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Summary 7 

A diverse immune repertoire is considered a hallmark of good health. However, other things 8 

being equal, current methods for measuring repertoire diversity do not distinguish between a 9 

repertoire that is composed of similar sequences, clonotypes, or clones and a repertoire that is 10 

composed of different ones, even though the latter is intuitively more diverse. Here we describe 11 

a framework for incorporating similarity into diversity measures, and illustrate using … define 12 

diversity with binding similarity as functional diversity, and measure functional diversity on 391 13 

large-scale antibody and T-cell receptor (TCR) repertoires. We find that while repertoires often 14 

contain millions of unique sequences, functional diversity reveals a landscape defined by at 15 

most a few thousand unrelated CDR3 binding targets. Naïve/IgM repertoires have more unique 16 

sequences than memory/IgG, but memory/IgG repertoires are more functionally diverse. 17 

Functional diversity is sensitive to vaccination, infection, and aging, and unlike raw diversity is 18 

robust to sampling error. Finally, according to functional diversity, repertoires from different 19 

people overlap significantly, suggesting a definable ceiling for the functional diversity of 20 

humanity. Similarity redefines diversity in complex systems.  21 
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Introduction 22 

Immune repertoires are famously diverse. Collectively, a person’s ~1012 B and T cells express 23 

many millions of unique recombined antibody and TCR genes as part of millions of clonal 24 

lineages, more unique sequence than in the entire germline genome (Jiang et al., 2013). At the 25 

sequence level, the repertoires of any two people overlap by only a fraction of a percent, 26 

indicating still higher diversity in the population (Arnaout et al., 2011; Robins et al., 2010). Yet 27 

repertoires are formed from V, D, and J gene segments that almost all people share and that 28 

are expressed at similar frequencies across individuals targets (de Bourcy et al., 2017; DeWitt 29 

et al., 2016), and repertoires are shaped by similar antigenic exposures and a consequent need 30 

to recognize and bind similar. Squaring the diversity that is seen with the similarity that must 31 

exist is a major goal in immunology. 32 

This goal has relevance for disease stratification and clinical management across a range of 33 

conditions. B- and T-cell diversity fall with age, as specific exposures expand a few select 34 

lineages at the expense of others (Messaoudi et al., 2004). Chronic infection appears to have a 35 

similar effect, impairing vaccination (Jiang et al., 2013). Low B-cell diversity is associated with 36 

physiological frailty, a syndrome seen alongside conditions that are traditionally considered to 37 

be unrelated to adaptive immunity (e.g., atherosclerotic cardiovascular disease), independent of 38 

chronological age (Gibson et al., 2009). In cancer, a rise in sequence-level T-cell diversity is 39 

thought to predict a successful response to immune-checkpoint inhibitors, drugs that make 40 

tumors more visible to the immune system (Hopkins et al., 2018). 41 

Traditionally, diversity has been measured as a simple count of the number of different 42 

sequences, lineages, or clones in a sample, a measure known formally as species richness. 43 

However, species richness ignores a key feature of repertoire diversity, species frequency: the 44 

fact that some sequences are common and others rare. In an intuitive sense, a repertoire with a 45 

single dominant (e.g., leukemic) clone is less diverse than a repertoire that has the same 46 

number of clones but no dominant clone. To incorporate frequency into measurements of 47 

diversity, there exist a family of measures that includes Shannon entropy, the Simpson index 48 

(and related Gini coefficient), and the Berger-Parker index (Hill, 1973). These differ from each 49 

other in how much weight they place on frequency: i.e., how much more a large clone adds to 50 

the total diversity than a small one. Mathematically, weight can be represented as a parameter, 51 

q, in the so-called Hill framework, a master equation for diversity in which species richness, 52 

Shannon entropy, the Simpson index, and the Berger-Parker index, among others, have been 53 
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shown to correspond to different values of q (q=0, 1, 2, and ∞, respectively). It is understood 54 

that no single diversity measure is best: the different measures provide complementary 55 

information about a given complex system (Morris et al., 2014). Robust methods exist for 56 

correcting sampling error for species richness and the frequency-weighted measures, and these 57 

methods are becoming standard for measuring immunological diversity (Greiff et al., 2015; 58 

Kaplinsky and Arnaout, 2016). 59 

However, there is a second key feature of repertoire diversity that the frequency-weighted 60 

measures fail to capture: species similarity. A repertoire made up of all-different sequences is 61 

intuitively more diverse than a repertoire that has the same number of sequences, present at 62 

the same frequencies as in the first repertoire, but all drawn from the same lineage or clone. In 63 

the literature, this fact is sometimes addressed indirectly by grouping sequences together before 64 

measuring diversity, for example by clustering reads, collapsing clones, or binning by V(D)J 65 

segment usage (DeWitt et al., 2016; Jiang et al., 2013; Ju et al., 2018; Kaplinsky et al., 2014; 66 

Vollmers et al., 2013). However, grouping usually imposes a binary threshold—in or out—on 67 

what is by nature a continuous and overlapping relationship among sequences and their 68 

encoded proteins. Grouping also usually zeros out or ignores any diversity that might exist 69 

within groups. It is unclear what is lost by ignoring similarity, or what might be gained from a 70 

more complete synthesis of diversity with similarity. This is true not only for the immunome, but 71 

for other complex systems such as microbiomes, images, and tissues. Here we sought to 72 

develop and explore a continuous framework for measuring diversity-with-similarity on B- and T-73 

cell repertoires. 74 

Results 75 

Framework. We measured diversity-with-similarity on high-throughput B- and T-cell repertoires 76 

using a robust mathematical framework initially proposed for studying diversity in ecology and 77 

environmental settings (Leinster and Cobbold, 2012). This framework provides “with-similarity” 78 

counterparts for species richness and the frequency-weighted diversity measures: species 79 

richness with similarity (0Ds, which places a very small weight on frequency, and ∅Ds, which like 80 
0D ignores frequency altogether), the exponential form of entropy with similarity (1Ds, henceforth 81 

simply "entropy with similarity," and likewise for other named indices), and so on. In qDs 82 

notation, q is the frequency-weighting parameter, Ds denotes diversity-with-similarity, and D 83 

without the subscript means diversity without similarity, which we refer to as “raw diversity.” 84 
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Mathematically, the key innovation of diversity-with-similarity relative to raw diversity is inclusion 85 

of a similarity matrix whose entries quantify how similar each pair of species (sequences, 86 

clonotypes, etc.) is. Constructing the similarity matrix necessitates a choice of similarity 87 

measure. (Note the difference between similarity measures and diversity measures: a similarity 88 

measure is used to build the similarity matrix, which then is used to calculate diversity 89 

measures.) The choice of similarity measure depends on the biological feature(s) of interest. For 90 

example to study somatic hypermutation, one might use the Hamming distance. Just as 91 

different weightings provide complementary information about rare vs. frequent species—for 92 

example, the number of new thymic emigrants (species richness; 0D or ∅Ds) vs. large leukemic 93 

clones (Berger-Parker index; ∞D)—different similarity measures are expected to reveal different 94 

systems-level features of repertoires’ sequence-level configuration. Also as with raw diversity 95 

measures, expressing results for the new diversity-with-similarity measures as effective 96 

numbers, also known as number equivalents, (Macarthur, 1965; Hill, 1973; Jost, 2007; Marion 97 

et al., 2015), as opposed to as bits or nats (for 1Ds) or as various fractions (for >1Ds), makes it 98 

possible to compare them to each other, regardless of weighting or similarity measure, on a 99 

single intuitive scale (Box 1). 100 

Similarity measure. We were interested in the single most fundamental mechanistic feature of 101 

antibodies and TCRs: binding to specific targets (Fig. 1). Therefore for our similarity measure, 102 

we used a proxy for binding affinity that follows from the empirically observed changes in 103 

dissociation constant (Kd) associated with amino-acid substitution in antibody and TCR CDRs 104 

(Jankauskaite et al., 2018). We found that on average, a single amino-acid substitution at an 105 

antibody-antigen or TCR-peptide binding surface lowers affinity by 4-5 fold (geometric mean), 106 

with a long tail corresponding to rare orders-of-magnitude effects (Fig. 2a). We focused on 107 

CDR3, the third complementarity determining region, of IgH and TCRβ, since this is the single 108 

most important contributor to binding specificity (Xu and Davis, 2000); however, our approach 109 

can be applied to other regions. Because the relationship between sequence and specificity 110 

remains non-predictive and therefore complex, for any given sequence pair the similarity 111 

imputed from the observed distribution will be approximate; however, averaged over the many 112 

millions of pairs in each repertoire, it was expected to be a reasonably accurate first-pass 113 

repertoire-level view of immunological diversity with binding similarity. 114 

Using this similarity measure, diversity-with-similarity is interpreted as the effective number of 115 

sequences in a repertoire if the sequences were equally common and had no binding overlap 116 

with each other (Box 1), or equivalently, the number of equally common non-overlapping binding 117 
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targets that a repertoire can recognize. We therefore refer to this version of diversity-with-118 

similarity as "functional diversity" (Fig. 1). Functional diversity can be interpreted in the context 119 

of a "shape space" (Perelson and Oster, 1979) that contains all possible CDR3 binding targets, 120 

with nearby targets having similar three-dimensional shapes and conformations (Fig. 1a). Each 121 

CDR3 binds a (possibly overlapping) subset of targets; together, a repertoire's CDR3s cover 122 

some part of shape space (Fig. 1b). Functional diversity measures the size of this region, 123 

controlling for similarity and overlap in binding among different CDR3s (Fig. 1c). 124 

Validity. We first established that our similarity measure behaved sensibly, with closely related 125 

sequences scoring high and unrelated sequences scoring low (Fig. 2b). We next established 126 

that it resulted in intuitive values for functional similarity by testing against expectations on 127 

simple in silico repertoires. In a representative test, we constructed four repertoires with 34 128 

unique sequences each and 752 sequences total (Fig. 2c-d). In each repertoire, a few 129 

sequences were common (larger circles) while most were rare (smaller circles), representing 130 

the long-tailed frequency distribution seen in real repertoires (Arnaout et al., 2011; Weinstein et 131 

al., 2009). Importantly, the species-frequency distribution for all four repertoires was identical, 132 

meaning that raw diversity was also identical across the repertoires, for all frequency 133 

weightings. The only difference between the repertoires was in the pairwise similarity among 134 

sequences. 135 

For the first repertoire (Fig. 2d, top row), we chose closely related sequences from a single real-136 

world CDR3 clone. We expected that species richness with similarity—functional species 137 

richness—would be close to 1. (We used 0Ds here; ∅Ds performed similarly.) We observed a 138 

value of 1.5; the extra 0.5 reflected sequence diversity within the clone. For the second 139 

repertoire (Fig. 2d, second row), we swapped out half the unique CDR3s with CDR3s from a 140 

different, unrelated real-world clone. As expected, we observed a rough doubling of functional 141 

diversity, to 2.4. For the third repertoire (Fig. 2d, third row), we replaced all the sequences with 142 

34 randomly chosen real-world CDR3s. We expected a functional diversity that was much 143 

higher than in the first two repertoires but less than 34 because of the inherent sequence 144 

similarities that make a CDR3 a CDR3, and, consistent with this expectation, observed a value 145 

of 22. For the final repertoire (Fig 2d, bottom row), we replaced the CDR3s with random amino-146 

acid sequences (controlling for length), expecting a functional similarity of nearly 34, and this 147 

again was observed (0Ds=32). In contrast to these differences in functional diversity, raw 148 

diversity was indistinguishably 34 for all four repertoires. In every example, functional diversity fit 149 

an intuitive sense of what diversity should mean (Fig. 2c), while raw diversity failed to detect a 150 
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difference. These results support the validity of our functional-diversity framework for immune 151 

repertoires. 152 

Robustness. Sampling error—the “missing-species” problem (Bunge and Fitzpatrick, 153 

1993(Bunge and Fitzpatrick, 1993))—is known to be a major potential confounder when 154 

measuring raw diversity, necessitating large (e.g.) blood volumes and/or post-hoc statistical 155 

correction for measurements on the sample to reflect repertoire diversity in the individual as a 156 

whole (Kaplinsky and Arnaout, 2016). A practical feature of functional similarity is that the 157 

values are smaller than those of raw diversity (reflecting clustering of similar sequences; Fig. 1-158 

2). The effective coverage is therefore greater, meaning that less information about the 159 

functional diversity of an individual’s overall repertoire is lost upon sampling than is the case for 160 

raw diversity. This observation suggested that functional diversity is more robust to sampling 161 

error, possibly even making it accurate enough to use without statistical correction, and thus 162 

useful for the sample sizes typically available for sequencing (10,000-1 million cells).  163 

To test this possibility, we systematically downsampled from a representative TCRβ repertoire 164 

and two representative IgH (IgG) repertoires, one prepared from mRNA and one from genomic 165 

DNA, each with ~106 unique sequences, and compared raw vs. functional diversity on the 166 

subsamples to those of the full sample (Fig. 3). (We wished to consider possibility of lower 167 

diversity from mRNA than DNA, since transcriptionally less active cells may be less likely to be 168 

sampled.) For TCRβ, we found that functional species richness saturated at a sample size of 169 

~30,000 sequences and functional entropy at ~10,000 sequences (Fig. 3b, first and third 170 

columns). Functional diversity for higher frequency weightings (q) saturated with even fewer 171 

sequences. For IgH from mRNA, functional species richness did not saturate but did plateau, 172 

with a final increase of ≤2 percent per order of magnitude. Assuming that each unique sequence 173 

corresponds to a cell and 1010 B cells in the body, this final measured rate of increase means 174 

that the individual's total functional species richness is no more than 50 percent higher than the 175 

value measured on the sample (Fig. 3, middle row). This is the maximum expected sampling 176 

error. For IgH from DNA, functional species richness had begun to plateau at the full sample 177 

size, resulting in the value for the individual being no more than three times as much as in the 178 

sample (maximum three-fold error). Meanwhile, functional entropy saturated at 30,000 cells for 179 

IgH from mRNA and 300,000 cells for IgH from DNA. This behavior was in marked contrast to 180 

that of raw diversity, which did not saturate or plateau for species richness (Fig. 3, white 181 

symbols), consistent with previous reports and illustrating the need for statistical correction 182 

(Kaplinsky and Arnaout, 2016). 183 
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We then asked whether the robustness of functional diversity can be expected to generalize for 184 

any IgH or TCR repertoire. We reasoned that a “meta-repertoire” comprising sequences drawn 185 

uniformly (i.e., without regard to frequency) from many individuals will be more diverse, by any 186 

measure, than any single repertoire (which will have fewer sequences, and in which the same 187 

sequence may appear multiple times). Downsampling from a meta-repertoire therefore provides 188 

an upper bound or worst-case scenario for the sampling requirements for any single repertoire. 189 

To build meta-repertoires, we pooled and then uniqued CDR3s from 114 different IgH 190 

repertoires from 79 individuals including Americans of African, European, and Hispanic descent  191 

(Bild et al., 2002; DeWitt et al., 2016; Vollmers et al., 2013) to build an IgH meta-repertoire of 192 

roughly 36 million unique sequences—as many as or more than ever observed or currently 193 

estimated to be in a typical individual—and similarly for CDR3s from TCRβ repertoires from 69 194 

healthy individuals (of mostly European but some Asian descent) (Emerson et al., 2017) to build 195 

a TCRβ meta-repertoire of 10 million unique sequences, and downsampled from each of these 196 

meta-repertoires as above (Fig. 3, large circles). We found that functional diversity plateaued for 197 

all q, saturated for q≥1 and reflected overall diversity to within a few percent from sample sizes 198 

of 50,000 for TCRβ and IgH RNA and 100,000 for IgH DNA for q=0, and 30,000 for TCRβ and 199 

IgH RNA and 300,000 for IgH DNA for q≥1 (Fig. 3, large colored circles). Together, these results 200 

confirmed that functional diversity measured on samples is an accurate measure of overall 201 

functional diversity in the individual, at conventional sample sizes. 202 

Raw and functional diversity. We measured raw and functional diversity on 141 healthy 203 

human subjects (Fig. 4). For IgH, we found a (geometric) mean functional species richness 204 

(�Ds) of 677 (range, 487-916) from mRNA and 2,205 (range, 2,042-2,485) from DNA, 205 

suggesting that on average, the human antibody repertoire is capable of recognizing the 206 

equivalent of no more than a few thousand unique non-overlapping heavy-chain CDR3 binding 207 

targets. (As above, lower diversity from mRNA was not unexpected, since inactive cells, which 208 

produce less IgH mRNA than active cells, may be underrepresented.) For TCRβ the mean 209 

functional diversity was 140 targets (range, 115-167). Functional diversity can be thought of as 210 

clustering similar sequences together, although functional clusters can overlap and sequences 211 

can belong to multiple clusters. An indication of the average size of these clusters can be 212 

obtained by taking the ratio of raw to functional diversity measures. For species richness, we 213 

found that IgH typically had hundreds of sequences per cluster, while TCRβ had thousands. 214 

Thus by both functional diversity and average functional-cluster size, IgH CDR3 repertoires are 215 

roughly 5-10 times as diverse as TCRβ (for small q). Repertoires with higher raw diversity might 216 
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be expected to be more functionally diverse, but we found no consistent trend across all 217 

repertoire types. Thus, functional diversity generally complements raw diversity, adding 218 

information not captured by raw diversity alone. 219 

Naïve vs. memory B cells. We next sought to investigate what this information might add to our 220 

understanding of adaptive immunity. We began with two widely studied B-cell subsets, naïve 221 

(IgM) and memory cells (predominantly IgG). Previous studies have shown that naïve 222 

repertoires have higher raw diversity than memory repertoires (DeWitt et al., 2016). This is at 223 

least superficially consistent with the fact that only a subset of naïve cells are selected to enter 224 

into the memory compartment. However, in a functional sense there is a case to be made that 225 

memory/IgG repertoires should be more diverse, since somatic hypermutation differentiates 226 

memory cells from naïve cells, and indeed from each other. Using well-characterized publicly 227 

available repertoires from DNA from three healthy human subjects, we confirmed that by raw 228 

species richness, naïve (CD27-IgM+) B-cell repertoires are ~10 times as diverse as memory 229 

(CD27+IgM-) repertoires  (DeWitt et al., 2016) (Fig. 5a-b). Yet by functional species richness, we 230 

found that memory repertoires were at least as diverse as naïve (Figs. 5a-b). Comparing raw 231 

and functional diversity for 34 IgM and 32 IgG repertoires from mRNA (repertoires with less than 232 

100,000 total sequences were discarded) from 28 additional healthy individuals from a separate 233 

dataset showed a similar pattern as for the three DNA repertoires: in all but a few outliers, IgM 234 

had higher raw diversity but IgG had higher functional diversity (Fig. 5c-d). For raw diversity, the 235 

IgM:IgG ratio rose from ~3:1 at q=0 to peak at 10:1 around q=1, due to a large fraction of rare 236 

IgG sequences (Fig. 5d). This effect was more pronounced for naïve:memory (Fig. 5b). For 237 

functional diversity, the absence of a peak in the IgM:IgG ratio suggests that these many rare 238 

sequences must nonetheless be similar to others in the repertoire, possibly because they are 239 

members of clones (Fig. 5b,d). 240 

Cytomegalovirus (CMV) exposure. CMV is a herpesvirus to which half of the adult population 241 

has been exposed and results in life-threatening opportunistic infections in newborns, transplant 242 

recipients, and immunocompromised individuals (Emery, 2001). In most healthy individuals, it 243 

causes a chronic infection marked by clonal expansion of both B cells and T cells and a 244 

consequent fall in raw diversity, an effect also seen during aging (see below) (de Bourcy et al., 245 

2017; Qi et al., 2014). We measured raw and functional TCRβ CDR3 diversity for 120 246 

individuals: 69 CMV-seronegative and 51 CMV-seropositive subjects aged 19-35 (Emerson et 247 

al., 2017), the narrow age range helping control for any age-related effects. There was a clear 248 

trend toward lower diversity in the CMV-seropositive group relative to the CMV-seronegative 249 
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group by both raw and functional diversity, for all weighting parameters (Fig. 6a). Combining raw 250 

with functional diversity facilitated identification of two subgroups among the subjects with 251 

known CMV status: subjects with a high raw Berger-Parker Index (∞D) were almost always 252 

CMV-seronegative (Fig. 6b), whereas subjects with low functional Berger-Parker Index (∞Ds) 253 

were almost always CMV-seropositive (Fig. 6c). The reverse—low ∞D or high ∞Ds—did not 254 

distinguish between the groups. Using both measures gave a better indication of CMV status 255 

than did either one alone (Fig. 6d). The conclusion is that CMV is unlikely in the absence of 256 

large clones/expanded lineages, as has been reported, but is likely only if the large 257 

clones/expanded lineages that are present exhibit high similarity to other clones/lineages in the 258 

repertoire, or else are indeed very large (Fig. 6e). Again, the addition of functional diversity 259 

offers insight that raw diversity alone does not. 260 

Flu vaccination. Vaccination with a seasonal trivalent influenza vaccine (TIV) triggers clonal 261 

expansion in B cells. Previous work on five vaccinees showed likely flu-specific memory IgG 262 

lineages emerging by day 7 post-vaccination (Vollmers et al., 2013). We found that combining 263 

raw and functional diversity reveals a signature of clonal expansion and selection without the 264 

need for lineage tracking (Fig. 7). We measured raw and functional diversity for IgM and IgG at 265 

day 0 (pre-administration) and day 7 from all 14 vaccinees in Vollmers’ dataset. We found that 266 

for most subjects, for IgG, raw species richness rose from day 0 to day 7 while functional 267 

species richness fell (Fig. 7a-b). This means that even as the number of sequences increased, 268 

many of the new sequences were similar to each other (or to existing sequences), and they 269 

tended to replace different-looking sequences. Meanwhile, there was no obvious pattern in IgM 270 

(Fig. 7c). Together, these results are what we would expect from clonal expansion and selection 271 

in a memory response, and thus represent a repertoire-level signature of these phenomena. 272 

Interestingly, in most cases, raw and functional entropy both fell (Fig. 7a-b, right panels). This 273 

suggests that most of the new sequences at day 7 were rare, while at the same time a subset of 274 

sequences and functional clusters grew. Thus overall, the addition of functional diversity reveals 275 

a key feature of clonal dynamics, which is not evident from raw diversity alone. 276 

Aging. To explore the effect of age, we measured raw and functional diversity for TCRβ CDR3 277 

repertoires from 41 healthy individuals aged 6-90 years old (Britanova et al., 2014) (Fig. 8). We 278 

found that raw diversity falls with age regardless of weighting parameter; a fall in raw species 279 

richness had been reported previously (Britanova et al., 2014). Functional diversity also fell, 280 

regardless of weighting parameter. However, for species richness, four septuagenarians bucked 281 

the trend (Fig. 8, arrows): even as their raw species richness was unremarkable relative to that 282 
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of other individuals of similar age, their functional species richness was similar to that of 283 

children. Only one of these four had a high likelihood of being CMV-negative; the probability that 284 

all four were CMV-negative was low. We therefore consider CMV unlikely as an explanation for 285 

their high functional species richness. Unlike their peers, these four appear to have retained 286 

functional diversity among their rarest sequences. (The alternative hypothesis is that these four 287 

saw a rise in functional species richness from a lower level earlier in life, but we think this 288 

unlikely given the overall downward trend across individuals.) We considered but excluded 289 

PCR/sequencing artifacts as the cause, as we expected such artifacts would have led to larger 290 

raw species richness, which was not observed. Thus, functional diversity identified for further 291 

study individuals who were unremarkable by raw diversity alone. 292 

Discussion 293 

Diversity both affects function, and reflects it. In the adaptive immune system, the defining 294 

tradeoff is breadth vs. depth: a repertoire must be sufficiently diverse to contain sequences that 295 

can recognize a given target and lead to useful clones, but not so diverse that cells that express 296 

such sequences are too rare to find the target on biologically relevant timescales (Schober et 297 

al., 2018; Zarnitsyna et al., 2013). To monitor immunological diversity, either diagnostically or 298 

therapeutically, we must be able to measure it, and to measure it, we must define it. It is 299 

increasingly recognized that a reasonable definition of immunological diversity must account for 300 

differences in species frequency. Here we argue such a definition must also account for 301 

species’ pairwise similarity, and show that binding similarity, which leads to what we call 302 

functional diversity, provides useful insight into repertoire function. 303 

Pairwise similarity can be seen as governed by a tunable parameter that helps define the 304 

similarity matrix, analogous to how q is a tunable parameter that governs the effect of 305 

differences in frequency (Chao et al.). In our study, the similarity matrix is defined by the 306 

average single amino-acid change in Kd, an average based on over 1,300 independent 307 

measurements, and the assumption of multiplicative independence. This source data is not 308 

systematic, but to our knowledge is the best available. While our study is to our knowledge the 309 

first of its kind, it follows a long tradition of attempts to estimate the number of binding targets 310 

that can be recognized by the adaptive immune system immunization (Bachmann et al., 1994; 311 

Obar et al., 2008). In these past studies, typically a sample of B or T cells was diluted until 312 

binding to/protection from a given target was abolished, using whatever thresholds the 313 

investigators deemed appropriate. If the limiting frequency for binding/protection was found to 314 
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be, for example, 1:3,000, the conclusion was that the repertoire could recognize 3,000 different 315 

targets. This conclusion was based on the assumption that on average, all targets behave the 316 

same as the one under study. Such studies gave functional diversities of 100 to 100,000 targets 317 

for various T-cell populations and for B cells after antigen exposure, a wide range (Bachmann et 318 

al., 1994; Obar et al., 2008). The width of this range may reflect real differences in the 319 

frequencies of cells that are specific for different targets, or variability in stringency or 320 

experimental setup. Interestingly, this “how-many-can-fit” logic seems not to have been used 321 

when testing so-called natural antibodies, which bind many targets at low affinity (Frank, 2002; 322 

Holodick et al., 2017; Notkins, 2004). For example, when one in five natural antibodies were 323 

found to bind insulin (Chen et al., 1998), this was not taken to mean that the repertoire could 324 

recognize only five targets, because of presumed overlapping specificity of these antibodies for 325 

other targets. Meanwhile, theoretical studies have suggested a need for ≤10,000 binding 326 

targets, and fewer for T cells than B cells, because of major histocompatibility complex (MHC) 327 

restriction (Langman and Cohn, 1987; Zarnitsyna et al., 2013) 328 

For raw diversity, we found that a typical repertoire contains on the order of 10 million unique 329 

CDR3s, well above the upper end of previous estimate for the number of binding targets. These 330 

findings are in line with other recent estimates that were likewise based on a combination of 331 

deep sequencing and statistical correction (Britanova et al., 2014; DeWitt et al., 2016; Kaplinsky 332 

and Arnaout, 2016). On average, these raw species richnesses mean that each of 100-100,000 333 

putative binding targets can be bound by 100-100,000 unique CDR3s (107/105 to 107/102). From 334 

a medical perspective, such redundancy is good for treatment, because it supports the 335 

prevailing view that there are many ways to design an antibody- or TCR-based drug that will 336 

recognize a given target, but potentially a complicating factor for attempts to diagnose specific 337 

diseases based on repertoire sequence, because it suggests that signatures of exposure to a 338 

given target may be quite variable. 339 

One of our key findings is that functional diversity is much lower than raw diversity: repertoires 340 

contain only a few hundred functional clusters for TCRβ CDR3s and at most a few thousand for 341 

IgH. The fact that functional diversity is based on Kds suggests that functional diversity should 342 

correlate with the number of structurally unique, non-overlapping target clusters that CDR3s can 343 

recognize (Fig. 1). Yet our measurements of functional species richness lie at the low end of the 344 

range of prior estimates. We propose two explanations. First, our measurements are limited to 345 

CDR3s; variability in the rest of the antibody or TCR protein must add to the total number of 346 

potential binding targets. This possibility is testable by extending our method to more or indeed 347 
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all of the antibody or TCR sequence. Second, functional diversity may be providing a less 348 

detailed description of shape space than limiting-dilution studies: i.e., functional diversity may be 349 

a coarse graining of the target-binding landscape (Fairlie-Clarke et al., 2009; Smith et al., 1997) 350 

(Fig. 9). A pair of sequences may be similar enough to lie near each other in shape space, but 351 

only one may bind a given target above a threshold level of specificity in a binding study. In 352 

short, binding studies may be counting peaks while functional diversity is counting mountains. If 353 

true, our results suggest that the landscape of TCRβ CDR3 binding is more clustered than that 354 

of IgH, such that there are on average several times as many functional IgH clusters as TCRβ. 355 

This prediction is testable, at least in principle, through large-scale systematic binding assays to 356 

measure Kd, or by measuring binding as a binary outcome at multiple stringency thresholds. 357 

Both explanations may contribute. To our knowledge ours is the first attempt a quantitative 358 

summary of this landscape using data from large-scale binding studies and high-throughput 359 

repertoire sequencing. 360 

Why is CDR3 functional diversity higher for IgH than for TCRβ? We hypothesize that it is for the 361 

same three reasons that there is more sequence diversity for IgH than TCRβ. First, humans 362 

have 23 DH gene segments vs. only 2 Dβ segments, and D is the largest germline contributor to 363 

CDR3. V and J segments tend to directly contribute little more than the canonical starts and 364 

ends of CDR3s, and besides there are similar numbers of V-J combinations in IgH as TCRβ 365 

(49×6=294 and 48×13=624, respectively). Second is somatic hypermutation, which diversifies 366 

IgH but not TCRβ. And third, IgH CDR3s are longer than TCRβ CDR3s, allowing for a larger 367 

number of possible sequences. Further analysis will be needed to test these hypotheses. 368 

We have shown how functional diversity complements raw diversity to offer insight into the 369 

difference between naïve and memory repertoires, to aid in identification of disease states, and 370 

to illustrate clonal selection and other repertoire dynamics. We hope these examples will 371 

encourage others to use and/or expand our framework to investigate repertoire dynamics in 372 

other conditions, in other subsets, in the other chains (TCRα and IgL), and in other model 373 

systems such as zebrafish (Weinstein et al., 2009) and mouse (Arnaout et al., 2011; Kaplinsky 374 

et al., 2014). We draw attention to the fascinating difference between the number of unique 375 

sequences, which ran into the millions in most of the repertoires we investigated, and the much 376 

smaller numbers of what we call functional clusters (the effective numbers of functional 377 

diversity). The result is a “functional degeneracy” among sequences that are organized into 378 

functional clusters. Characterizing these clusters is an interesting topic for future work. 379 
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Functional similarity also offers a new perspective on similarities and differences between 380 

people. To show that functional diversity is robust to sampling, we generated “meta-repertoires” 381 

by pooling sequences from scores and in some cases over a hundred people, including people 382 

from different ethnic backgrounds. Surprisingly, and somewhat unexpectedly given the low 383 

sequence overlap between pairs of individuals, the functional diversity of these meta-repertoires 384 

never exceeded the functional diversity of any given repertoire by more than a few fold; 385 

moreover, the functional diversity trended toward saturating in samples of just a million 386 

sequences (Fig. 3). Together, these findings predict that any two individuals share a majority of 387 

their functional clusters, in stark contrast to the vanishingly small fraction of sequences they 388 

share. Further, these findings suggest that the functional diversity of the entire population is only 389 

a few hundred clusters for TCRβ CDR3s and a few thousand for IgH, and imply that these 390 

clusters can be sampled exhaustively by sequencing fewer than 20 individuals. It will be 391 

fascinating to test this finding with additional ethnically and geographically diverse populations, 392 

to further examine our prediction that, contrary to conventional wisdom, the functional limits of 393 

the adaptive immune system are in a practical sense both finite and within reach. 394 

The focus of this study was binding similarity, but we expect that the utility of the diversity-with-395 

similarity framework will extend to other facets of immunology (e.g., somatic hypermutation) and 396 

to other fields, most readily metagenomics, sociology, oncology, and cellular cartography 397 

(Almendro et al., 2014; Heindl et al., 2016; Koopmans and Schaeffer, 2013; Li et al., 2012; 398 

Taraska, 2015). We hope this study will serve as a template for incorporating similarity into the 399 

study of other complex systems. 400 
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Online methods 414 

High-throughput repertoires. We obtained 391 quantitative high-throughput IgH and TCRβ 415 

repertoires from 202 human subjects. These included IgH from naïve and memory B cells from 416 

DNA (n=3 individuals) (DeWitt et al., 2016); TCRβ chains from DNA from healthy subjects 417 

known to be serologically negative for cytomegalovirus (CMV) (n=69 individuals) (Emerson et 418 

al., 2017) and from healthy subjects whose CMV serostatus was unknown (n=41 individuals) 419 

(Britanova et al., 2014); pooled barcoded IgG and IgM heavy chains from mRNA from healthy 420 

subjects before and seven days after administration of one of two influenza vaccines (n=28 421 

individuals) (Vollmers et al., 2013); quantitative pooled TCRβ chains from DNA for subjects who 422 

were otherwise healthy but serologically CMV positive (n=51 individuals) (Emerson et al., 2017); 423 

and IgH chains from DNA for subjects enrolled in the Multi-Ethnic study of Atherosclerosis 424 

(MESA; n=41 individuals) (Bild et al., 2002). CDR3 annotation was performed using our in-425 

house pipeline as previously reported (Kaplinsky et al., 2014) and standard tools (e.g. IMGT). 426 

Details for obtaining these datasets are available from the primary publications referenced 427 

above.  428 

Similarity measures. A functional measure of similarity between polypeptides is how well they 429 

bind the same target. We were interested in similarity as a function of the number of amino acid 430 

substitutions (i.e., as a function of edit distance). The effect of substitutions on binding is 431 

complex and depends on the position and identity of the specific amino acids involved; many 432 

substitutions may have little or no effect, while a few may abolish binding entirely (Lunzer et al., 433 

2010). When comprehensive data are available, detailed statistical models can offer reasonable 434 

predictions of the effect of specific amino-acid substitutions (Hopf et al., 2017; Salinas and 435 

Ranganathan, 2018; Lee et al., 2008). However, this type of data does not yet exist across 436 

entire antibody and TCR repertoires, and so simpler models are required. These models are not 437 

expected to precisely predict the effects of specific substitutions, but should accurately reflect 438 

the effects of substitutions when averaged over many pairs of proteins, such as the millions of 439 

pairs in megacell-scale repertoires. 440 

To develop a model for our similarity measure, s, we downloaded SKEMPI 2.0, which is to our 441 

knowledge the largest and best-curated database of experimentally measured effects of amino-442 
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acid substitution on protein-protein binding (Jankauskaite et al., 2018). Each entry includes a 443 

Protein Data Bank (PDB) identifier (Berman et al., 2000), the type of structural region (Levy, 444 

2010) that contains the substitution(s), one or more PDB coordinates, and (in nearly all cases) 445 

the dissociation constant (Kd) of each member of the pair (referred to in the database and Fig. 446 

2a as “wild type” and “mutant”). We extracted entries for all single amino-acid substitutions for 447 

which Kd for both wild type and mutant were recorded, and considered only entries that involved 448 

binding between antibody and antigen (n=797) or TCR and peptide/MHC (n=531; total 449 

n=1,328). Although amino-acid substitutions anywhere in a protein may affect binding, 450 

substitutions at the core of the binding interface are more likely to affect binding than 451 

substitutions elsewhere (Levy, 2010). Therefore we split the data into core (n=584) and non-452 

core (n=744) groups and analyzed the effect of substitution binding, measured as 453 

|log10(Kdmut/Kdwt)|, separately for each group. 454 

As expected, the probability distributions for the two groups differed substantially from each 455 

other (Mann-Whitney U p-value 2.0x10-33). Substitution of a core residue had a 13-fold 456 

(geometric) mean effect on binding, consistent with prior reports (Whittaker et al., 2001), while 457 

substitution of a non-core residue had a 4-fold effect. Both probability distributions were long-458 

tailed, and were reasonably well described by exponential probability-density functions (i.e., of 459 

the form ke-kx). We confirmed that the distributions for antibody-antigen core residues (n=352) 460 

and TCR-peptide/MHC core residues (n=232) were similar to each other, that the distributions 461 

for antibody-antigen non-core residues (n=445) and TCR-peptide/MHC non-core residues 462 

(n=299) were also similar to each other, that within each of the antibody-antigen and TCR-463 

peptide/MHC subgroups the distributions for core and non-core residues were different, and that 464 

these results held separately for human and non-human (nearly all of which were mouse) 465 

sequences (using the Structural Antibody Database (Dunbar et al., 2014) and the Structural 466 

TCR Database (Leem et al., 2018) to assign species), all using Mann-Whitney U and visualized 467 

as histograms. Using PyMol v2.2.0 (The PyMOL Molecular Graphics System, Version 2.0 468 

Schrödinger, LLC), we next manually reviewed nine structures containing substitutions in 469 

human IgH or TCRβ CDR3s (1BD2, 1OGA, 3BN9, 3QDJ, 3SE8, 3SE9, 4I77, 5C6T, 5E9D) and 470 

found that to a good approximation, a constant fraction 0.15±0.05 of CDR3 amino acids consist 471 

of core residues, with no obvious difference between chain types. To estimate the effect of a 472 

single amino-acid substitution in a CDR3 in our datasets, we therefore combined core and non-473 

core distributions with a weighting of 0.15:0.85.  474 
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The resulting distribution was again long-tailed, with most substitutions having small effects and 475 

a few having effects of many orders of magnitude (Fig. 2a). There were small spikes in the tail 476 

for substitutions with ≳60-fold effects, i.e. |log10(Kdmut/Kdwt)|≳1.8. A review of sources cited by 477 

SKEMPI suggested that these spikes likely reflect ascertainment bias: selective experimentation 478 

on amino acids with unusually strong effects (e.g. Pons et al., 1999; Taylor et al., 1998). To 479 

counteract such bias, we therefore built a high-confidence dataset using 1.8 as the cutoff. 480 

Ascertainment bias in two- and three-amino-acid substitutions is expected to follow the square 481 

and cube of the bias in single-amino-acid substitutions, respectively, precluding rigorous 482 

conclusions from being drawn from independence testing. However, comparison with those 483 

groups was broadly consistent with either multiplicative (s=cm, where s=similarity; c=the cost of 484 

binding, i.e., 1/(fold effect); m=edit distance) or additive (s=c/m for m≥1) independence. 485 

Because additive effects result in higher pairwise similarities and therefore smaller repertoire 486 

diversities than multiplicative effects, the multiplicative-independence model is more 487 

conservative for studying the effects of similarity on diversity. We therefore chose the 488 

multiplicative model for further analysis. 489 

To determine the similarity between two CDR3s with edit distance m, we sampled 490 

independently from the high-confidence dataset m times, and multiplied the costs together. We 491 

confirmed that on average, the results of this stochastic sampling were the same as 492 

deterministic calculation of s=cm with c≈0.55. We performed sensitivity analysis based on lower-493 

confidence cutoffs (down to c=0.48) and alternative assumptions (up to c=0.60). This resulted in 494 

somewhat higher or lower diversity values, but qualitative patterns were robust to these 495 

perturbations. 496 

Diversity measures. We calculated qD as previously described (Hill, 1973; Kaplinsky and 497 

Arnaout, 2016) and qDs according to Leinster and Cobbold (Leinster and Cobbold, 2012). We 498 

corrected qD for sampling error using Recon (default settings) as previously described 499 

(Kaplinsky and Arnaout, 2016). We note Hill’s framework (Hill, 1973) has inspired several 500 

methods for incorporating similarity into diversity measurements, each of which retains useful 501 

features of Hill’s framework (Chao et al., 2018; Chiu and Chao, 2014; Leinster and Cobbold, 502 

2012; Scheiner, 2012). Two of the new frameworks were introduced with explicit discussion of 503 

how to decompose population-level diversity into within- and between-group components 504 

(Leinster and Cobbold, 2012; Chiu and Chao, 2014). Each of these has advantages and 505 

disadvantages over the other (discussed in Botta-Dukát, 2018) . We chose Leinster and 506 
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Cobbold’s framework here because we found it easier to apply and interpret. For readability, we 507 

made a minor change to the notation, from qDZ to qDs. 508 

Use of this framework raised two issues that we addressed. First, its q=0 measure, 0Ds, 509 

depends on frequency albeit to a very small extent, unlike the Hill framework’s q=0 measure, 0D, 510 

which is species richness (and is independent of frequency). Therefore, as a more direct 511 

comparison to species richness, we calculated 0Ds both with frequency information and without 512 

it (i.e., setting the frequencies of each of the n species to 1/n). We refer to the latter as ∅Ds (“D-513 

null”). Second, it has been shown that this framework can result in unreasonably low diversity 514 

values when most of the off-diagonal entries of the similarity matrix are far from zero, resulting 515 

in an insensitivity to q (Botta‐Dukát, 2018; Chiu and Chao, 2014). We expected most of our off 516 

diagonals to be close to zero, since our similarity measures directly or indirectly involve 517 

exponential decay, which generates small values, but confirmed that most of the off diagonals in 518 

our similarity matrices were indeed close to zero by plotting histograms. Consequently, our 519 

measures were sensitive to q, as desired and expected. 520 

Robustness analyses. For robustness analyses, IgH and TCRβ were analyzed separately. The 521 

upper-bound/worst-case scenario for IgH was evaluated by constructing a “meta-repertoire” by 522 

combining IgG sequences of subjects before vaccination (n=28 individuals; Vollmers et al. 523 

2013), sequences from memory cells from healthy subjects from public database (n=3; DeWitt 524 

et al. 2016), and sequences from subjects enrolled in MESA study (n=41; Bild et al. 2002), and 525 

sampling from this meta-repertoire without regard to the frequency of sequences. We chose 526 

IgG/memory sequences where possible because those sets exhibited higher functional diversity 527 

than naïve sets, and we were interested in maximizing diversity. We ignored the frequency of 528 

sequences for the same reason: uniform frequency maximizes diversity, other things equal. For 529 

TCRβ, we constructed a meta-repertoire by combining sequences from CMV seronegative 530 

individuals (n=69; Emerson et al. 2017) and again sampling at uniform frequency. We chose 531 

CMV seronegative individuals for the same reason as we chose memory/IgG sequences above: 532 

seronegative individuals exhibited higher diversity. For both IgH and TCRβ, including all 533 

sequences lowered diversities slightly. The representative samples were from subject D3 for 534 

IgH (from DNA), subject SRR960344 for IgH (from mRNA), and subject Keck0070 for TCRβ 535 

(CMV seronegative). CDR3 sequences were sampled proportional to their frequency in the 536 

repertoire.  537 
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Figure titles and legends 538 

Figure 1: Functional diversity. (a) Each dot represents a binding target (e.g. an epitope) with 539 

a different shape. Nearby targets have similar shapes (inset). Targets form clusters of similarity. 540 

(b) Each colored region represents the targets that can be bound by one of six unique CDR3 541 

sequences in a representative repertoire; this repertoire has a raw species richness of 6. 542 

Together, the colored regions cover the part of shape space that can be bound by the 543 

repertoire. (The unbound region might include, e.g., self-antigens.) Note the substantial overlap 544 

in binding targets for the orange, yellow, green, and blue CDR3s. This overlap reflects binding 545 

similarity among these CDR3s. (c) Because of this similarity, the repertoire covers only the 546 

region denoted by the four identical non-overlapping squares. The functional species richness of 547 

this repertoire is therefore 4: this repertoire has the same species richness as a repertoire 548 

comprising four CDR3s that have zero overlap in binding specificity.  549 

Figure 2: Validity. (a) Single amino-acid mutations in antibody and TCR molecules have a 550 

range of effects on affinity, as measured by change in dissociation constant, Kd (gray). This was 551 

well fit by a simple exponential (black line), providing parameterization for the similarity metric. 552 

(b) CDR3s with high sequence identity have high similarity, while different CDR3s have low 553 

similarity. Shown are two clones, represented by red and white subnetworks, each composed of 554 

17 unique CDR3 sequences drawn from clonotypes of two real IgH repertoires. Node size 555 

corresponds to the frequency of each sequence; edges connect pairs of sequences that differ at 556 

a single amino-acid position. (c)-(d) Functional similarity agrees with an intuitive sense of 557 

repertoire diversity. Each of the four repertoires in (c) has the same number of unique 558 

sequences, present at the same frequencies; as a result, they all have identical raw diversity 559 

(for every value of q) despite their obvious quantitative and qualitative differences. In contrast, 560 

functional diversity increases with the number of, and increasing difference between, 561 

repertoires' constituent sequences. Node size denotes sequence frequency. Shades denote 562 

different clonotypes. Comparing the third and fourth rows, note that even when two repertoires 563 

have the same number and frequencies of unique sequences, the repertoire whose sequences 564 

are more different from each other (random peptides) has the higher functional diversity. 565 

Figure 3: Robustness. Results for raw and functional species richness (q=0; 0D and 0Ds) and 566 

raw and functional entropy (q=1; 1D and 1Ds). Raw, white shapes; functional, colored shapes. 567 

Large symbols give an upper bound/worst-case scenario based on sampling meta-repertoires; 568 

small symbols give results for a representative sample from DNA (circles) and mRNA 569 
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(triangles). First row: sample diversity is plotted as the effective number of sequences. For q=0, 570 

functional diversity plateaus for TCRβ and IgH RNA and trends toward a plateau for IgH DNA at 571 

the tested sample sizes; all three plateau for q=1; raw diversity does not plateau for either q=0 572 

or q=1. Second row: discovery rate is the probability that the next sampled sequence will add to 573 

the diversity. For example, for the IgH DNA representative sample, for q=0 raw diversity, at a 574 

sample size of 1 million sequences there is still a probability of ~0.5 (a 50 percent chance) that 575 

the next sequence to be sampled will be one that has not yet been seen and will therefore add 576 

to the diversity. Third row: maximum error is the maximum fraction by which the diversity in the 577 

sample can underestimate the diversity in the individual from whom the sample was taken. 578 

Horizontal dashed lines indicate the threshold for two-fold error. For example, for the worst-case 579 

scenario for TCRβ, q=0 functional diversity measured on a sample of 10,000 sequences will be 580 

no more than a two-fold underestimate of diversity in the individual as a whole; in other words, 581 

the sample value will be at least 50 percent of the overall value. 582 

Figure 4: Diversity in individuals. Raw (black lines; left vertical axis) and functional (colored 583 

bars; right vertical axis) species richness (q=∅) for 179 CDR3 repertoires from healthy 584 

individuals representing (a) IgH from mRNA (all isotypes: IgA, IgG, IgM, IgD, and IgE), (b) IgM 585 

and (c) IgG from mRNA from the subjects in (a), (d) IgH from DNA (all isotypes), (e) naïve IgH 586 

from DNA, (f) memory IgH from DNA, and (g) TCRβ from DNA. See Methods for references. 587 

Matched pairs of symbols below the horizontal axis denote replicates. Note the difference in the 588 

scale for functional diversity between IgH and TCRβ. Note also a general lack of correlation 589 

between raw and functional species richness, except in (c). 590 

Figure 5: Naïve vs. memory. (a) Diversity profiles for naïve (red) and memory (black) 591 

compartments from three deeply sequenced individuals. A diversity profile is a way to show 592 

diversity across a range frequency-weighting parameter values at once. By raw diversity (left), 593 

the naïve compartment is more diverse across the range of weightings. By functional diversity 594 

(right), this distinction disappears. In (b), this disappearance is highlighted by plotting the ratio of 595 

naïve:memory diversity for raw diversity (red) and functional diversity (black). According to 596 

functional diversity, the naïve compartment is no more diverse, and indeed sometimes 597 

somewhat less diverse, than the memory compartment. This reversal is even more prominent in 598 

comparisons of repertoires from an additional 28 healthy subjects (c,d). 599 

Figure 6: Infection. (a) Diversity profiles showing effective number of species as a function of 600 

weighting parameter q for diversity without similarity (left) and diversity with similarity (right) 601 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 12, 2018. ; https://doi.org/10.1101/483131doi: bioRxiv preprint 

https://doi.org/10.1101/483131
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

Arora, Burke, and Arnaout (2018) Immunological Diversity with Similarity 

 

showing a trend toward lower diversity in CMV-seropositive individuals (red) relative to CMV-602 

seronegative individuals (black), especially for large q. (b) Raw Berger-Parker Index (q=∞), 603 

which measures the largest clones, showing that high diversity—an absence of large clones—is 604 

rare in CMV-seropositive individuals. (c) Functional Berger-Parker Index, showing that low 605 

diversity—the presence of large clones with similarity to other clones in the repertoire—is rare in 606 

CMV-seronegative individuals. (d) Combining raw and functional Berger-Parker Indices (first 607 

principal component of PCA, which explains 72 percent of variance) illustrates both of the trends 608 

in (c): for the third of subjects beyond the cutoffs indicated by the horizontal dashed lines CMV 609 

serological status is assigned with an accuracy of 95 percent. (e) Schematic representation of 610 

the three classes revealed by combining diversity with and without similarity. Each circle is a 611 

clone; each collection of clones is a representative repertoire. Top: subjects without large clones 612 

are almost always CMV seronegative. Bottom: subjects with large clones that are similar to 613 

other clones in the sample (shown in red) are almost always CMV seropositive. Middle: 614 

repertoires with large clones that are not similar to other clones in the repertoire may be either 615 

CMV seropositive or CMV seronegative. Receiver-operator characteristic (ROC) analysis gave 616 

an area under the curve (AUC) of 0.79. 617 

Figure 7: Vaccination. Raw and functional diversity together reveal clonal expansion and 618 

selection without needing lineage analysis. (a) In the IgG compartment, raw species richness 619 

rises while functional species richness falls in most vaccinees (left). Meanwhile raw and 620 

functional entropy both fall (right). The difference vs. species richness suggests most new 621 

sequences at day 7 are rare. (b) Meanwhile, the IgM compartment changes less by these 622 

measures. 623 

Figure 8: Aging. Raw and functional species richness (q=∅) for TCRβ CDR3 repertoires from 624 

41 healthy individuals. Arrows denote four septuagenarians who bucked the trend of lower 625 

functional species richness with age. Note that for each individual, the raw species richness is 626 

~10-fold higher than previously reported (Britanova 2014), likely because the method we used 627 

to correct for missing species (Recon) is more sensitive than the method used in the previous 628 

report (Fisher). 629 

Figure 9: Binding landscape. (a) Schematic of the target-binding landscape. The gray 630 

distribution represents CDR3 sequences that bind a given target. Sequences are ordered by 631 

their similarity to each other. (In reality, similarity is a multidimensional property that makes it 632 

impossible to order sequences in a single dimension as shown here; this is done for illustrative 633 
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purposes only.) The height at each sequence denotes the affinity with which it binds the target 634 

(vertical axis; measured e.g. by Kd). Many more sequences bind the target at low affinity than at 635 

high affinity, resulting in a “mountain-and-peak” appearance. This schematic is useful for 636 

interpreting functional diversity as described in this study, and the raw diversity estimates based 637 

on previous binding studies, as described in the Discussion. (Note that in this schematic, the 638 

raw diversity as measured simply corresponds to the total number of sequences along, i.e. the 639 

width of, the horizontal axis.) At high affinity, very few sequences bind a given target. At medium 640 

affinity, more sequences bind, and can be binned into two small clusters, represented by the 641 

small circles. At low affinity, many sequences bind, and can be binned into a single large 642 

cluster, represented by the large circle. In (b)-(d), many targets are shown. Each color 643 

corresponds to a different target; nearby targets are structurally similar. As in (a), each colored 644 

area denotes the sequences that bind a given target, as a function of binding affinity (vertical 645 

axis). Experiments usually detect the highest-affinity sequences: the peaks of the landscape 646 

(above the horizontal dotted line). The narrower the peak when it crosses the experimental 647 

threshold, the rarer specific sequences are, and the larger the number of targets that the 648 

repertoire will be estimated to bind. (For example, if 100,000 sequences are shown across the 649 

horizontal axis in each plot, and only one crosses the experimental threshold for a given target, 650 

the frequency of sequences specific for that target is 1:100,000, and the conclusion will be that 651 

there must be 100,000 such targets that the repertoire can bind. If 100 cross the experimental 652 

threshold, the conclusion will be that the repertoire can bind only 1,000 targets.) Functional 653 

diversity measures the overall contours of the landscape. Conceptually, this can be thought of 654 

as measuring the number and size of the “mountains” at a lower affinity threshold (horizontal 655 

solid lines). The differences in functional diversity between (b) memory IgH, (c) TCRβ, and (d) 656 

naïve IgH correspond to different landscapes. The raw species richness of memory IgH and 657 

TCRβ are comparable, represented here by the same width of all the plots. In addition, a similar 658 

number of sequences per target cross the experimental threshold, so estimates of the total 659 

number of targets that the repertoires can bind will also be comparable.  However, less low-660 

affinity overlap between the targets of the IgH sequences in (b) gives it higher functional species 661 

richness than the TCRβ repertoire in (c): here, six functional clusters (white circles) vs. three. 662 

(The sizes of the clusters are related to frequency-weighted functional diversity measures, i.e. 663 

larger q.) The sequences in the naïve IgH repertoire in (d) have only low affinity for the six 664 

colored targets, and many recognize more than one target (overlapping colored areas). Note the 665 

lower experimental threshold (horizontal dotted line), consistent with the ~10% or more of 666 

antibodies that recognize a target and the high degree of cross-reactivity in studies of natural 667 
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antibodies (Frank, 2002; Holodick et al., 2017). The functional diversity threshold controlled by 668 

the average effect on Kd of a single-amino-acid change in CDR3. If the effect were larger—or if 669 

it were amplified by e.g. raising it to a power when building the similarity matrix—the threshold 670 

would be higher, and vice versa.  671 
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Tables and Figures  672 

Box 1: Interpreting effective numbers

Consider two repertoires of 100 clones each. In the first repertoire, 
one clone is large and accounts for 91 percent of all cells (e.g. a 
leukemic clone); the other 99 clones are small and account for the 
remaining 9 percent. In the second repertoire, all 100 clones are 
equally common, each accounting for 1 percent of cells. The 
Shannon entropies of the two repertoires are 1.0 bit and 6.6 bits. 
Entropy is converted to an effective number—1D—by exponentiation: 
the effective number of clones in the first repertoire is 21.0=2, while in 
the second repertoire it is 26.6=100. Thus per entropy, the first 
repertoire can be thought of as “effectively” consisting of just two 
clones: the 99 rare clones collectively count the same as the one 
large clone. In other words, the first repertoire has the same effective 
diversity as a repertoire that consists of just two clones that are 
equally common. The second repertoire already consists of clones 
that are equally common, so the effective number of clones in this 
repertoire, 26.6=100, is the same as its species richness. Diversity 
with similarity is interpreted in a similar fashion: a repertoire with a 
qDs of n species has the same effective diversity as a repertoire with 
n species that are equally common (as above), with the additional 
constraint that these species are now also completely unrelated to/
dissimilar from each other.
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Figure 2 675 
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Figure 3 677 
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Figure 4 679 
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