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ABSTRACT 

Direct selection pressures imposed by antibiotics, indirect pressures by co-selective agents, and            

horizontal gene transfer are fundamental drivers of the evolution and spread of antibiotic             

resistance. Therefore, effective environmental monitoring tools should ideally capture not only           

antibiotic resistance genes (ARGs), but also mobile genetic elements (MGEs) and indicators of             

co-selective forces, such as metal resistance genes (MRGs). Further, a major challenge towards             

characterizing potential human risk is the ability to identify bacterial host organisms, especially             

human pathogens. Historically, short reads yielded by next-generation sequencing technology          

has hampered confidence in assemblies for achieving these purposes. Here we introduce            

NanoARG, an online computational resource that takes advantage of long reads produced by             

MinION nanopore sequencing. Specifically, long nanopore reads enable identification of ARGs           

in the context of relevant neighboring genes, providing relevant insight into mobility,            

co-selection, and pathogenicity. NanoARG allows users to upload sequence data online and            

provides various means to analyze and visualize the data, including quantitative and            

simultaneous profiling of ARG, MRG, MGE, and pathogens. NanoARG is publicly available and             

freely accessible at ​http://bench.cs.vt.edu/nanoARG ​.  
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INTRODUCTION 

Antimicrobial resistance (AMR) compromises our ability to prevent and treat infectious disease,            

and presently represents one of the most significant and growing global public health threats              

(1). It is estimated that the annual number of deaths due to antibiotic resistance will top ten                 

million by 2050 (2). In response, numerous national and international agents have called for              

increased monitoring, with increasing awareness of the importance of environmental          

monitoring. In particular, environmental monitoring can provide insight into not only human            

and agricultural inputs of antibiotic resistant bacteria and antibiotic resistance genes (ARGs),            

but also factors contributing to the evolution and spread of resistant pathogens. For instance,              

various environmental compartments, such as wastewater treatment plants, livestock lagoons,          

and amended soils can essentially act as “environmental reactors,” in which resistant bacteria             

discharged from domestic, hospital, industrial, and agricultural waste-streams have the          

opportunity to interact with native aquatic and soil bacteria in the presence of various selection               

pressure and give rise to new resistant forms (3,4). Humans may subsequently be exposed via               

consumption of food-crops affected via biological soil amendment or irrigation, as well as             

through contact with treated and untreated water used for recreational, hygienic, and potable             

purposes (5,6).  

 

Molecular-based monitoring presents great advantage over culture-based techniques for         

tracking antibiotic resistance in the environment, particularly with respect to the potential to             

recover rich information regarding the carriage and movement of ARGs with complex microbial             

communities. Culture-based techniques, on the other hand, are highly time consuming and            

only provide information about one target species at a time, thus overlooking potentially key              

microbial ecological processes contributing to the spread of antibiotic resistance. Thus, directly            

targeting ARGs as “contaminants” of concern that transcend bacterial hosts has gained            

popularity. In particular, horizontal gene transfer plays a critical role in the rise of new resistant                

strains and dissemination of multi-antibiotic resistance. Correspondingly, multi-drug resistance         

has emerged as a major clinical challenge. For example, methicillin resistant ​Staphylococcus            
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aureus (MRSA) is responsible for major hospital infections, with few options for treatment,             

especially when resistant to vancomycin (7). More recently, New Delhi Metallo beta lactamase             

( ​bla​NDM-1) has emerged as major concern, encoding resistance to powerful last-resort           

carbapenem antibiotics and was carried on a highly mobile genetic element and associated with              

multi-drug resistance (8). Such examples emphasize that ideally, environmental monitoring          

technologies should provide a rapid and robust characterization of ARGs and their likely             

associations with mobile genetic elements, multi-drug resistance, and carriage by pathogen           

hosts. In this regard, shotgun metagenomic sequencing techniques have emerged as a            

promising tool for tapping into the diverse array of ARGs characterizing different environments             

(4,9-11). In particular, high-throughput next-generation DNA sequencing technologies, such as          

Illumina (12) and 454 pyrosequencing (13,14), have enabled a new dimension to ARG             

monitoring in the environment. While providing unprecedented amount of sequence          

information, a major drawback of these technologies is the very short DNA sequence reads              

produced, at most a few hundred nucleotides long. Still, next-generation DNA sequencing is             

growing in use as a powerful means of profiling ARG occurrence in various environments using               

either a direct annotation technique where sequences are compared against available ARG            

databases and relative abundances of the ARGs are then estimated, or an assembly based              

annotation technique where the short reads are assembled into longer contigs for ARG and also               

neighboring gene identification. Both approaches have limitations. The first is only applicable to             

previously-described ARGs populating available databases (15) and requires determination of          

an arbitrary DNA sequence identity cutoff (16), which undermines the possibility of identifying             

novel ARGs although a novel similarity based method has been proposed recently to annotate              

ARGs with low similarity to existing database ARGs (17). Assembly, on the other hand, requires               

deeper and more costly sequencing along with high computational resources (18) and still can              

produce incorrect contigs and chimeric assemblies (19). Thus, it is important to be cautious in               

interpreting results derived from assembly of short sequence reads because of possibility of             

assembly errors and lack of standard means to estimate confidence in accuracy of assembly              

(20-22).  
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In 2014, Oxford Nanopore Technologies (ONT) released the MinION nanopore sequencer that            

provides very long sequence reads averaging 5kb in length (23). It has been reported that               

nanopore can produce sequences with lengths even larger than 100kb (24). A major             

disadvantage of nanopore technology is the high error rate, estimated by Jain et al (2016)               

below 8% (25). However, this error rate represents a marked improvement over an earlier              

estimated error rate of 38% (26), with a general trend towards improved error rates with the                

help of read correction algorithms (27). A recent study demonstrated the potential for             

nanopore technology to produce highly accurate assemblies, with an accuracy of approximately            

95% when applied to whole-genome sequencing (28-30). Nanopore sequencing has also been            

applied for the purposes of shotgun metagenomics, such as identification of viral pathogens             

(31), assessment of microbial diversity in extreme environments (32), and detection of ARGs             

(33-38). To date, nanopore sequencing has not been applied for the purpose of metagenomic              

profiling of ARGs in environmental samples. 

 

Here we introduce NanoARG, a user-friendly online platform that enables comprehensive           

metagenomic profiling of a diverse range of ARGs and other relevant genes in environmental              

samples using nanopore sequencing. In addition to comprehensive ARG profiling, NanoARG also            

provides annotation of metal resistance genes (MRGs), mobile genetic elements (MGEs),           

taxonomic markers, and pathogens, along with interactive visualization of linkages among these            

various elements on the same DNA sequences. To demonstrate the potential of NanoARG for              

environmental ARG profiling, several MinION nanopore sequencing libraries, including         

environmental and clinical samples, were analyzed. The Web service is freely available at             

http://bench.cs.vt.edu/nanoARG/​. It requires a user login and subscription to upload and           

process nanopore sequencing data. 

 

METHODS 

Web Service and Pipeline 
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Figure 1 ​​illustrates the NanoARG architecture. The workflow has three major components : 1) a               

Web interface, where users can upload data and monitor the progress of the analysis ( ​Figure               

1A​​); 2) a RESTful (REpresentational State Transfer) application program interface (API), which            

monitors and sends the raw MinION nanopore sequencing data to a computing cluster for              

processing ( ​Figure 1B​​) and retrieval of results and downstream analyses, such as taxonomic             

annotation, gene co-occurrence analysis, human pathogens detection, network analysis, and          

multiple sample comparisons ( ​Figure 1C​​). Presently the nanopore reads are screened against            

different databases using different omics tools, but this could be adjusted in the future as               

databases and annotation tools improve. Results are stored as Javascript Object Notation            

(JSON) files. Metadata and user information are encrypted and stored in a Mongo database. In               

addition, the entire workflow runs on a large distributed system in the Advanced Research              

Computing (ARC) center at Virginia Tech. The cluster is managed by the qsub queuing system               

(39).  

 

The Web service provided by NanoARG includes several features to facilitate the analysis of              

environmentally-derived metagenomic data obtained from nanopore MinION sequencing.        

Users can submit data to the NanoARG Web service using a simple graphical user interface               

( ​Figure 2A​​). In the current version of NanoARG, data submitted to the system is stored               

privately. To start using the service, users are required to register an account, which allows               

users to manage and control submitted samples and projects. Users can voluntarily share their              

projects with other users by simply adding their email addresses. To create a project, a few                

parameters, such as name, description, and biome ( ​Figure 2B​​), are required. Inside each             

project, users can add new samples, run new analyses, or remove or rerun old samples ( ​Figure                

2C​​).  

 

Required Data Types 

NanoARG requires users to upload nanopore reads in FASTA format (40), assuming that the              

users have already preprocessed the raw fast5 files from the MinION device. This step can be                

done by using a base-calling program such as Albacore (41), Metrichor (23), or Nanocall (42),               
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with a sequence extractor toolkit such as porertools (43). Barcode recognition and read sorting              

by barcodes can be conducted along with base calling. Before submitting data to the system,               

users are required to provide simple metadata consisting of sample name, biome, location, and              

comments and can also manually enter details about the sample extraction if necessary. Then              

following four simple steps (insert metadata, upload files, set up parameters, and execute),             

users can submit raw data and initiate the analysis (​Figure 2A​​).  

 

Data Processing 

Once raw data is uploaded to the computing cluster, it is processed by several modules that                

perform a set of tasks to obtain annotation profiles for ARGs, MGEs, MRGs, and associated taxa                

( ​Figure 3​​). Status of the analysis can be easily monitored through the user interface (​Figure 2C​​).  

 

Clustering of Local Best Hits for Annotating ARGs, MRGs, and MGEs  

Traditionally, the analysis of long sequence reads, such as assembled contigs is commonly             

achieved by first identifying open reading frames (ORFs) within the sequences (44-47) and then              

searching (e.g., BLAST) with the ORFs against a database to perform functional annotation of              

the sequences. While nanopore sequences could be considered long contigs, the high            

sequencing error rate limits the detection of ORFs. Therefore, NanoARG first deploys Diamond             

(48) for database searches (e.g., for MRG annotation, the reference database is an MRG              

database) using the nanopore sequences, then clusters all the local best hits into regions, and               

finally determines the annotation of each region using either the best hit approach or the               

deepARG prediction (17), as shown in ​Figure 4​​. Specifically DIAMOND (48) is run with              

permissive parameters (E-value 1e-5, identity 25%, coverage 40%, and --nk 15000) while            

bedtools (49) is used to cluster the local best hits in each read into regions. The resulting                 

regions/clusters are then annotated for ARGs,  MRGs, and MGEs, as detailed below.  

 

ARG  Module 

Following the clustering procedure of the local best hits to identify putative regions of interest               

( ​Figure 4​​), NanoARG uses the deepARG-LS model, a novel deep learning approach developed by              
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Arango-Argoty et al. (17), to detect and quantify ARGs in the regions. A fundamental advantage               

of the deepARG model is its ability to recognize ARG-like sequences without requiring high              

sequence identity cutoffs, which is especially useful for nanopore sequences with high            

sequencing error rates. The deepARG-LS model is applied with permissive parameters,           

specifically, an identity cutoff of 25%, a coverage of 40%, and a probability of 0.8, to predict                 

that a region corresponds to an ARG.  

 

Abundance of ARG classes and groups is estimated by the copy number of ARGs. To enable the                 

comparison of ARG abundance across samples, analogous to the approach described by Ma et              

al. (46), the copy number of ARGs is normalized to the total Giga base pairs (Gbp) of the sample                   

to obtain the relative abundance of ARGs:  

 

(1), Ai =  C iCg  

 

where corresponds to the total count of ARG (copies of the ARG) and corresponds to C i        i      Cg   

the size of the dataset in Gbp, that is, , where is the total number of nucleotides         /μCg = Γ g   Γ       

in the library and corresponds to 1 Gbp. x 10μg = 1 9   

 

MRG Module 

To annotate MRGs, NanoARG queries the BacMet database (50). Following clustering of the             

local best hits to identify putative regions of interest ( ​Figure 4​​), NanoARG identifies and              

categorizes clusters to MRGs according to their best hits. Absolute (copy numbers) and relative              

abundances of MRGs are computed using ​Equation (1)​​. 

 

MGE Database and Annotation Module 

Intercellular transfer among bacteria is facilitated via MGEs such as transposons and plasmids             

(51). Integrons are also key genetic elements of interest as they facilitate capture of multiple               

ARGS and are often embedded in MGEs, effectively functioning as vehicles for dissemination of              

multidrug resistance (52). The mechanisms involved in horizontal gene transfer include           
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conjugation, transformation, transduction, and homologous recombination where DNA is         

incorporated by transposition, replication, and integration (51). Mobile genetic elements were           

identified from the National Center for Biotechnology Information (NCBI) nonredundant          

database by using a keyword search (53). Thus, genes related to any of the following keywords                

— transposase, transposon, integrase, integron, and recombinase— were labeled as associated           

MGEs. In addition, a set of integrases and class 1 integrons ( ​Int​I1) were added from the                

integron-integrase database (54). All sequences were clustered using CD-HIT (55) with an            

identity of 90%. The resulting MGE database consists of 227,640 genes. Similarly to the              

annotation strategy adopted for MRGs, nanopore reads are annotated using the MGE database             

and relative abundance of MGEs is computed using ​Equation (1)​​. 

 

Taxonomy Annotation Module 

Nanopore reads are classified to their taxonomy lineage using Centrifuge (56), a fast and              

accurate metagenomics classifier that uses the Burrows-Wheeler transform (BWT) and          

FM-index. Centrifuge is executed with default parameters (--min-hitlen 25 -f -k 50). Taxonomy             

relative abundance is estimated in Centrifuge by using an expectation maximization (EM)            

algorithm similar to the one used in Cufflinks (57) and Sailfish (58). This allows the abundance                

estimation to be sensitive to genomes that share nearly identical genomic regions. Therefore,             

each nanopore read is assigned to a particular taxonomy lineage. In addition, nanopore reads              

not successfully processed by Centrifuge were labeled as unknown.  

 

Co-occurrence of ARGs, MGEs, and MRGs 

The long length nanopore reads offer a unique opportunity to explore the context of ARGs in                

terms of co-occurrence and potential for mobility. Unlike ​de novo assembly of short reads into               

longer contigs that might produce chimeric sequences (59), nanopore sequencing yields long            

sequences naturally thus reducing the potential of chimeras. Therefore, nanopore sequencing           

is a powerful tool to identify the coexistence of ARGs, MGEs, and MRGs. This analysis is critical                 

to the understanding of antimicrobial dissemination given that co-occurrence and co-selection           

have been recognized as critically important aspects of ARG spread, where studies have             
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suggested co-occurrence as a mechanism that can facilitate the proliferation of multidrug            

resistance (60-62). In addition, the co-occurrence of ARGs and MGEs enables tracking of             

evidence of genetic events of interest, such as HGT (63), along with the identification of novel                

ARGs, independent from comparison to a reference database (17,64).  

 

To support users in exploring the co-occurrence of ARGs, MGEs, and MRGs in nanopore              

datasets, NanoARG reports all reads that contain at least one ARG along with its neighboring               

genes. This data is presented in a tabular format where each entry contains the start position,                

end position, gene coverage, percent identity, e-value, strand, and taxa corresponding to each             

read. Furthermore, NanoARG provides a gene map that depicts the gene arrangement, which is              

useful for visualizing the gene’s co-occurrence and context. Overall co-occurrence patterns are            

depicted as a network, where nodes represent genes, node sizes represent the number of              

occurrences, edges between nodes represent genes’ co-occurrence, and edge thickness depicts           

the number of times the co-occurrence pattern is observed in the data set. Links among nodes                

are added according to their co-occurrence among the nanopore reads. The network is             

rendered using cytoscape.js (65). 

 

World Health Organization Priority Pathogens 

The World Health Organization published a list of pathogens that are of particular concern with               

respect to the spread of antimicrobial resistance (66). This list consists of three priority tiers,               

namely, critical, high, and medium, as described in ​Table 1 ​​. Similarly, the ESKAPE database              

houses multidrug bacterial pathogens that are critical to human health (67). These two             

resources are employed by NanoARG to identify the presence of critical pathogens in the              

nanopore sample. Nanopore reads are matched against the critical pathogens by examining the             

NCBI Taxa identifier downloaded from the NCBI taxonomy Web site.  

 

Test Run of NanoARG with Eight Nanopore Sequencing Data Sets 

To demonstrate NanoARG’s capability for profiling ARGs, four DNA extracts obtained from            

three different wastewater treatment plant (WWTP) were sequenced using the MinION           
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nanopore sequencing platform and analyzed using NanoARG. In addition, four          

publicly-available nanopore metagenomic data sets were downloaded and analyzed as detailed           

below. 

 

Nanopore Sequencing of WWTP Samples 

Four WWTP samples (two influent, two activated sludge) were collected from three WWTPs             

located in Hong Kong (HK_INF and HK_AS), Switzerland (CHE_INF), and India (IND_AS).            

Immediately after collection at the WWTPs, samples were kept on ice and transported to the               

laboratory for processing within 12 hours. Influent samples (1 L) were split into 3 equal               

volumes, each filtered onto one 0.22 um membrane filter (Millipore, mixed cellulose ester),             

which was preserved in 1.5 ml 50% ethanol and stored in -20C until DNA extraction. Activated                

sludge samples (triplicates of 0.5 ml) were mixed with equal volume of 100% ethanol and               

stored at -20C until DNA extraction. For DNA extraction, filters were torn into small pieces and                

biomass preserved in ethanol was pelleted by centrifugation (5,000 x g, 10 min) followed              

removal of ethanol by decanting and pipetting. DNA was extracted with Fast DNA SPIN Kit for                

Soil (MP Biomedicals) following the manufacturer’s protocol. DNA concentration was quantified           

with the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). DNA for each sample was pooled                

from triplicate extractions with equal mass. Pooled DNA was purified with Genomic DNA Clean              

& Concentrator kit (Zymo Research, Irvine, CA). The purity of DNA was then checked using a                

NanoPhotometer Pearl (Implen, Westlake Village, CA) via the two ratios of A260/280 and             

A230/260. Each DNA sample (1000 ng) was prepared individually for sequencing using the 1D              

Native Barcoding Genomic DNA kit (with EXP NBD103 & SQK-LSK108) (Oxford Nanopore            

Technology) following the manufacturer’s protocol. Each sample was sequenced with a R9.4            

flow cell for 24-48 hours without local base calling. 

 

Heavily Infected Urine Samples (HIU) 

Publicly-available MinION data sets obtained from heavily infected urine downloaded from the            

European Nucleotide Archive (ENA) with the accession study number ​PRJEB16761 (34). Briefly,            

this library consists of urine obtained from a healthy subject spiked with MDR ​E. coli and an ​E.                  
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coli strain cultivated from a heavily infected urine from the same study. The sample was               

sequenced within 48 hours. Details about the sampling methodology can be found in (34). 

 

Arctic Glacier Extreme Metagenome (GEM)  

This data set was derived from a mixture of samples collected from Arctic cryoconite, located in                

an unnamed northern outlet glacier in central Svalbard (32). Nine samples were downloaded             

from the NCBI portal under the accession number PRJEB24565 and were combined into one              

large file that was further processed on the NanoARG Web service.  

 

Metagenomic Hospital Fecal Sample (HFS) 

This sample consists of DNA extracted from fecal samples of a patient treated with              

cephalosporins, flucloxacillin, bramycin (an aminoglycoside antibiotic), and colistin (a polymyxin          

antibiotic) during an ICU care at the University Medical Center Utrecht in the Netherlands. Such               

treatment was carried out to treat the patient against gut colonization by nosocomial             

pathogens. In addition, the construction of the metagenomic library was done by a functional              

metagenomics approach that included a plasmid expression library supplemented with          

antibiotics, amplified with PCR, and sequenced with the MinION nanopore sequencer. Details            

about the sequencing protocol can be found in (68).  

 

Metagenomic Lettuce Spiked ​​Salmonella ​​Sample (LSS) 

This library was constructed by inoculating ​Salmonella into food samples, including raw chicken             

breast, iceberg lettuce, black peppercorns, and peanut butter. The MinION nanopore sequencer            

was used to detect the presence of pathogens and was run for 1.5 hours after enrichment.                

Details about the library construction can be found at (69). 

 

RESULTS AND DISCUSSION 

 
NanoARG is an online computational resource designed to process long DNA sequences for the              

purposes of annotating ARGs, MGEs, MRGs, and taxonomy. A variety of publication-ready            
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figures and tables derived from these annotations can be readily produced facilitating various             

dimensions of sample comparison. 

 
Visualization and Data Download 

The NanoARG service provides a range of visualization options; including bar charts ( ​Figure 5A​​),              

tables ( ​Figure 5B​​), gene mapping charts ( ​Figure 5C​​), and co-occurrence networks ( ​Figure 5D ​​),             

displaying individual and combined analyses of ARGs, MGEs, and MRGs. Results can be easily              

downloaded from the tables and can be configured to include all data, without any filtering.               

This enables users to deploy their own filtering criteria and customize their analyses.  

 

Effect of Error Correction in the Detection of ARGs 

To examine the effect of error correction in the detection of ARGs by nanoARG, nanopore               

sequences of the HFS sample with and without error correction were used. The complete              

dataset (Library B) was downloaded from the poreFUME repository including the raw nanopore             

reads (HFS-raw) along with the corrected reads after the poreFUME pipeline (HFS-poreFUME).            

In addition, the raw nanopore reads were also corrected (HFS-CANU) using the correction             

module from the CANU assembler. These three datasets were submitted to the nanoARG             

pipeline for annotation. Because the HFS dataset does not correspond to a direct             

metagenomics sample, the ARGs diversity is limited to the ARGs expected by the experimental              

design. ARGs with high number of hits are referred as “high coverage” ARGs whereas those               

with few hits are referred as “low coverage” ARGs.  

 

Figure 6A shows that the alignment bitscore of all the ARGs is increased after read correction                

by both canu and poreFUME algorithms compared to the raw uncorrected reads . In particular,               

for the CANU-correct algorithm, the bitscores of “high coverage” ARGs such as CTX-M, TEM,              

aad ​A, aac(6’)-I and ​erm ​B ARGs were significantly improved ( ​Figure 6B-D​​) compared to the raw              

reads. Similarly, the bitscores of “low coverage” ARGs such as CARB, ​erm ​F, ​fos​A3, ​mel​, and ​tet​Q                

also show an improvement after read correction ( ​Figure 6E-G​​).  
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Figure 6H ​​depicts the intersection of ARG annotation by nanoARG among the three datasets              

(HFS-raw, HFS-CANU, HFS-poreFUME). ARGs with a minimum coverage of 80% and an identity             

greater than 30% were used for this comparison. Altogether 22 unique ARGs were detected in               

the HFS-poreFUME dataset, 32 for the HFS-raw dataset, and 33 for the HFS-CANU dataset. Out               

of the 22 ARGs detected in HFS-poreFUME two ARGs ( ​abe​S and CARB) were not identified in                

the HFS-raw sample. Further examination revealed that these genes were actually detected in             

the HFS-raw dataset but were removed after applying the filtering criteria described above.             

These two genes were also detected after the error correction step (HFS-CANU), indeed, all              

ARGs that were detected in HSF-poreFUME were also identified after applying the error             

correction algorithm with CANU. Although there were three uniquely identified ARGs in the             

HFS-raw dataset (FosC2, LuxR, ​emr ​K) and four uniquely identified ARGs after CANU correct             

(CARB, OXY, ​abe​S, ​van​H), the results show that there was a transition in the annotation from                

raw to corrected reads. Thus, after comparing the ARG-containing regions within the sequences             

in the reads, it was observed that those regions were reassigned to ARGs with higher               

alignment/classification scores after correction. For instance, the raw reads containing the           

CTX-M gene were reassigned to the OXY gene with higher alignment scores in the HFS-CANU               

dataset. The CARB gene was detected in both HFS-raw and HFS-CANU datasets. However, the              

coverage of this gene in the HFS-raw dataset was below the 80% cutoff used for the analysis                 

and therefore removed from the list, whereas it was successfully detected in the HFS-CANU              

dataset, showing an improvement in the coverage of the alignments. The reads containing the              

fos​C2 gene in the HFS-raw sample were reassigned to the ​fos​A gene in the HFS-CANU dataset                

with higher alignment bitscores (73 to 126.3, respectively). Interestingly, the vanH gene was             

detected exclusively on the HFS-CANU dataset. These results show that the correction step             

enhances the detection of ARGs in MinION nanopore sequencing samples. 

 

Note that HFS is not a metagenomics sample sequenced directly from the fecal sample.              

Therefore, to analyze the effect of read correction for metagenomic samples obtained directly             

from the targeted environment, one WWTP sample was used to analyze the effect of the error                

correction algorithm. The influent sample from Switzerland (CHE_INF) was processed using           
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CANU correct and submitted along with the raw datasets to nanoARG for annotation. Because              

of dependency errors present during the execution of the poreFUME pipeline, poreFUME was             

not performed for the analysis. ​Figure 7A shows the bitscore distribution of the ARG alignments               

for both raw and corrected reads. It is noticeable that the correction algorithm did not improve                

significantly ( ​p​=0.22) the overall ARGs bitscore of the alignments in the WWTP sample. ​Figure              

7B shows the intersection of the detected ARGs for the WWTP sample with and without               

correction, indeed most of ARGs were detected by nanoARG in both raw and corrected reads,               

only three ARGs were not detected in the raw reads but were detected after read correction                

(OKP-A, ​bcr​A, ​otr​C). To see the effect of coverage depth for each ARG, a closer look at the                  

individual ARGs does not show an enhancement of alignment scores for genes with the highest               

number of hits such as ​omp​R, ​mex ​T ( ​Figure 7C-D​​), as well for ARGs with low number of hits,                  

such as ​sul ​1, ​kdp ​E ( ​Figure 7E-F)​​. Because the overlap between the detected ARGs in the raw                

and corrected reads is greater than 95% ( ​Figure 7B ​​), nanoARG does not perform error              

correction and let users decide whether to upload raw, corrected reads or assembled contigs.              

In the nanoARG website users can find information on how to perform the error correction               

using CANU. 

 

To check the effect of time and the consistency for the discovery of ARGs in nanopore samples                 

using nanoARG, several datasets from the LSS sample were analyzed. In detail, the lettuce              

spiked with ​Salmonella enterica (LSS) study comprised the following datasets: LSS-WGS (whole            

genome sequencing), LSS-M (shotgun metagenomics), LSS-1.5hN (nanopore sequencing after         

1.5 hours) and LSS-48hN (nanopore sequencing after 48 hours). To compare and analyze these              

datasets, the short reads from LSS_WGS and LSS-M were first assembled using spades with              

default parameters. Then, the assembled scaffolds were submitted to nanoARG for annotation.            

On the other hand, MinION nanopore sequencing libraries were first error corrected using             

CANU correct algorithm and then submitted to the nanoARG pipeline. To evaluate the ability of               

nanoARG to detect “true” ARGs, nanoARG results from Illumina were compared against the             

results from the nanopore sequencing. True ARGs are defined here as alignments with an              

identity greater than 80% and an alignment coverage greater than 90% from the LSS-WGS              
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sample. Thus, a total 28 ARGs pass the filtering criteria. Out of the 28 ARGs, two genes ( ​mdt​B                  

and ​bcr​) were not detected by the shotgun metagenomics illumina sample (LSS-M). When             

comparing the true ARGs set against the 1.5h nanopore LSS-1.5hN sample, only four true ARGs               

were detected (aac(6')-I, ​mdf ​A, ​mdt​G, ​mdt​M). This suggests that although nanopore sequencing            

offers a real time streaming alternative, the detection of specific ARGs would still take several               

hours. Then, when comparing the true ARGs against the 48h nanopore sample (LSS-15hN), 25              

out of the 28 true ARGs were discovered indicating the success of nanopore sequencing for the                

detection of ARGs. Interestingly, ​mdt ​B, one of the three undiscovered true ARGs ( ​mdt ​A, ​mdt​B              

and ​mdt​C) from the LSS-48hN was not found by either the illumina shotgun metagenomics              

sample (LSS-M) and the nanopore samples. These three ARGs belong to the same antibiotic              

resistance mechanism. This analysis shows consistency between the illumina and nanopore           

sequencing libraries in the detection of ARGs.  

 

Multiple Sample Comparison: Test Cases 

NanoARG provides users with a master table that contains the absolute and relative             

abundances of ARGs, MRGs, MGEs, and taxonomy annotations for each sample under a             

particular project. Relative abundances are computed as described in Equation 1. This table             

includes  

 
ARG Abundance 

WWTP samples contained the greatest number of reads (> ​687,835 ​), whereas human-derived            

samples (HIU, HFS) were comprised of much fewer reads (< ​67,658) (See ​Table 2 ​​for details).               

Relative abundances of ARGs across the analyzed data sets are compared in ​Figure 8​​. Notably,               

human derived samples (HIU, HFS) ranked the greatest number of ARGs per Gb. Particularly,              

HFS had the highest relative ARG abundance, which is likely related to the sample preparation               

approach, which intentionally targeted genomic content associated with antibiotic resistance          

(68). On the other hand, the environmental metagenomic samples ranked much lower ARG             

relative abundance compared to the hospital and spiked food sample (LSS). Among the WWTP              

samples, Hong Kong Influent and Hong Kong Effluent ranked the greatest in terms of relative               

abundance of ARGs.  
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In considering specific subcategories of resistance, the human fecal sample (HFS) contained the             

greatest relative abundances of beta lactamase, aminoglycoside, tetracycline, trimethoprim,         

fosfomycin, streptothricin, quinolone, and MLS antibiotic classes ( ​Figure 8​​). Note that these            

categories were also prominent in the WWTP and glacier samples, but to a lesser extent than in                 

the hospital derived samples (HIU) and the ​Salmonella​-spiked lettuce sample (LSS). In addition,             

although the multidrug category is highly abundant in HIU and LSS, it was the lowest relative                

abundance in the HFS sample. Interestingly, although HFS contained the highest relative            

abundance of total ARGs, the WWTP samples indicated the highest diversity of antibiotic             

classes compared to other samples. For instance, ​sul1 ​was one of the most prevalent genes in                

WWTP samples (70), but was not found in the glacier sample. This is consistent with the ​sul​1                 

gene being an anthropogenic marker of antibiotic resistance (71,72). Similarly, the low diversity             

of beta lactamase genes in GEM (4 beta lactamase ARgs) relative to the WWTP environments               

(from 25 to 237 beta lactamase ARGs). ARGs from acriflavine, triclosan, aminocoumarin,            

tetracenomycin, rifampin ​, ​and ​puromycin ​antibiotic classes were only detected in the WWTP            

and LSS samples. Interestingly, ARGs derived from acriflavine (a topical antiseptic and            

disinfectant chemical) were detected in the WWTP activated sludge from Hong Kong, but not              

the influent. This class is also detected in the influent sample from the Switzerland WWTP. In                

addition, for the LSS sample, acriflavine ARGs ranked the highest relative abundance. Hong             

Kong WWTP influent and activated sludge indicated the highest relative abundance of ARGs             

compared to Indian activated sludge (IND_AS) and Switzerland influent (CHE_INF) ( ​Figure 9A​​).            

Particularly, the Hong Kong sample showed a decrease in the abundance of multidrug and              

aminoglycoside resistance genes in the activated sludge sample, but an increase in the             

beta-lactamase​, MLS, ​and ​trimethoprim ARGs. In addition Indian activated sludge (IND_AS)           

ranked the highest in relative abundance of sulfonamide ARGs.  

 

MGE Abundance 

NanoARG comprises a collection of genes related to mobility including: transposases,           

integrases, recombinases, integrons, in addition to a curated database for the class 1 integron              
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intI ​1 (54). Transposases are the prominent MGEs across all samples ( ​Figure 9B​​). Interestingly,             

the human-derived functional metagenomic sample (HFS) shows the lowest MGEs relative           

abundance. The ​salmonella​-spiked sample along with the heavily infected urine sample, show a             

lower MGEs relative abundance compared to the environmental samples (WWTP and glacier).            

Note that the glacier sample GEM has the lowest MGEs abundance compared to the WWTP               

samples. Interestingly, GEM also has the lowest diversity of MGEs (integrases, transposases,            

and other MGEs) when compared to other samples. This indicates that bacteria in this              

environment are not under the same pressure as the microbes from WWTP. On the other hand,                

a closer look at the class 1 integron ​int​I1, one of the major players in the spread of antibiotic                   

resistance (52), shows a different trending. The integron ​intI ​1 is present in all samples except in                

the glacier (GEM), likely because glaciers are not under anthropogenic pressure such as             

antibiotics usage or wastewater discharges. In addition, ​int​I1 is ranked with the highest relative              

abundance on the heavily infected urine sample (HIU) which is expected given the clinical              

context of the sample. Also, ​int ​I1 is highly ranked in the India activated sludge sample               

compared to any other WWTP sample. This suggest that the India sample is under a higher                

anthropogenic pressure compared to the others WWTP samples resembling the uncontrolled           

usage of antibiotics in India (73). Noticeable, in the Hong Kong samples, the ​intI​1 gene shows a                 

decrease in relative abundance from influent to activated sludge.  

 

MRG Abundance 

MRG profiles were markedly distinct when comparing trends among samples, relative to ARG             

profiles. The HFS sample has the lowest number of MRGs, with only ​merP and ​merT, part of the                  

mercury transport mechanism (50) detected ( ​Figure 9C ​​). In contrast, LSS and HIU samples             

carried the highest relative abundance of MRGs. Note that HFS is not a direct metagenomic               

sample, but instead, the raw fecal DNA sample was processed through a plasmid expression              

library, a transformation cell library, and antibiotic exposure (68). Therefore, the lack of MRGs              

in HFS could be the result of library preparation. In addition, the HFS sample carried high beta                 

lactamase​, ​aminoglycoside​, ​tetracycline​, ​and ​MLS abundance, contrasting with low multidrug          

relative abundance. WWTP samples show a different trend compared to MGEs and ARGs.             
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Specifically, the Switzerland influent sample (CHE_INF) has the lowest relative abundance of            

MRGs compared to other WWTP samples. Although, CHE_INF has also the lowest ARG relative              

abundance, its MRG abundance is below half of any other WWTP sample, suggesting that the               

Switzerland influent WWTP sample has less exposure to heavy metal compounds.  

 

Taxonomy Profile 

The heavily infected urine sample (HIU) shows ​Escherichia ​coli as the dominant species, ​which is               

expected given that this particular metagenome consists of a spiked MDR E. ​coli ​strain ​with               

urine from a healthy patient (34) (see ​Figure 10D​​). Similarly, the metagenome from food              

sample (LSS) consists of a ​Salmonella ​enterica contaminated sample (69). As a result,             

Salmonella enterica is the most abundant followed closely by a ​synthetic construct that refers              

to artificial samples containing a mixture of different strains (see ​Figure 10C​​). The results of the                

HFS sample are interesting because of its library construction. First, the main goal of the study                

(33) does not consist to build a taxonomy profile, but, to detect ARGs. Thus, the nanopore                

sequencing is not carried out directly from the source environment, but, it is subject to a                

specific library preparation (metagenomic sample is transformed into a E. ​coli expression host)             

that can transform the original microbial composition. The observed taxonomy annotation of            

HFS consists of a mixture of ​E. coli and other taxas (see ​Figure 10B​​). Still, NanoARG is able to                   

determine species such as ​Escherichia. coli, Klebsiella pneumoniae, Serratia marcescens, ​and           

Enterococcus faecium, among others. When performing nanopore sequencing for         

metagenomes, it is inevitable to observe host DNA. The species distribution in the WWTP              

samples (see ​Figure 10E-H​​) shows clearly that these samples contain a large amount of human               

DNA, in particular, in the Hong Kong WWTP samples, ​Homo sapiens is the dominant species               

(see ​Figure 10F-G​​). This host DNA is also observed to a lesser extent in the spiked samples (LSS,                  

HIU). Surprisingly, the HFS sample does not contain any human DNAs, which shows the              

capabilities of the library preparation, which can be considered as a powerful tool to profile the                

microbial resistome. Whether it is feasible or not, the use of this strategy for environmental               

metagenomics needs further examination. 
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ARG Context of Nanopore Reads 

Long nanopore sequences allow the inspection of ARG linkage patterns and their neighboring             

contexts. For instance, ​Figure 11 ​​shows that ​​the sulfonamide resistance gene ​sul1 ​appears in              

different contexts depending on the wastewater treatment samples and its host. Also ​sul1 ​is              

almost all the time around an ​integrase/recombinase ​along with genes that have been found in               

plasmids, indicating its great potential in horizontal gene transfer. A commonly observed ​sul1             

pattern (74), also identified by NanoARG, consists of an ​integrase/recombinase ​gene, followed            

by an aminoglycoside ( ​aadA​) gene, a determinant of quaternary ammonium compound           

resistance gene ( ​qacE ​), and ​sul1​. Interestingly, this pattern seems to be modified in E. coli from                

India and Hong Kong activated sludge environments where the ​integrase/recombinase and the            

aadA ​region is interrupted by the insertion of a beta lactamase ( ​OXA​) gene. This linkage pattern                

differs from the one observed in ​Hydrogenophaga sp. PBC ​from the Switzerland influent ​. The                

contexts of ​sul1 ​in Hong Kong influent and activated sludge samples suggest that the activated               

sludge process induces the integration of beta lactamase ( ​OXA​) and aminoglycoside ( ​aadA,            

ant3ia​) genes.  

Figure 12 shows the ARG co-occurrence network for all samples. ARGs are linked if they               

co-occur within the same read and ARGs that appear only once are not shown. Compared to                

other samples, GEM has the smaller number of ARGs, belonging to only multidrug and              

trimethoprim classes, and also there is no co-occurrence between these antibiotic categories            

( ​Figure 12A​​). Note that WWTP samples show a common pattern of co-occurrence between             

beta-lactamases and aminoglycoside genes, indicating the high potential of these genes to be             

carried simultaneously. Interestingly, ​sul1 ​seems to be more abundant in the activated sludge             

(HK_AS, IND_AS) than in the influent samples (HK_INF and CHE_INF). HFS sample shows that              

trimethoprim and streptothricin genes have preference to co-occur with the ​aad​A1 integron            

aminoglycoside gene. HFS sample is dominated by aminoglycosides and beta lactamase genes,            

whereas LSS is dominated by multidrug genes and glycopeptide genes.  
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The ​sul1 ​gene analysis is only one example on how NanoARG facilitates the inspection of any                

ARG present in the samples. Users can dig deeper different patterns to discover signals of ARG                

dissemination. The full co-occurrence result  can be downloaded for further  analysis.  

 

Critical Bacterial Pathogens  

Another important feature of NanoARG is the identification of critical important bacterial            

pathogens (see ​Table 1 ​​) and their association with ARGs. For instance, two of the three most                

critical pathogens, ​Acinetobacter baumannii ​and ​Pseudomonas aeruginosa​, are found in all           

wastewater treatment samples (see ​Table 3 ​​), whereas ​Enterobacteriaceae        

(carbapenem-resistant pathogen) is found only in the Hong Kong Influent sample. This            

pathogen carries a multidrug ( ​mdtD​), an aminoglycoside ( ​strA​) and a recombinase gene. In             

addition, the Hong Kong influent sample contains the Neisseria gonorrhoeae ​pathogen that            

carries the ​mtrE, mtrD, mtrC, cpxr (multidrug), ​pbp2b (beta lactamase), and uppP (bacitracin)             

genes. However, no MGEs are found along with these ARGs, indicating no imminent risk of               

lateral transfer of ARGs . ​Pseudomonas aeruginosa ​seems to be the most abundant critical              

pathogen across all samples and is particularly abundant in the India activated sludge sample.              

Interestingly, no pathogens are found in the glacier (GEM) sample.  

 

The analysis of critical important pathogens in NanoARG provides a way to narrow down the               

analysis of ARGs for information considered a top priority for human health. Keeping track of               

ARGs in pathogens and their associations in different environments can help the understanding             

of the dissemination of ARGs.  

 

Data Access and Web Service 

As shown above, the NanoARG server provides users with a wide variety of analyses for ARG,                

MGE, MRG, and taxonomy annotations. NanoARG also provides several types of visualizations            

to interpret the results. In addition, NanoARG allows users to download the results (e.g.,              

absolute/relative abundances, co-occurrence network associations, taxonomy annotations, and        

ARG context patterns) in a tabular format containing the fields required for tuning the results               

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/483248doi: bioRxiv preprint 

https://doi.org/10.1101/483248
http://creativecommons.org/licenses/by/4.0/


 

(E-value, identity percentage, and coverage). These tables can be used for further processing             

and statistical analysis. NanoARG core computation is carried out by a high performance             

computing cluster at Virginia Tech under the Advanced Research Computing center           

( ​http://arc.vt.edu)​, enabling fast and efficient processing of the nanopore reads. The NanoARG            

Website is developed using the Google Angular 5 framework ( ​https://angular.io ), the back-end             

is developed under the node.js framework ( ​https://nodejs.org/en/​). Finally, the computing          

pipeline is developed using the Luigi framework, allowing the monitoring and rescheduling of             

jobs failed during execution (https://github.com/spotify/luigi). 

 

NanoARG Usage Recommendation 

Note that the various analyses provided by NanoARG are not restricted to nanopore sequencing              

reads. In fact, NanoARG can be applied to any set of long sequences. For instance, sequences                

from different technologies such as PacBio long-read sequencing or assembled contigs from            

short sequencing reads can be directly processed in NanoARG. Depending on specific research             

needs, different studies may have different requirements, e.g., some require more stringent            

criteria whereas others less. Thus, to allow for flexibility and customization, NanoARG provides             

users results produced by relaxed annotation parameters so that users can filter the results              

further for their own analyses.  

 

CONCLUSIONS 

NanoARG is a public Web service dedicated to the analysis of antibiotic resistance genes from               

nanopore MinION metagenomes. This platform has been developed to analyze environmental           

metagenomes from MinION nanopore sequencing reads. However, it is not restricted to this             

type of data. As shown in the analysis of real data, NanoARG can be used to profile the                  

antimicrobial resistance of any biome. Indeed, NanoARG could be used to analyze any set of               

long sequences (e.g., assembled contigs). Its user friendly interface makes it easy to process a               

new sample as well as retrieve the results. Unlike other services such as WIMP (What Is In My                  

Pocket) dedicated exclusively to antimicrobial resistance, NanoARG offers the analysis of heavy            
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metal resistance genes, mobile genetic elements, taxonomy annotation, identification of critical           

pathogens, and co-occurrence networks. In addition, NanoARG is the first Web service devoted             

to the analysis of environmental samples. This pipeline uses deepARG, a novel approach for              

identifying ARGs from metagenomes and implements a local strategy to annotate genes from             

long nanopore reads. It uses a set of permissive parameters that allows high flexibility to detect                

homologous genes, which is important because of the high error rate within nanopore             

sequences. 
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FIGURES 

 

Figure 1​​: the NanoARG architecture . ​A) Frontend is the link between the users and the analysis                 
by allowing users to upload raw data and visualize results. ​B) ​​A backend RESTful API that                
manages the data, triggers the analysis and monitors the status of the analysis. ​C) Computing               
cluster is the module that process the data with ARG, MGE, MRG and taxonomy profiling.  
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Figure 2​​: User Interface. ​A) steps and metadata required to upload samples to NanoARG. ​B)               
Projects are organized based on the creation date and visualized as a timeline post. ​C) List of                 
samples under a project displaying basic metadata (Biome), the monitor variable (Status) and             
the three actions that can be performed by users.  
 

 
Figure 3​​: General overview of the NanoARG pipeline. FASTA input reads are processed by five               
modules to annotate reads according to ARGs, MRGs, MGEs, other functional genes and             
taxonomy. Annotations are then processed through several stages to obtain the different            
analysis (relative abundance, network analysis, co-occurrence, and critical important         
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pathogens). All the analysis are packed into a JavaScript Object Notation (JSON) file that can be                
easily streamed using a http request.  
 
 

 
Figure 4​​: Annotation pipelines. ​A) Identification of ARGs: Input nanopore reads are aligned to              
the deepARG database using DIAMOND. Alignments are clustered based on their location and             
annotations are performed using the deepARG-LS model. ​B) Local Best Hit Approach:            
Identification of the functional genes within the nanopore reads. Alignments are clustered            
based on their location and the best hit for each cluster is selected, then, alignments are                
filtered out based on sequence alignment quality. 
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Figure 5​​: Visualization of NanoARG report. A) Absolute abundances (read counts) are shown as              
barcharts as well as read length distribution and taxonomy counts. ​B) Tabular data: Results are               
also shown in tables containing all the relevant information for each annotation (E-value,             
coverage, identity, strand, taxonomy, group, etc.). ​C) Nanopore Read Map: This visualization            
organize the gene matches in a linear format showing the co-occurrence patterns for each              
nanopore read with at least one ARG. ​D) Co-occurrence Network of ARGs, MGEs, MRGs: This               
interactive visualization allows users to drag and drop nodes to visualize the co-occurrence             
patterns in the sample.  
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Figure 6​​: Comparison of error correction in a functional metagenomics sample. Comparison            
against raw reads and error corrected reads using CANU correct and poreFUME. P-values are              
computed between the different distributions using a simple T-Test. ​A) bitscore distribution of             
all ARG alignments. ​B-D​​) Comparison between raw and corrected reads using CANU correct for              
ARGs with high depth. ​E-F) ​​Bitscore distribution for raw and corrected reads for low depth               
ARGs. ​G) Venn diagram showing discovered ARGs by raw and corrected reads by CANU and               
poreFUME. *Because poreFUME couldn’t ran due to library dependency errors, ​Figure 6B-G            
contain the transition of quality distribution when comparing CANU-correct and the raw reads 
 
 

 
Figure 7​​: Effect of error correction in an environmental influent WWTP sample. ​A) Bitscore              
distribution for all ARGs detected by nanoARG using the raw and CANU corrected reads. ​B)               
Venn diagram showing the intersection of detected ARGs from raw and corrected reads. ​C-D)              
Examples of the effect of correction in individual ARGs with high number of hits comparing the                
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raw and corrected reads. ​E-F) ​​Effect of correction in ARGs with few hits from the raw and                 
corrected datasets. 
 
 

 
Figure 8​​: Total relative abundance of antimicrobial resistance genes from the four analyzed             
biomes. Wastewater treatment plant samples are zoomed to better discriminate differences           
from the ARG content in each sample.  
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Figure 9​​: Relative abundance of antibiotic classes for all biomes. Each point corresponds to a               
particular antibiotic, biome pair. Size and color represent the copy number of ARG divided by 1                
Gbp in a logarithmic scale. 
 
 

 
Figure 10​​: Relative abundance computed as copy of genes by 1Gpb of ​A) Antibiotic resistance               
classes, ​B) ​​ Mobile genetic elements, ​C)​​ Metal resistance genes. 
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Figure 11​​: Taxonomy distribution of studied biomes. A) Phylum distribution of WWTP samples.             
B-H) bar plots with the total number of reads classified at the ​Species taxonomy level of all                 
studied biomes.  
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Figure 12​​: ARG patterns and contexts. Different patterns of ARGs for the wastewater treatment              
samples (influent and activated sludge). I/R: integrase/recombinase, sul1*: Uncharacterized         
protein in sul13’ region. ​aqcE: Quaternary ammonium compound-resistance protein, Eth*:          
Putative ethidium bromide resistance protein. 
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Importance Pathogen Confer Resistance to 

Critical Acinetobacter baumannii carbapenem 

 Pseudomonas aeruginosa carbapenem 

 Enterobacteriaceae carbapenem, ESBL-producing 

   

   

High Enterococcus faecium vancomycin 

 Staphylococcus aureus methicillin, vancomycin 

 Helicobacter pylori clarithromycin 

 Campylobacter spp fluoroquinolone 

 Salmonellae fluoroquinolone 

 Neisseria gonorrhoeae cephalosporin, fluoroquinolone 

   

Medium Streptococcus pneumoniae penicillin 

 Haemophilus influenzae ampicillin 

 Shigella spp fluoroquinolone 

 
Table 1 ​​: List of twelve families of bacteria considered to be antimicrobial resistant priority              
pathogens by the World Health Organization (WHO). Pathogens are classified into three            
categories according to the impact on human health and need for new antibiotics.  
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Sample Name Biome Acronyms 
Number of 

Reads 
Reference 

Hong Kong Activated 

Sludge 
Wastewater HK_AS 3307368 This study 

Hong Kong Influent Wastewater HK_INF 2724813 This study 

Switzerland Influent Wastewater CHE_INF 687835 This study 

India Activated 

Sludge 
Wastewater IND_INF 1925639 This study 

Arctic Glacier 

Extreme 

Metagenome 

Glacier GEM 344966 Edwards, 2016 

Heavily infected 

Urine 

Human 

associated 
HIU 36510 Schmidt, 2017 

Hospital Fecal 

Sample 

Human 

associated 
HFS 67658 

van der Helm, 

2017 

Lettuce Spiked 

Salmonella 
Plant surface LSS 211806 Hyeon, 2018 

 
Table 2​​:  Sample collection, metadata and total number of reads for all samples. 
 
 
Table 3 ​​: List of critical important bacterial pathogens found in the wastewater treatment             
samples. 
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