participants did not press a button within the response window, the 

cue stimulus and action prompt were replaced with a fixation cross that remained on screen until 

the next trial. 

Verbal tests 

Each participant performed six verbal tests over the course of the study: one test during 

each of the two training sessions (between the exploratory and directed training phases), one pre-

scan test for each stimulus set directly before the fMRI scan, and one post-scan test for each 

stimulus set directly after the scan. On each test trial, a cue stimulus appeared at fixation. Below 

the cue, a single-headed arrow pointed either left or right, and participants were instructed to 

press the corresponding button. The cue and arrow disappeared, replaced by the two possible 

outcomes for that cue, presented above and below where the cue had been. For predictive 

actions, one outcome correctly completed the cue-action-outcome sequence, while the other 
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outcome completed the cue-action-outcome sequence for the other action. Each verbal test 

included 16 trials (two trials for each cue-action-outcome sequence) with predictive and 

nonpredictive actions intermixed in a random order. Participants spoke aloud either “top” or 

“bottom” to indicate which outcome was expected. Verbal responses were used to avoid the 

button presses used for the trained actions. If a participant was less than 100% accurate for 

predictive actions in a verbal test, they were allowed to repeat the test one time without receiving 

feedback about which trials were answered incorrectly. Among the 24 scanned participants, 

seven participants repeated the pre-scan test for associations from the first training session, and 

one participant repeated the post-scan test for associations from the second training session. Two 

additional participants completed the training sessions but did not participate in the fMRI scan 

because their accuracy was less than 100% upon repeating a pre-scan test. 

Choice RT 

Throughout training and in the scanner, we measured choice RT as the time it took for 

participants to press the left or right button in response to a cue. Although there was an unlimited 

amount of time for participants to respond during the exploratory and directed training phases, 

the response window was limited to 1500 ms after the action prompt in the scanner. To make the 

interpretation of choice RT comparable across the different parts of the experiment, we excluded 

trials from training in which choice RT exceeded a cutoff of 1500 ms. 

MRI acquisition 

Structural and functional MRI data were collected on a 3T Siemens Skyra scanner with a 

20-channel head coil. Structural data included a T1-weighted magnetization prepared rapid 

acquisition gradient-echo (MPRAGE) sequence (1 mm isotropic) for registration and 

segmentation of EVC, and two T2-weighted turbo spin-echo (TSE) sequences (0.44 × 0.44 × 1.5 

mm) for hippocampal segmentation. Functional data consisted of T2*-weighted multi-band 

echo-planar imaging sequences with 42 oblique slices (16° transverse to coronal) acquired in an 
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interleaved order (1,500 ms repetition time (TR), 40 ms echo time, 1.5 mm isotropic voxels, 128 

× 128 matrix, 192 mm field of view, 71° flip angle, acceleration factor 3, shift 2). These slices 

produced only a partial volume for each participant, parallel to the hippocampus and covering 

the temporal and occipital lobes. Collecting a partial volume instead of the full brain allowed us 

to maximize spatial and temporal resolution over our a priori ROIs. Data acquisition in each 

functional run began with 6 s of rest to approach steady-state magnetization. A B0 field map was 

collected at the end of the experiment.  

fMRI preprocessing 

Preprocessing was conducted using the Oxford Centre for Functional MRI of the Brain 

(FMRIB) Software Library 5.0 (FSL)43. Functional runs were corrected for slice-acquisition time 

and head motion, high-pass temporally filtered using a 128 s period cutoff, spatially smoothed 

using a 3 mm FWHM Gaussian kernel, and registered to each participant’s high-resolution 

MPRAGE image using FLIRT boundary-based registration with B0-fieldmap correction44. 

Hippocampal segmentation 

We anatomically defined hippocampal subfields on high-resolution T2-weighted images 

for each participant, using the automatic segmentation of hippocampal subfields (ASHS) 

machine learning toolbox45 and a database of manual medial temporal lobe segmentations from a 

separate set of 51 participants46,47. These manual segmentations were in turn based on anatomical 

landmarks from prior studies48,49. The hippocampal ROI was formed by combining CA2/3, 

dentate gyrus, and CA1. This was planned a priori because these subfields were linked to pattern 

completion during action-based prediction in our previous study3. 

Early visual cortex 

The EVC ROI for each participant was anatomically constrained to V1 and V2, and 

functionally constrained to voxels reliably responsive to the experimental stimuli, as determined 

by an independent functional localizer. V1 and V2 were defined in each participant’s T1-
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weighted anatomical scan using anatomical masks50,51 generated with FreeSurfer52. During the 

functional localizer scan, participants detected one-back repetitions of fractals and scrambled 

images that had been masked to the same shapes (square, diamond) and sizes as the experimental 

stimuli. Fractal and scrambled stimuli were arranged into 16 blocks, each 15 s in duration with 9 

s fixation between blocks. Within each block, 10 stimuli were each presented for 1,000 ms 

followed by 500 ms fixation between trials. In total, the localizer run was ∼7 min in duration, 

and included 72 unique fractal images, along with 72 phase-scrambled versions of those images. 

Within the anatomical boundaries of V1 and V2, we selected voxels that were reliably responsive 

(p < .05) to both the square- and diamond-masked stimuli in the localizer. 

Stimulus-evoked activity 

A separate GLM containing FIR basis functions was applied to each run of the 

preprocessed data using FMRIB’s Improved Linear Model (FILM)43 with local autocorrelation 

correction. Each block and subsequent fixation period were modeled by 27 delta functions, one 

for each TR. Parameter estimates were averaged over TRs 5-19 of each block to capture the peak 

stimulus-evoked response. This included the stimulus duration shifted forward by 6 s in order to 

account for the hemodynamic lag. These stimulus-evoked responses were then averaged across 

voxels in each ROI and converted to percent signal change before combining across runs for 

each condition.  

ROI background connectivity 

Task-specific background connectivity between the hippocampus and EVC was 

measured through a previously described approach12,14. White matter and ventricle activity, 

along with six motion parameters, were regressed out of the preprocessed BOLD signal 

timecourses in a GLM for each run that was fit using FILM. Then, we estimated stimulus-evoked 

BOLD responses with the same FIR procedure above. Critically, the FIR basis functions 

captured the average timing and shape of the hemodynamic response in each voxel in a data-
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driven way. Within each run, we z-scored the residual (“background”) timeseries, extracted a 

34.5 s time window of data for each block (from the start to 12 s after the last trial), and 

concatenated the data across blocks for each condition. Background connectivity was then 

measured as temporal Pearson correlations between concatenated background timeseries from 

each region and averaged across runs for each participant.  

Across-run control correlations 

Control analyses correlated background signal across pairs of runs containing the same 

stimuli and block order. Insofar as we successfully removed stimulus-evoked responses, across-

run correlations should be eliminated, even when the same timeseries produce reliable 

correlations and correlation differences within run. The across-run correlations also quantify the 

contribution (if any) of stimulus-evoked responses to the residual background connectivity, 

which can be used as a baseline for within-run measures. 

Voxelwise background connectivity 

We performed exploratory analyses using the residual timeseries from bilateral 

hippocampal and EVC ROIs to calculate background connectivity with all voxels in the partial 

volume. The reliability of these maps was assessed across participants by registering the 

correlation maps for each seed ROI and condition to the MNI152 template space, which had 

been resampled with interpolation to match the resolution of the functional data (1.5 mm 

isotropic). Nonparametric randomization tests were performed for each voxel’s connectivity 

using FSL Randomise53, and corrected for multiple comparisons with threshold-free cluster 

enhancement (TFCE), resulting in a family-wise error rate of p < .05. 

Time-lagged background connectivity 

To examine the temporal dynamics of hippocampal-EVC background connectivity, we 

measured the temporal cross-correlation of background activity. Specifically, we shifted the time 

windows for each block either forward or backward to assess temporal precedence. To test for 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2018. ; https://doi.org/10.1101/483115doi: bioRxiv preprint 

https://doi.org/10.1101/483115
http://creativecommons.org/licenses/by/4.0/


	

	 26 

evidence that the hippocampus leads EVC, we computed the within-block Pearson correlations 

between background signal in the hippocampus from 0–33 s and EVC from 1.5–34.5 s. 

Likewise, to test for evidence that EVC leads the hippocampus, we computed the within-block 

correlations between the hippocampal background activity from 1.5–34.5 s and EVC background 

activity from 0–33 s. To avoid concerns about the relative timing of the BOLD response between 

region, we are not interested in the overall magnitude of cross-correlations, but rather in 

modulation of these cross-correlations by experimental condition. 

Multivariate pattern similarity 

Pattern similarity in the hippocampus and EVC was measured as Pearson correlations 

across voxels within each ROI. Multivoxel patterns for each cue-outcome transition were based 

on parameter estimates of BOLD response amplitude in an event-related GLM for each run. 

Each GLM was fit using FILM with local autocorrelation correction and six motion parameters 

as nuisance covariates. A regressor for each cue-outcome transition was constructed by 

convolving trial onsets and durations with a double-gamma hemodynamic response function, and 

a separate regressor was included in each GLM to account for predictive actions with counter-

predicted outcomes and trials for which the participant failed to press a button before the 

response deadline. Parameter estimates for each cue-outcome transition were averaged across 

runs before calculating pattern similarity. Within-cue pattern similarity for each condition was 

measured as the correlation between cue-outcome transitions that shared the same cue stimulus 

but contained different outcome stimuli. Across-cue pattern similarity for each condition was 

measured as the correlation between cue-outcome transitions containing completely distinct 

stimuli (different cue and different outcome). 

Statistics 

All correlation coefficients calculated for background connectivity and pattern similarity 

were Fisher z-transformed prior to statistical analysis. In ROI analyses, pattern similarity and 
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background connectivity were calculated separately for each hippocampal hemisphere and then 

averaged across hemispheres to reduce multiple comparisons. Repeated-measures ANOVAs and 

paired-sample t-tests were used to compare background connectivity and pattern similarity for 

predictive and nonpredictive actions. Tests were evaluated against a two-tailed p<0.05 level of 

significance. 

Data availability 

All data and code will be made available freely upon request.  
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