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Abstract

Despite the rapidly increasing amount of data in public mass spectrometry repositories, peptide mass spectra

are usually analyzed by each laboratory in isolation, treating each experiment as if it has no relationship to

any others. This approach fails to exploit the wealth of existing, previously analyzed mass spectrometry data.

Alternatively, although large spectral data can be jointly analyzed using spectrum clustering methods, this

unsupervised approach does not utilize information from peptide identifications. Here, we propose to train a

deep neural network in a supervised fashion based on previous assignments of peptides to spectra. The network,

called “GLEAMS,” learns to embed spectra into a low-dimensional space in which spectra generated by the

same peptide are close to one another. We empirically demonstrate the utility of this learned embedding

by propagating annotations from labeled to unlabeled spectra. We further use GLEAMS as the basis for a

large-scale spectral clustering, detecting groups of unidentified, proximal spectra representing the same peptide,

and we show how to use these clusters to explore the dark proteome of repeatedly observed yet consistently

unidentified mass spectra. We provide a software implementation of our approach, along with a tool to quickly

embed additional spectra using a pre-trained model, to facilitate large-scale analyses.

Keywords: mass spectrometry, proteomics, machine learning, deep learning

1 Introduction

Since the publication of the SEQUEST search algorithm in 1994,1 the dominant approach to assigning peptide

sequences to tandem mass spectrometry (MS/MS) data has been to derive a list of candidates for each spectrum
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from a database, generate a theoretical spectrum for each candidate, and then score each putative peptide-

spectrum match (PSM) based on the similarity between the observed and theoretical spectrum fragments.

Major advances have been made in search algorithm development and various downstream analyses,2 but an

individual lab searching their spectra against a sequence database remains the dominant paradigm for MS/MS

spectrum identification.

Over the last decade, public proteomics repositories such as the PRoteomics IDEntifications (PRIDE) database3

and MassIVE have grown to include billions of MS/MS spectra from tens of thousands of assays. As these

repositories have become more comprehensive, efforts have been undertaken to make the spectra useful to

researchers analyzing new datasets. Some approaches, such as PeptideAtlas,4 the Global Proteome Machine

Database,5 and MassIVE,6 involve re-searching the spectra using a common workflow. Typically, the output

of the analysis is a spectral library, in which sets of spectra corresponding to the same peptide sequence are

condensed into a single spectrum either by averaging or selecting a single, representative spectrum per peptide.

The spectral library can then be used to analyze new datasets using a search algorithm. A drawback to

any method that relies on standard database searching, however, is that prior to false discovery rate (FDR)

estimation each spectrum is treated as an independent observation. By failing to jointly consider all of the

spectra together during the assignment of peptides to spectra, these pipelines miss out on the opportunity to

exploit valuable structure in the data.

An alternative to simple re-searching of the data is to employ clustering algorithms, several of which have been

developed specifically for clustering mass spectra, including MS-Cluster,7 spectra-cluster,8,9 MaRaCluster,10

msCRUSH,11 and falcon.12 Although spectra-cluster and MS-Cluster have been used to process hundreds of

millions of spectra from PRIDE8,9 and MassIVE,6 respectively, in practice, however, it remains challenging to

apply these methods on the repository scale. Furthermore, clustering approaches are limited in their ability to

incorporate new data sets. Although new spectra that correspond to previously detected peptides can easily

be added to the corresponding clusters, and some greedy clustering methods can use newly acquired spectra

to create new clusters by merging existing ones,6 running an entire clustering algorithm from scratch is an

extremely expensive operation that becomes progressively more expensive as the repository grows.

More fundamentally, clustering is problematic because it is an unsupervised approach. The input to a clustering

algorithm is an unlabeled set of spectra. In practice, the labels (i.e. the associated peptide sequences) are used

only in a post hoc fashion, to choose how many clusters to produce or to split up large clusters associated with

multiple peptides. In recent years, a revolution has occurred in machine learning, with deep neural networks

proving to have applicability across a wide array of problems.13 Accordingly, within the field of proteomics,

deep neural networks have recently been applied to several problems, including de novo peptide sequencing14,15

and simulating MS/MS spectra.16,17 However, to our knowledge no one has yet applied deep neural networks to
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the problem of making public repository data contribute to the analysis of new mass spectrometry experiments.

We hypothesize that we can obtain more accurate and useful information about a large collection of spectra

by using a supervised deep learning method that directly exploits peptide–spectrum assignments during joint

analysis. Specifically, we posit that peptide labels can be used during training of a large-scale learned model of

MS/MS spectra to achieve a robust, efficient, and accurate model.

Accordingly, we propose GLEAMS (GLEAMS is a Learned Embedding for Annotating Mass Spectra), which is

a deep neural network that has been trained to embed MS/MS spectra into a 32-dimensional space in such a

way that spectra generated by the same peptide, with the same post-translational modifications (PTMs) and

charge, are close together. Our work builds upon methods that have been used successfully to embed various

types of data, including text documents18 and images.19 The learned spectral embedding offers the advantage

that new spectra can efficiently be mapped to the embedded space without requiring re-training. Our approach

is fundamentally different from previous (unsupervised) spectrum clustering applications, in the sense that it

uses peptide assignments generated from standard database search methods as labels in a supervised learning

setting.

We validate the embedding by demonstrating its ability to place spectra assigned the same label by database

search close together, and we describe a method for using this embedding to assign peptide labels to new

spectra. We also demonstrate how to use GLEAMS in conjunction with the DBSCAN algorithm20 to in-

duce a repository-scale clustering of spectra in the MassIVE database. We use these clusters to help char-

acterize the so-called “dark matter” of proteomics. We provide an open-source software implementation of

our method, as well as a pre-trained model that can be used to efficiently embed spectra for joint analysis

(https://github.com/bittremieux/GLEAMS).

2 Results

2.1 A deep neural network learns to embed spectra into a common latent space

The learned model consists of a “Siamese network,”21 in which two copies of an embedding network operate side

by side (Figure 1A). During training, the network is provided with pairs of spectra S1 and S2 and an associated

label Y , where Y = 1 indicates that the spectra were generated by the same peptide, and Y = 0 indicates

that they were generated from different peptides. Each embedder transforms a spectrum Si into its embedded

representation GW (Si), where W represents the learned network weights. The key to the learning process is
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Figure 1: (A) Two spectra, S1 and S2, are encoded to vectors and passed as input to two instances of the
embedder network with tied weights. The Euclidean distance between the two resulting embeddings, GW (S1)
and GW (S2), is passed to a contrastive loss function that penalizes dissimilar embeddings that correspond to
the same peptide and similar embeddings that correspond to different peptides, up to a margin of 1. (B) The
embedder network separately receives each of three feature types as input. Precursor features are processed
through a fully-connected network with two layers of sizes 32 and 5. Binned fragment intensities are processed
through five blocks of one-dimensional convolutional layers and max pooling layers. Reference spectra features
are processed through a fully-connected network with two layers of sizes 750 and 250. The output of the three
subnetworks is concatenated and passed to a final fully-connected layer of size 32. (C) UMAP projection of
685 337 embeddings from frequently occurring peptides in 10 million randomly selected identified spectra from
the test dataset. As indicated by the coloration, precursor m/z has a large influence on the location of spectra
in the embedded space.
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the contrastive loss function adapted from Hadsell et al. [21] defined as

L(W,Y, S1, S2) = Y (min(||GW (S1)−GW (S2)||2), 1)2

+(1− Y )(max(0, 1− ||GW (S1)−GW (S2)||2))2.

Intuitively, this loss function pulls the two spectra together if they are associated with the same peptide (Y = 1)

and pushes them apart if they are associated with different peptides (Y = 0). Backpropagation from this loss

function is used to update the weights in the network.

The heart of the model itself is the embedder network (Figure 1B) which takes as input a spectrum and embeds

it into a 32-dimensional space. The model contains two copies of the embedder, with weights tied so that

updates to one embedder are always reflected in the other. For input to the embedder, each spectrum is

encoded using three sets of features representing, respectively, attributes of the precursor ion, binned fragments,

and similarities to an invariant set of reference spectra. Each of the different feature types is processed through

a separate deep neural subnetwork, after which the outputs of the three networks are concatenated and passed

to a final, fully-connected layer to produce vector embeddings with dimension 32.

GLEAMS was trained using a set of 30 million high-quality PSMs derived from the MassIVE knowledge base

(MassIVE-KB).6 Importantly, peptide sequence information is only required during initial supervised training of

the Siamese network. Subsequent processing using an individual embedder instance is agnostic to the peptide

label and can be performed on identified and unidentified spectra in a similar fashion. After training, the

embedder model was used to process 669 million spectra from 227 public human proteomics datasets included

in MassIVE-KB. As an initial evaluation of the learned embeddings, these spectra were further projected

down to two dimensions using UMAP22 for visual inspection (Figure 1C). The visualizations suggest that

precursor mass (Figure 1C) and precursor charge (Supplementary Figure 1) strongly influence the structure

of the embedded space, and that similar spectra are indeed located close to each other. Additionally, several

of the individual embedding dimensions show a correlation with the precursor mass, peptide sequence length,

or whether the peptides have an arginine or lysine terminus (Supplementary Table 1). This indicates that

the GLEAMS embeddings capture latent characteristics of the spectra. Interestingly, although some of these

properties were provided as input to the neural network, such as precursor mass, other properties were derived

from the data without explicitly encoding them.

2.2 Clustering of spectrum embeddings to explore spectral similarity

If our training worked well, then spectra generated by the same peptide should lie close together, according

to a Euclidean metric, in the embedded space. Accordingly, we investigated, for 10 million randomly chosen
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Figure 2: (A) Proportion of neighbors that have the same peptide label as a function of the distance threshold
for 186 865 330 pairwise distances between 10 million randomly selected embeddings from the test dataset (on
average 18.7 neighbors per embedding). Embeddings at small distances represent the same peptide (“Original”),
while the majority of close neighbors with different peptide labels correspond to peptides with ambiguously
localized modifications (“Unmodified”). (B) The false negative rate between positive and negative embedding
pairs, for 10 million randomly selected pairs from the test dataset, at distance threshold 0.5455 (grey line),
corresponding to 1% FDR, is only 1%, indicating excellent separation between positive and negative pairs.
(C+D) Average clustering performance over three random folds of the test dataset containing 28 million MS/MS
spectra each. (C) The number of clustered spectra versus the number of incorrectly clustered spectra per
clustering algorithm. GLEAMS and MaRaCluster succeed in clustering the highest number of spectra at low
rates of incorrectly clustered spectra, whereas MS-Cluster and spectra-cluster are unable to produce highly pure
clusters. (D) Cluster completeness versus the number of incorrectly clustered spectra per clustering algorithm.
GLEAMS produces the most complete clustering result at different levels of incorrectly clustered spectra. This
indicates that GLEAMS achieves a greater data reduction than alternative clustering tools, without sacrificing
the cluster quality. (E+F) Clustering result characteristics at approximately 1% incorrectly clustered spectra
over three random folds of the test dataset (Supplementary Table 2). (E) Complementary empirical cumulative
distribution of the cluster sizes. GLEAMS produces larger clusters than alternative clustering tools, grouping
similar spectra into a single cluster rather than splitting them over multiple related clusters. (F) The number
of datasets that spectra in the test dataset originate from per cluster (24 datasets total). GLEAMS successfully
groups related spectra from heterogeneous datasets into single clusters.
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embedded spectra, the relationship between neighbor distance and the proportion of labeled neighbors that

have the same peptide label. The results show that neighbors at small distances overwhelmingly represent the

same peptide (Figure 2A). Furthermore, the few different-peptide labels at very small distances almost entirely

represent virtually indistinguishable spectra that have identical peptide labels but differ in ambiguous modifi-

cation localizations. We also investigated the false negative rate, for 10 million randomly chosen embedding

pairs, to understand the extent to which embeddings that correspond to the same peptide are distant in the

embedded space (Figure 2B). This analysis shows an excellent separation between same-labeled embeddings

and embeddings corresponding to different peptides, with a very small false negative rate of only 1% at a

distance threshold corresponding to 1% FDR. Furthermore, the embeddings are robust to different types of

mass spectrometry data. Phosphorylation modifications were not included in the MassIVE-KB dataset, and

GLEAMS thus did not see any phosphorylated spectra during its training. Nonetheless, GLEAMS was able to

embed spectra from a phosphoproteomics study with high accuracy (Supplementary Figure 2).23

To further investigate the utility of the GLEAMS embedding, we performed DBSCAN clustering20 in the em-

bedded space to find dense clusters of spectra, and we compared the performance to that of the commonly

used spectrum clustering tools MaRaCluster,10 MS-Cluster,7 and spectra-cluster.8,9 The comparison indicates

that clustering in the GLEAMS embedded space is of a similar or higher quality than clusterings produced

by state-of-the-art tools, especially at low rates of incorrectly clustered spectra (Figure 2C–D). Notably, even

with the most stringent hyperparameters, MS-Cluster and spectra-cluster struggled to produce pure clustering

results (i.e. low numbers of incorrectly clustered spectra), whereas specifying a low Euclidean distance threshold

for GLEAMS clustering succeeds in producing highly pure clusters (Figure 2C). Additionally, GLEAMS gener-

ates the most “complete” clustering result (Figure 2D). Completeness measures the extent to which multiple

spectra corresponding to the same peptide are concentrated in few clusters. By minimizing the extent to which

spectra generated from the same peptide are assigned to different clusters, GLEAMS achieves improved data

reduction from spectrum clustering compared to alternative clustering tools. This property is especially relevant

when performing spectrum clustering at the repository scale, to maximally reduce the data volume for efficient

downstream processing of the clustered data.

To further understand the clustering performance of GLEAMS, we investigated clusters produced by the different

tools at a low rate (∼1%) of incorrectly clustered spectra (Supplementary Table 2). These results indicate

that GLEAMS and MaRaCluster succeed in clustering the highest number of spectra while minimizing the

number of incorrectly clustered spectra. Furthermore, although GLEAMS and MaRaCluster cluster a similar

total number of spectra, MaRaCluster groups these spectra into twice as many distinct clusters as GLEAMS.

Overall, compared to alternative clustering tools, GLEAMS clearly produces the largest clusters (Figure 2E). In

contrast, MaRaCluster and spectra-cluster predominantly generate clusters containing fewer than 100 spectra.

We hypothesize that GLEAMS’ supervised training allows the model to focus on relevant spectrum features
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Figure 3: Exploration of the dark proteome using GLEAMS to process previously unidentified spectra.
(A) GLEAMS succeeded in identifying 31% additional PSMs compared to the original MassIVE-KB results
by performing targeted open modification searching of cluster medoid spectra and propagating peptide labels
within clusters. (B) Precursor delta masses observed from open modification searching. Some of the most
frequent delta masses are annotated with their likely modifications, sourced from Unimod.24

while ignoring confounding features (for example, peaks corresponding to a ubiquitous contaminant within a

single study, boosting intra-study spectrum similarity). This hypothesis is supported by the observation that

GLEAMS produces clusters with data drawn from more diverse studies, compared to clusters produced by the

other tools (Figure 2F).

2.3 Elucidating the “dark proteome” of unidentified spectra

A key outstanding question in protein mass spectrometry analysis concerns the source of spectral “dark matter,”

i.e. spectra that are observed repeatedly across many experiments but consistently remain unidentified. Frank et

al. [25] have previously used MS-Cluster to identify 4 million unknown spectra included in “spectral archives,”

and Griss et al. [9] have used spectra-cluster to obtain identifications for 9 million previously unannotated

spectra in the PRIDE repository.

The original MassIVE-KB results6 include identifications for 185 million PSMs out of 669 million MS/MS

spectra (1% FDR), leaving a vast amount of spectral data unexplored. To characterize the unidentified spectra,

we performed GLEAMS clustering (1% incorrectly clustered spectra) to group 193 million spectra in 17 million

clusters. Among the clustered spectra, 86 million spectra were assigned a peptide label by MassIVE-KB, while

107 million spectra remained unidentified. The enrichment in identified spectra (45% of clustered spectra

versus 28% of all spectra) indicates that, even though clustering is agnostic to peptide labels, it helps to extract

repeatedly occurring, high-quality spectra that can be successfully identified.
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We used a combination of strategies to process the unidentified spectra and explore the dark proteome (Fig-

ure 3A). First, peptide identifications were propagated within clusters. For clusters that consist of a mix

of identified and unidentified spectra, the unidentified spectra were assigned the same peptide label as their

identified cluster neighbors. In this fashion, 23 million PSMs could be identified.

Second, open modification searching (OMS) was used to investigate the remaining unidentified spectra. By

using a large precursor mass window, spectra corresponding to peptides carrying any type of modification

can be identified without explicitly having to specify the modifications of interest. However, this is a very

computationally intensive task, due to the large increase in search space by opening up the precursor mass

window. Therefore, only medoids of fully unidentified clusters were used, instead of having to perform OMS

using all spectra. For 84 million clustered and unidentified spectra, 11 million medoid spectra were extracted

and searched using the ANN-SoLo open modification spectral library search engine.26,27 This search resulted in

3.7 million newly identified PSMs (1% FDR) corresponding to modified peptides. Finally, peptide labels of the

identified medoid spectra were propagated to other cluster members, resulting in 30 million additional PSMs.

In total, these combined strategies succeeded in assigning peptides to 56 million previously unidentified PSMs,

increasing the number of identified spectra by 31% (Figure 3A). Additionally, the OMS results provide infor-

mation on the presence of PTMs in the human proteome (Figure 3B). Several of the observed precursor mass

differences correspond to single amino acid substitutions, and modifications that were not considered in the

original search settings were recovered. Besides abundant modifications that can be artificially introduced dur-

ing sample processing, such as carbamidomethylation and oxidation, biologically relevant modifications from

enrichment studies, such as phosphorylation, were frequently observed.

Importantly, given its large computational requirements, performing an open search at a repository scale is a

highly challenging endeavor. However, using GLEAMS embedding and clustering, we succeeded in efficiently

boosting the identification rate by up to a third. Notably, while propagating peptide labels from 86 million

original MassIVE-KB PSMs resulted in an increase of 23 million PSMs, similarly propagating peptide labels

obtained using OMS from only 3.7 million high-quality spectra filtered using GLEAMS achieved an increase

of 30 million PSMs. Additionally, there are 51 million clustered spectra that remained unidentified. Because

these spectra are repeatedly observed and expected to be high-quality, they likely correspond to true signals.

Consequently, this is an extremely important collection of spectra to investigate using newly developed com-

putational methods to further explore the dark proteome. Overall, these results demonstrate how GLEAMS

efficiently enables in-depth analysis at a repository scale.
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3 Discussion

We have demonstrated the utility of the 32-dimensional embedding learned by GLEAMS. By mapping spec-

tra from diverse experiments into a common latent space, we can efficiently add an additional 31% to the

identifications derived from database search. A key factor in GLEAMS’ strong performance is its ability to effi-

ciently operate on hundreds of millions to billions of spectra, corresponding to the size of an entire proteomics

repository. Once the embedder is trained, new spectra representing previously unobserved peptides can be

embedded and used for analysis without performing any expensive operations as long as they have sufficiently

similar characteristics to the distribution of training spectra. Because the computational power required to

find the nearest neighbors of a given spectrum in the embedded space increases only sub-linearly with the size

of the repository, this task can smoothly scale to billions of vectors. Additionally, specialized hardware, such

as graphics processing units, can be used to speed up nearest neighbor searching.28 This makes it possible in

principle to assign new spectra to spectrum clusters nearly instantaneously upon submission to a repository,

giving researchers the immediate benefit of the combined analysis efforts of the entire proteomics community.

One caveat to the GLEAMS approach is that training the embedder relies upon the availability of peptide labels.

A public repository typically contains datasets of varying quality and with varying types of analyses applied to

them. The latter may even include invalid labels or labels not subjected to FDR control. Accordingly, we have

exploited labels derived from systematic, repository-wide processing of the MassIVE database6 to attempt to

alleviate variability due to differences in analysis. This type of processing is expensive, but is hidden from the

typical end user of GLEAMS, who will interact primarily with a pre-trained embedding network.

We hypothesize that the learned embedding can have potential utility beyond simply transferring identifications

among nearby spectra. For example, it may be that semantic relationships among spectra generated by related

molecular species can be derived from the latent space, in analogy to semantic relationships encoded by neural

word embeddings.18 If such relationships could be mapped, then it might be possible to, for instance, predict

where in the embedded space a spectrum generated by a peptide with a particular PTM would be found, based

on the known location of the unmodified species. It may also be possible to develop a joint embedding of peptide

sequences and spectra, allowing arbitrary peptide sequences to be embedded. The embedded space could then

be used like a search engine, assigning peptide identifications to spectra based on closeness to an embedded

peptide sequence.

The embedding also opens up possibilities for transfer learning. For example, it may be possible to train a

separate neural network to predict a spectrum’s quality, or potential for being identified, from its location in

embedded space, or to classify spectra as “chimeric” (generated by more than one peptide) or not. Furthermore,

the GLEAMS embedding may have potential for applications at the level of the mass spectrometry runs or
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entire experiments, using each experiment’s embedded spectra to predict its tissue of origin or, in the case of

metaproteomics experiments, taxonomic makeup.

A clear direction for future work is the development of statistical confidence estimation procedures suitable for

this type of learned embedding. On the one hand, propagating peptide annotations between proximal pairs of

spectra may risk introducing false positive assignments. On the other hand, when multiple identified spectra lie

close to an unidentified spectrum, our confidence in such a propagation should intuitively increase relative to

propagation with respect to a single spectrum–spectrum pair. Target-decoy methods for confidence estimation

are widely used and provably correct under reasonable assumptions about the database search procedure,29 but

these methods do not generalize in a straightforward fashion to a method based on propagation in the GLEAMS

embedded space.

Furthermore, the training procedure might be augmented by the inclusion of additional features as input to

the embedder network. For example, retention time is a valuable feature to validate spectrum identifications.

Similarly, it is sometimes used as a filter to minimize the number of incorrect spectrum groupings during

clustering. Currently, we did not include this information because the training data originated from a wide

diversity of experimental set-ups, including varied chromatography conditions. However, an exploration of

retention time-related features to use during training of the GLEAMS neural network could prove a fruitful

avenue of research to further boost its performance.

4 Methods

4.1 Encoding mass spectra for network input

Each spectrum is encoded as a vector of 3010 features of three types: precursor attributes, binned fragment

intensities, and dot product similarities with a set of reference spectra.

Precursor mass, m/z, and charge are encoded as a combined 61 features. Precursor mass and m/z are each

extremely important values for which precision is critical, and so they are poorly suited for encoding as single

input features for a neural network. Accordingly, we experimented with several binary encodings of precursor

mass and m/z, each of which gave superior performance on validation data than a real-value encoding, and

settled on the encoding that gave moderately better performance than the others: a 27-bit “Gray code” binary

encoding, in which successive values differ by only a single bit, preserving locality and eliminating thresholds

at which many bits are flipped at once. Precursor values may span the range 400 Da to 6000 Da, so the Gray
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code encoding has a resolution of 4 × 10−5 Da. Fragment values may span the range 50.5m/z to 2500m/z, so

the Gray code encoding has a resolution of 2 × 10−5 m/z. Spectrum charge is one-hot encoded: seven features

represent charge states 1–7, all of which are set to 0 except the charge corresponding to the spectrum (spectra

with charge 8 or higher are encoded as charge 7).

Fragment peaks are encoded as 2449 features. Fragment intensities are square-root transformed and then

normalized by dividing by the sum of the square-root intensities. Fragments outside the range 50.5m/z to

2500m/z are discarded, and the remaining fragments are binned into 2449 bins at 1.000 507 9m/z, corresponding

to the distance between the centers of two adjacent clusters of physically possible peptide masses,30 with bins

offset by half a mass cluster separation width so that bin boundaries fall between peaks. This bin size was chosen

in order to accommodate data acquired using various instruments and protocols, and in deference to practical

constraints on the number of input features for the deep learning approach. Consequently, it is unrelated to the

optimal fragment mass tolerance for database search for a given run.

Similarities of each spectrum to an invariant set of reference spectra are encoded as 500 features. Each such

feature is the normalized dot product between the given spectrum and one of an invariant set of 500 reference

spectra chosen randomly from the training dataset. This can be considered as an “empirical kernel map”,31

allowing GLEAMS to represent the similarity between two spectra A and B by “paths” of similarities through

each one of the reference spectra R via the transitive property; i.e., A is similar to B if A is similar to R and R

is similar to B. In contrast to the fragment binning strategy described previously, similarities to the reference

spectra are computed at native resolution. The 500 reference MS/MS spectra were selected from the training

data by using submodular selection, as implemented in the apricot Python package (version 0.4.1).32 First,

1000 peak files were randomly selected from the training data, containing 22 million MS/MS spectra that were

downsampled to 200 000 MS/MS spectra. These spectra were used to compute a pairwise similarity matrix

(normalized dot product with fragment m/z tolerance 0.05m/z) that was used to perform submodular selection

using the facility location function to select 500 representative reference spectra (Supplementary Figure 3).

4.2 Repository-scale MS/MS data

A large-scale, heterogeneous dataset derived from the MassIVE knowledge base (MassIVE-KB; version 2018-

06-15)6 was used to develop GLEAMS. As per Wang et al. [6], the MassIVE-KB dataset consists of 31 TB of

human data from 227 public proteomics datasets. In total 28 155 peak files in the mzML33 or mzXML format

were downloaded from MassIVE, containing over 669 million MS/MS spectra.

All spectra were processed using a uniform identification pipeline during initial compilation of the MassIVE-KB
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dataset.6 MSGF+34 was used to search the spectra against the UniProt human reference proteome database

(version May 23, 2016).35 Cysteine carbamidomethylation was set as a fixed modification, and variable modifica-

tions were methionine oxidation, N-terminal acetylation, N-terminal carbamylation, pyroglutamate formation

from glutamine, and deamidation of aspargine and glutamine. MSGF+ was configured to allow one 13C pre-

cursor mass isotope, at most one non-tryptic terminus, and 10 ppm precursor mass tolerance. The searches

were individually filtered at 1% PSM-level FDR. A dynamic search space adjustment was performed during

processing of the synthetic peptide spectra from the ProteomeTools project36 and affinity purification mass

spectrometry runs from the BioPlex project37 to account for differences in sample complexity and spectral

characteristics.6 Next, the MassIVE-KB spectral library was generated using the top 100 PSMs for each unique

precursor (i.e. combination of peptide sequence and charge), corresponding to 30 million high-quality PSMs

(uniformly 0% PSM-level FDR from the original searches).6

The MSGF+ identification results for the full MassIVE-KB dataset were obtained from MassIVE in the mzTab

format38 and combined in a single metadata file containing 185 million PSMs. Additionally, information for the

30 million filtered PSMs to create the MassIVE-KB spectral library was independently retrieved.

4.3 Neural network architecture

The embedder network (Figure 1B) takes each of the three types of inputs separately. The precursor features are

processed through a two-layer fully-connected network with layer dimensions 32 and 5. The 2449-dimensional

binned fragment intensities are processed through five blocks of one-dimensional convolutional layers and max

pooling layers inspired by the VGG architecture.39 The first two blocks consist of two consecutive convolutional

layers, followed by a max pooling layer. The third, fourth, and fifth blocks each consist of three consecutive

convolutional layers, followed by a max pooling layer. The number of output filters of each of the convolutional

layers is 30 for the first block, 60 for the second block, 120 for the third block, and 240 for the fourth and

fifth blocks. All blocks use convolutional layers with convolution window length 3 and convolution stride length

1. All max pooling layers consist of pool size 1 and stride length 2. In this fashion the first dimension is

halved after every block to ultimately convert the 2449x1 dimensional input tensor to a 71x240 dimensional

output tensor. The 500-dimensional reference spectra features are processed through a two-layer fully-connected

network with layer dimensions 750 and 250. The output of the three networks is concatenated and passed to

a final, L2-regularized, fully-connected layer with dimension 32.

All network layers use the scaled exponential linear units (SELU) activation function.40 The fully-connected

layers are initialized using LeCun normal initialization,41 and the convolutional layers are initialized using the

Glorot uniform initialization.42
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To train the embedder, we construct a “Siamese network” containing two instances of the embedder with tied

weights W forming function GW (Figure 1A). Pairs of spectra S1 and S2 are transformed to embeddings GW (S1)

and GW (S2) in each instance of the Siamese network, respectively. The output of the Siamese network is the

Euclidean distance between the two embeddings: ||GW (S1) − GW (S2)||2. The Siamese network is trained to

optimize the following contrastive loss function:21

L(W,Y, S1, S2) = Y (min(||GW (S1)−GW (S2)||2), 1)2

+(1− Y )(max(0, 1− ||GW (S1)−GW (S2)||2))2 ,

where Y is the label associated with the pair of spectra S1 and S2.

4.4 Training the embedder

The GLEAMS model was trained using the 30 million high-quality PSMs used for compilation of the

MassIVE-KB spectral library. PSMs were randomly split by their MassIVE dataset identifier so that the

training, validation, and test sets consisted of approximately 80%, 10%, and 10% of all PSMs respectively

(training set: 24 986 744 PSMs / 554 290 510 MS/MS spectra from 184 datasets; validation set: 2 762 210 PSMs

/ 30 386 035 MS/MS spectra from 11 datasets; test set: 2 758 019 PSMs / 84 699 214 MS/MS spectra from 24

datasets).

The Siamese neural network was trained using positive and negative spectra pairs. Positive pairs consist of

two spectra with identical precursors, and negative spectra consist of two spectra that correspond to different

peptides within a 10 ppm precursor mass tolerance with at most 25% overlap between their theoretical b and

y fragments. In total 317 million, 205 million, 43 million, and 5 million positive training pairs were generated

for precursor charges 2 to 5, respectively; and 8.347 billion, 3.263 billion, 182 million, and 5 million negative

training pairs were generated for precursor charges 2 to 5, respectively.

The Siamese neural network was trained for 50 iterations using the rectified Adam optimizer43 with learning

rate 0.0002. Each iteration consisted of 40 000 steps with batch size 256. The pair generators per precursor

charge and label (positive/negative) were separately shuffled and rotated to ensure that each batch consisted of

an equal number of positive and negative pairs and balanced precursor charge states. After each iteration the

performance of the network was assessed using a fixed validation set consisting of 512 000 spectrum pairs.

Training and evaluation were performed on a Intel Xeon Gold 6148 processor (2.4 GHz, 40 cores) with 768 GB

memory and four NVIDIA GeForce RTX 2080 Ti graphics cards.
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4.5 Phosphoproteomics embedding

An independent phosphoproteomics dataset by Hijazi et al. [23], generated to study kinase network topology,

was used to evaluate the robustness of the GLEAMS embeddings for unseen post-translational modifications.

All raw and mzIdentML44 files were downloaded from PRIDE (project PXD015943) using ppx (version 1.1.1)45

and converted to mzML files33 using ThermoRawFileParser (version 1.3.4).46 As per Hijazi et al. [23], the

original identifications were obtained by searching with Mascot (version 2.5)47 against the SwissProt database

(SwissProt_Sep2014_2015_12.fasta), with search settings of up to two tryptic missed cleavages; precursor mass

tolerance 10 ppm; fragment mass tolerance 0.025 Da; cysteine carbamidomethylation as a fixed modification;

and N-terminal pyroglutamate formation from glutamine, methionine oxidation, and phosphorylation of serine,

threonine, and tyrosine as variable modifications. The identification results included 3.7 million PSMs at 1%

FDR (of which 98.5% are phosphorylated) for 18.6 million MS/MS spectra. All spectra were embedded with the

previously trained GLEAMS model, and 1.185 billion positive pairs consisting of PSMs with identical peptide

sequences and 293 million negative pairs consisting of PSMs with different sequences within a 10 ppm precursor

mass tolerance were generated.

4.6 Density-based embedding clustering

Approximate nearest neighbor indexing and density-based clustering12 were used to efficiently cluster the spec-

trum embeddings at a repository scale. First, the MS/MS spectra were converted to embeddings using the

trained GLEAMS model. Next, the embeddings were split per precursor charge and partitioned into 1m/z

buckets based on their corresponding precursor mass. The Faiss library was used for efficient similarity search-

ing.28 Faiss was used to construct an inverted index per m/z bucket by assigning the embeddings to centroids

determined using k-means clustering. Conceptually, this corresponds to a Voronoi diagram, with each embed-

ding assigned to its nearest representative centroid in the inverted index. The number of centroids to form

the inverted index was dynamically set based on the number of embeddings in a bucket N . For buckets that

consisted of up to one million embeddings 2⌊log2
N
39 ⌋ centroids were used; for buckets that consisted of up to ten

million embeddings 216 centroids were used; and for larger buckets 218 centroids were used.

Next, the inverted index was used for efficient similarity searching. Instead of having to perform all pairwise

embedding comparisons in each bucket to find each embedding’s nearest neighbors, after mapping the embed-

dings to their Voronoi representatives they only needed to be compared to a limited number of embeddings in

the inverted index. A maximum of 1024 lists in the inverted index were explored per query during searching,

and for each embedding the Euclidean distances to its 50 nearest embeddings within a 10 ppm precursor mass

window were stored in a sparse pairwise distance matrix.
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This pairwise distance matrix was used to cluster the data using the DBSCAN algorithm.20 Briefly, if a given

number of embeddings are close to each other and form a dense data subspace, with closeness defined relative

to a user-specified Euclidean distance threshold, then they are grouped in clusters. However, some clusters

produced by DBSCAN violated the 10 ppm precursor mass tolerance because embeddings within a cluster can

be connected through other embeddings with intermediate precursor mass. To avoid such false positives, the

clusters reported by DBSCAN were postprocessed by hierarchical clustering with maximum linkage of the cluster

members’ precursor masses. In this fashion, some clusters are split into smaller, coherent clusters so that none

of the embeddings in a single cluster have a pairwise precursor mass difference that exceeds the precursor mass

tolerance.

An important advantage of this clustering approach is that the number of clusters is not required to be known

in advance. Instead, DBSCAN is able to find clusters in dense regions, whereas embeddings in low-density

regions, without a sufficient number of close neighbors, are marked as noise. Additionally, the approach is

scalable: using the sparse pairwise distance matrix it was possible to efficiently process hundreds of millions of

data points simultaneously.

4.7 Cluster evaluation

Four clustering algorithms—GLEAMS clustering, MaRaCluster,10 MS-Cluster,7 and spectra-cluster8,9—were

run using a variety of parameter settings for each. For GLEAMS clustering Euclidean distance thresholds of

0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.10 were used. MaRaCluster (version 1.01)10

was run with a precursor mass tolerance of 10 ppm, and with identical P-value and clustering thresholds −3.0,

−5.0, −10.0, −15.0, −20.0, −25.0, −30.0, or −50.0. Other options were kept at their default values. MS-Cluster

(version 2.00)7 was run using its “LTQ_TRYP” model for three rounds of clustering with mixture probability

0.000 01, 0.0001, 0.001, 0.005, 0.01, 0.05, or 0.1. The fragment mass tolerance and precursor mass tolerance

were 0.05 Da and 10 ppm, respectively, and precursor charges were read from the input files. Other options were

kept at their default values. spectra-cluster (version 1.1.2)8,9 was run in its “fast mode” for three rounds of

clustering with the final clustering threshold 0.999 99, 0.9999, 0.999, 0.99, 0.95, 0.9, or 0.8. The fragment mass

tolerance and precursor mass tolerance were 0.05 Da and 10 ppm, respectively. Other options were kept at their

default values.

The clustering tools were evaluated using 85 million MS/MS spectra originating from 24 datasets in the test set.

The spectra were split in three randomly generated folds, containing approximately 28 million MS/MS spectra

each, and exported to MGF files for processing using the different clustering tools. To evaluate cluster quality,

the mean performance over the three folds was used. Valid clusters were required to consist of minimum five
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spectra, and smaller clusters (including singleton clusters) were considered as noise.

The following evaluation measures were used to assess cluster quality:

Clustered spectra. The number of spectra in non-noise clusters divided by the total number of spectra.

Incorrectly clustered spectra. The number of incorrectly clustered spectra in non-noise clusters divided by

the total number of identified spectra in non-noise clusters. Spectra are considered incorrectly clustered

if their peptide labels deviate from the most frequent peptide label in their clusters, with unidentified

spectra not considered.

Completeness. Completeness measures the fragmentation of spectra corresponding to the same peptide across

multiple clusters and is based on the notion of entropy in information theory. A clustering result that

perfectly satisfies the completeness criterium (value “1”) assigns all PSMs with an identical peptide label to

a single cluster. Completeness is computed as one minus the conditional entropy of the cluster distribution

given the peptide assignments divided by the maximum reduction in entropy the peptide assignments could

provide.48

4.8 Clustering peptide annotation

GLEAMS was used to embed all 669 million spectra in the MassIVE-KB dataset and cluster the embeddings

using DBSCAN. The Euclidean distance threshold was 0.013, clustering 193 million spectra (29%) with 0.97%

incorrectly clustered spectra and 0.821 completeness.

To assign peptide labels to previously unidentified spectra, first peptide annotations were propagated within

pure clusters. For 17 million clusters that contained a mixture of unidentified spectra and PSMs with identical

peptide labels, the unidentified spectra were assigned the same label, resulting in 23 million new PSMs.

Second, open modification searching was used to process the unidentified spectra. Medoid spectra were extracted

from clusters consisting of only unidentified spectra by selecting the spectra with minimum embedded distances

to all other cluster members. This resulted in 11 million medoid spectra representing 84 million clustered

spectra. The medoid spectra were split into two groups based on cluster size —size two and size greater than

two— and exported to two MGF files.

Next, the ANN-SoLo26,27 (version 0.3.3) spectral library search engine was used for open modification searching.
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Search settings included preprocessing the spectra by removing peaks outside the 101m/z to 1500m/z range and

peaks within a 1.5m/z window around the precursor m/z, precursor mass tolerance 10 ppm for the standard

searching step of ANN-SoLo’s built-in cascade search and 500 Da for the open searching step, and fragment

mass tolerance 0.05m/z. Other settings were kept at their default values. As reference spectral library the

MassIVE-KB spectral library was used. Duplicates were removed using SpectraST49 (version 5.0 as part of

the Trans-Proteomic Pipeline version 5.1.050) by retaining only the best replicate spectrum for each individual

peptide ion, and decoy spectra were added in a 1:1 ratio using the shuffle-and-reposition method.51 PSMs were

filtered at 1% FDR by ANN-SoLo’s built-in subgroup FDR procedure.52

ANN-SoLo managed to identify 3.7 million PSMs (32% of previously unidentified cluster medoid spectra).

Finally, peptide labels from the ANN-SoLo PSMs were propagated to other cluster members, resulting in

30 million additional PSMs.

4.9 Code availability

GLEAMS was implemented in Python 3.8. Pyteomics (version 4.3.2)53 was used to read MS/MS spectra in the

mzML,33 mzXML, and MGF formats. spectrum_utils (version 0.3.4)54 was used for spectrum preprocessing.

Submodular selection was performed using apricot (version 0.4.1).32 The neural network code was implemented

using the Tensorflow/Keras framework (version 2.2.0).55 Faiss (version 1.6.3)28 was used for efficient similarity

searching. Scikit-Learn (version 0.23.1)56 was used for DBSCAN clustering, and fastcluster (version 1.1.28)57

was used for hierarchical clustering. Additional scientific computing was done using NumPy (version 1.19.0),58

SciPy (version 1.5.0),59 Numba (version 0.50.1),60 and Pandas (version 1.0.5).61 Data analysis and visualization

were performed using Jupyter Notebooks,62 matplotlib (version 3.3.0),63 Seaborn (version 0.11.0),64 and UMAP

(version 0.4.6).22

All code is available as open source under the permissive BSD license at https://github.com/bittremieux/

GLEAMS. Code used to analyze the data and to generate the figures presented here is available on GitHub

(https://github.com/bittremieux/GLEAMS_notebooks).
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