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Abstract 

Single cell RNA-seq (scRNA-seq) has remarkably advanced our understanding of cellular 

heterogeneity and dynamics in tissue development, diseases, and cancers. Integrated data 

analysis can often uncover molecular and cellular links among individual datasets and thus 

provide new biological insights, such as developmental relationship. Due to differences in 

experimental platforms and biological sample batches, the integration of multiple scRNA-seq 

datasets is challenging. To address this, we developed a novel computational method for robust 

integration of scRNA-seq (RISC) datasets using principal component regression (PCR). Because 

of the natural compatibility of eigenvectors between PCR model and dimension reduction, RISC 

can accurately integrate scRNA-seq datasets and avoid over-integration. Compared to existing 

software, RISC shows particular improvement in integrating datasets that contain cells of the 

same types (more accurately clusters) but at distinct functional states. To demonstrate the value 

of RISC in finding small groups of cells common between otherwise heterogenous datasets, we 

applied it to scRNA-seq datasets of normal and malignant cells and successfully identified small 

clusters of cells in healthy kidney tissues that may be related to the origin of renal tumors. 
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Introduction 

Single-cell RNA-seq has become an essential genomic technology (Islam et al. 2014; Nawy 2014; 

Wang and Navin 2015; Zheng et al. 2017) and it is now widely used in many biological domains. 

Such domains include surveying cell heterogeneity among embryonic stem cells and tumors 

(Azizi et al. 2018; Rosenberg et al. 2018), identifying genetic markers of specific cell types (Fan 

et al. 2018), and investigating cell fate commitment and lineage trajectories (Wang et al. 2017). 

As shown in a recent study describing the lineages and trajectories of aging Drosophila brain 

cells, the integration of scRNA-seq datasets from different studies can provide a high level 

understanding of cellular heterogeneity and functional relationship across various tissue types or 

development stages (Davie et al. 2018). However, noise from experimental batches, assay 

conditions, sequencing platforms, and other biological and technical factors have made the task 

extremely challenging. Due to the unique nature of scRNA-seq data (e.g. low coverage and 

dropout) integration methods designed for bulk RNA-seq data are usually not applicable to 

scRNA-seq analysis. In addition, existing scRNA-seq analytical software typically normalizes 

scRNA-seq data by scaling raw counts or unique molecular identifiers (UMIs) to account for the 

difference in sequencing depth, ignoring more complicated heterogeneity between different 

datasets.  

 

Two approaches have recently been developed to integrate scRNA-seq datasets. One is 

embedded in an R toolkit for single cell genomics called “Seurat,” which uses Canonical 

Correlation Analysis (CCA) (Butler et al. 2018). The other is “Scran” that applies the Mutual 

Nearest Neighbors (MNN) algorithm (Haghverdi et al. 2018). Seurat utilizes principal CCA to 

generate a covariance matrix from gene expression matrices of different studies, decomposes 

the covariance matrix by singular-value decomposition (SVD), generates eigenvectors, and 

embeds the cells based on the eigenvectors. Similar to Seurat, Scran performs MNN to define 
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cell pairwise relationships by correcting gene expression matrices before CCA. 

 

These approaches are valuable for integrating scRNA-seq datasets with relatively homogeneous 

cell types (Butler et al. 2018; Haghverdi et al. 2018). How to integrate datasets with high-level of 

heterogeneity in cell types remains a challenge, for example, in the study of developmental 

lineages with a commonality only in their progenitor cells. Furthermore, it remains to be addressed 

whether an integration software can distinguish cells of the same type but at different functional 

states. Therefore, we developed a new toolkit, RISC, with an aim to integrate scRNA-seq datasets 

with both high and low level of cell cluster similarity, which is defined herein as the proportion of 

shared cell types (or clusters) between datasets, because the cell population diversity of a sample 

is determined more by the number of cell clusters than by the numbers of cells in each cluster. 

The main component of our approach utilizes principal component regression (PCR) model, which 

effectively embeds single cells by the eigenvectors derived from the gene expression matrix of 

individual datasets and uses these eigenvectors to integrate datasets (Jolliffe 1982; Bair et al. 

2006).   

 

We evaluated the performance of RISC with multiple scRNA-seq datasets containing various 

degrees of cell cluster similarities (Hashimshony et al. 2012; Jaitin et al. 2014; Picelli et al. 2014; 

Zheng et al. 2017), and also compared it to Seurat and Scran. These datasets were all from 

previous studies in very distinct biological contents, ranging from blood cells, pancreas cells, 

immune cells in breast tumor microenvironment, to kidney tumors. They were generated by 

multiple platforms, including cell expression by linear amplification and sequencing (CEL-seq), 

massively parallel single-cell RNA-sequencing (MARS-seq), Full-length RNA-seq (SMART-seq2), 

and 10x Genomics’ Chromium system (Hashimshony et al. 2012; Jaitin et al. 2014; Picelli et al. 

2014; Zheng et al. 2017). The results indicate that RISC can successfully merge cells sharing 

common gene expression signature, while accurately preserving the separation of non-
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intersected cells from different datasets.  
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Results 

Overview of RISC  

Dimension reduction is the fundamental step in scRNA-seq analysis because cell embedding, cell 

clustering, cluster marker identification, and all other subsequent analyses depend on its result. 

It often relies on principal eigenvectors to represent the high-dimensional data (Roweis and Saul 

2000a). Since the eigenvectors of dimension reduction capture most biological information of 

individual dataset, they can be effectively exploited for data integration. Because of the lack of 

selection and regularization, algorithms like CCA directly combine all the information of gene 

expression matrices across datasets including the noises that have been discarded in the first 

step of dimension reduction of individual datasets (Hotelling 1933; Roweis and Saul 2000b; 

Pierson and Yau 2015; Ding et al. 2018). This noise can contribute to under or over integration. 

To address this, RISC utilizes PCR model to align the principal components (PCs) from the 

dimension reduction (Hotelling 1936). As such, the subsequent analyses of the integrated data 

will be maximally consistent with the dimension reduction results of individual datasets (see 

Methods).  

 

Additionally, both dimension reduction and data integration in scRNA-seq datasets are mainly 

based on the genes with the highly variable expression. As a result, an input matrix for integration 

has the number of genes (rows) similar to or less than the number of cells (columns). This kind of 

matrices cannot be decomposed to generate unique SVD (Cheney and Kincaid 2007) and one 

cannot directly perform CCA on them without appropriate regularization (Witten et al. 2009). To 

handle this problem, RISC utilizes a subset of PCs for regression model and thus forming an 

effective regularized procedure (see Methods) (Bair et al. 2006).  
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Figure 1. The schematic workflow of RISC. (A) Flowchart of the main steps in RISC. (B) 
Difference in dimension space between two scRNA-seq datasets represented as batch effects, 
with dash lines connecting cells of the same type in different datasets. (C) RISC transfers high-
dimension gene expression matrices into PCs and utilizes these PCs to correct batches by PCR 
model and generate an integrated dataset. (D) Two scRNA-seq datasets are integrated in a 
hyper-plane with covariance in appropriate fit-error between them. 
 

Here, we briefly explain the key steps of the algorithm and features of RISC (Fig. 1A; details in 

Methods).  

1. RISC pre-processes the gene expression matrix in each dataset to make it ready for 

integration. For simplicity of description, we consider the global difference between any two 

datasets as “batch effects” (Fig. 1B), which represent technical noises in most cases (Leek 

et al. 2010) but can be biological differences. First, RISC normalizes the gene expression 

values of each cell by a size factor that is derived from the total count/UMI in that cell. Next, 

it scales the gene matrix to balance expression levels in each cell with empirical mean equal 

to 0. Lastly, it identifies genes exhibiting highly variable expression via a Quasi-Poisson 

model. 

2. In the process of batch correction and integration (Fig. 1C), RISC first transfers the 

expression matrix for the highly variable genes in the reference dataset into PCs. The default 

in RISC chooses the dataset with the largest cell number as the reference, but a user can 
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modify as they see fit. The PCs chosen for PCR-integration are from the PCs (either all or a 

subset) used for dimension reduction of individual datasets. This novel strategy of RISC 

avoids loss of information or introduction of new noise by integration itself. Then, RISC 

derives a covariance hyper-plane between the reference and target datasets using the PCR 

model (Fig. 1D). Lastly, RISC adjusts gene expression ranges of each gene across datasets 

to generate an integrated gene expression matrix. 

3. RISC also provides cell clustering function and methods for identifying cluster marker genes, 

using the previously described algorithm (see Methods). In addition to a typical choice of 

negative binomial regression, RISC implements a second option for computing cluster 

marker genes based on Quasi-Poisson regression that can stably detect marker genes in 

small numbers of cells (Ver Hoef and Boveng 2007). 

 

The general performance of RISC in data integration 

To evaluate the data integration ability of RISC, we first examined its accuracy in merging cells 

belong to the same cell types. This was accomplished by the analysis of two publicly available 

scRNA-seq datasets of human peripheral blood mononuclear cells (PBMCs) (Kang et al. 2017), 

with raw data obtained from the Gene Expression Omnibus (GEO; accessible number 

GSE96583). One set was from PBMCs after interferon-b (IFN-b) treatment for 6 hours, while the 

other was controls. We chose to test RISC with these realistic datasets over computationally 

simulated ones because simulation would not be able to mimic all the known and unknown factors 

in scRNA-seq data production. Analysis of the raw dataset (termed “pre-integrated data sets” 

herein) by t-SNE (t-distributed stochastic neighbor embedding) showed a clear separation of the 

IFN+ cells and IFN- controls (Fig. 2A), which is most likely caused by batch effects, because Kang 

et al reported only a few hundreds of differentially expressed genes (DEGs) for most cell types 

upon IFN-b treatment (Kang et al. 2017). After RISC integration, the batch difference was 
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removed as the separation of the two datasets disappeared (Fig. 2B). The necessary of batch 

correction for these two datasets was also described previously (Butler et al. 2018). 

 

Figure 2. Performance of RISC in integration of PBMC scRNA-seq datasets with different cell 
composition similarities. (A ~ B) T-SNE plots display cell embedding of PBMC cells from control 
(“IFN-”) and IFN-b stimulation (“IFN+”), before (A) and after integration by RISC (B), with light red 
for “IFN-” data and light blue for “IFN+” data. (C ~ D) In t-SNE plots, the embedding cells of the 
RISC-integrated dataset are colored by cell types (C) or cell sub-populations (D), as defined 
previously (Kang et al. 2017) . (E) The expression patterns of cell-type markers, corresponding to 
cell populations in D. (F) The upper plots indicate the generation of simulated data subsets with 
reducing cell cluster similarity (from left to right), in which the gray color marks the cells gradually 
removed from the full “IFN+” data. The lower plots show cell embedding of the integrated dataset 
between the “IFN-” data (full cell populations) and individual simulated “IFN+” data subsets. The 
colors for cell populations correspond to the panel C. (G) The accuracy of RISC in data integration 
with different cell clustering similarities, where the accuracy is estimated by the ratio of correct 
cell embedding.  
 

To evaluate the accuracy of RISC, we applied clustering analysis to the integrated data and 

annotated the identities of cell clusters by known marker genes. Using the previously defined cell 

types (or clusters) as the reference standard, both by Seurat (Butler et al. 2018) and by Kang et 

al (Kang et al. 2017), RISC correctly merged cells belonging to the same types, including B cells, 
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natural killer (NK) cells, CD16 monocytes (CD16 Mono), CD14 monocytes (CD14 Mono), 

Dendritic cells (DC), and T cells (Fig. 2C). T cells were further divided into sub-types, CD4 Naïve 

T cells, CD8 T cells, activated T cells, and CD4 memory T cells (Fig. 2D), supported by the 

expression patterns of corresponding gene markers (Fig. 2E). Interestingly, RISC divided the 

CD14 monocytes into two sub-clusters, with the smaller one containing 1,816 control and 98 IFN+ 

cells while the larger one containing 1,237 control and 2,745 IFN+ cells.  We thus referred to the 

former and the latter as “CD14 Mono IFN-” and “CD14 Mono IFN+” clusters, respectively (Fig. 

2D). Differential expression analysis detected 2,894 DEGs (adjusted p-value < 0.05), of which 

1,149 were expressed higher in the IFN+ cluster, including CXCL11 (Fig. 2E). 42% (n = 1,218) of 

these DEGs were also identified as differentially expressed in CD14 monocytes by Kang et al, 

indicating that the difference between the two CD14 monocyte (sub)clusters largely reflects the 

effects of IFN-b stimulation and thus represents distinct functional states. Note that this finding 

was not observed in a previous integration analysis (see below) (Butler et al. 2018). The 

significance of our result is further supported by the fact that more than two thirds of the total 

DEGs from IFN-b stimulated PBMCs were observed in the CD14 monocytes (Kang et al. 2017). 

The cell type with the second most DEGs were CD16 monocytes, which also seemed to contain 

two sub-clusters (Fig. 2B, D). Overall, these results indicate that RISC is not only able to integrate 

cells by types correctly but also preserve the treatment effect sufficiently.  

 

Next, we investigated the RISC performance under various cell-population similarities between 

datasets, using the two PBMC datasets described above. We kept all cells in the “IFN-” dataset, 

but gradually removed the cells (either all or by 50% Fig. S1) of B, T, NK, CD14 Mono, CD16 

Mono, and DC cells from the “IFN+” sample to generate data subsets with reduced similarities at 

the cell type level to the “IFN-” data (Fig. 2F top). Each of the modified “IFN+” data subsets were 

then integrated with the full “IFN-” data by RISC (Fig. 2F bottom). Then, we evaluated the 
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accuracy of data integration by examining how the remaining cells in the “IFN+” data were 

clustered with the matching “IFN-” cell types. As shown in Fig. 2F and Fig. S1A, RISC’s 

performance was robust to cell similarity changes as it consistently aligned >90% of the “IFN+” 

cells to the correct cell types in the full “IFN-” data even when only ~10% of cell similarity existed 

between “IFN-” and “IFN+” datasets (Fig. 2G). In short, this analysis shows that RISC can 

accurately merge cells of the same types even when two data sets share very limited similarity, 

an important feature not addressed in previous integration software.  

 

Figure 3. Integration of cross-species scRNA-seq datasets. (A) The t-SNE plot displays the pre-
integrated datasets, six different colors representing different donors from human (n = 4) or mouse 
(n = 2). (B) According to the previous cell-type annotations (Baron et al. 2016; Butler et al. 2018), 
cells of the pre-integrated datasets are colored at t-SNE plot. (C ~ E) The integrated datasets by 
RISC (C), Seurat (D) and Scran (E), colored by species. (F ~ H) The integrated datasets by RISC 
(F), Seurat (G) and Scran (H), colored by cell types in B. 
 

Integration performance of RISC on datasets with highly comparable cell type 

composition  

We then compared RISC’s performance to two existing software (Butler et al. 2018; Haghverdi et 

al. 2018) by analyzing multiple scRNA-seq datasets, starting from the data collected for pancreatic 

islets of two species, human and mice, which were consisted of nearly identical cell types (GEO: 
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GSE84133) (Baron et al. 2016). Single cells from both species were captured in droplet 

microfluidics and sequencing libraries were prepared by the CEL-seq protocol (Hashimshony et 

al. 2012) ; therefore, the main factors to address in integration were species and donor differences 

(four human donors and two mouse donors). As shown by t-SNE plot, cells in the pre-integrated 

datasets were separated by species (Fig. 3A) and cell types (Fig. 3B). After integration by either 

RISC or Seurat, both species and donor differences disappeared and cells were separated by 

cell types, according to the cell type annotation provided by Baron et al (Baron et al. 2016). The 

cell embedding results confirmed the accuracy of the integrated datasets, as cell types mostly 

merged correctly, including acinar, alpha (α ), beta (β ), gamma (γ ) delta (δ ) cells, ductal, 

endothelial, stellate and macrophage cells (Fig. 3C, 3D, 3F and 3G). The performances of RISC 

and Seurat were similar, but the results from Scran, showed some degrees of mixture of the major 

cell types, alpha, beta, and delta cells (Fig. 3E, 3H). 

 

Next, we evaluated integration of datasets from different publications, which presumably have 

larger batch differences than datasets in the same study. We tested three pancreas scRNA-seq 

datasets (E-MTAB-5061, GSE81076 and GSE85241) with well-defined and annotated cell types 

(Grun et al. 2016; Muraro et al. 2016; Segerstolpe et al. 2016). The single cells of these sets were 

from healthy or type 2 diabetics (T2D) human donors, and three different protocols were used to 

obtain the scRNA-seq data, Smart-seq2 for E-MTAB-5061, CEL-seq for GSE81076, and CEL-

seq2 for GSE85241. As expected, the cells were largely segregated by experimental protocols 

and donors before batch correction (Fig. S2A). After integration, RISC, Scran and Seurat all 

removed the batch effects and merged cells appropriately (Fig. S2B ~ D). Based on the original 

cell type annotation and the corresponding markers (Grun et al. 2016; Muraro et al. 2016; 

Segerstolpe et al. 2016), we examined the expression patterns of marker genes for four endocrine 

cell sub-populations (i.e., GCG, INS, PPY and SST for alpha (α), beta (β), gamma (γ) and delta 

(δ) cells, respectively). The results showed that all three methods successfully integrated data 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/483297doi: bioRxiv preprint 

https://doi.org/10.1101/483297


	 	 	 13	

(Fig. S2E), but RISC and Seurat seemed to group cells of the same types more closely.  Similar 

results were obtained when the three methods were used to integrate scRNA-seq datasets 

obtained by two different platforms for studying hematopoietic lineage (Smart-seq2 for GSE81682 

and MARS-seq for GSE72857) (Paul et al. 2015; Nestorowa et al. 2016), as shown in Fig. S2F ~ 

J.  

 

Figure 4. Separation of functionally distinct cells of the same type. (A ~ B) T-SNE plots show the 
integration results of the two PBMC datasets (Fig. 2) by Seurat (A) and Scran (B). (C) Separation 
of the CD8+ T and CD4+ Treg cells from other cells in the GSE114727 datasets. (D) Separation 
of the CD8+ Trm and CD4+ Treg cells from other cells in the GSE110686 dataset. (E) T-SNE plot 
shows the pre-integrated data for cells extracted from (C) and (D), with different cell types 
indicated by circles.  (F) Integration of the four datasets in (D) by RISC (left), Seurat (middle) and 
Scran (right), with colors representing three types of T cells. 
 

Outperformance of RISC in preserving subtle subpopulation difference between 

datasets 

A good integration software has to correctly align cells (from different datasets) that have the 

same gene expression profile, but it also needs to preserve the biological difference between 
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datasets. In the integration of human PBMC datasets before and after IFN treatment, RISC was 

able to preserve the treatment effect on CD14 and CD16 monocytes (Fig. 2D), which was masked 

by Seurat (Fig. 4A ~ B and S3A ~ B).  The RISC’s feature of avoiding over-integration is important 

for detecting cells that belong to the same cell type but are at distinct states, reflecting either 

developmental stages or in response to experimental treatments. 

 

We then compared RISC, Seurat and Scran by analyzing immune cells in breast tumor 

microenvironment. The first datasets were obtained from the CD3+ leukocytes of three breast 

cancer patients using the 10X genomics’ protocol (GEO: GSE114727; “BC09”, “BC10” and 

“BC11”) (Azizi et al. 2018). Again, cells were separated by donor batch effects before integration 

(Fig. S3C), but RISC, Seurat and Scran mitigated the donor difference and correctly aligned cells 

of the same clusters (Fig. S3D ~ F). In the original study (Azizi et al. 2018), Azizi et al found that 

these CD3+ leukocytes could be divided into three groups (CD8+, CD4+ and regulatory T cells 

(Treg)), based on T cell activation signature genes (CD8A, CD4 and FOXP3). This was 

reproduced in the integrated datasets from RISC and Seurat, while some degree of under 

integration was seen in the Scran result (Fig. S3F, G). Nevertheless, the separation of the three 

cell types is somewhat unclear, suggesting a challenging dataset for integration and clustering.  

 

To better illustrate the difference of the three software, we extracted the CD8+ and CD4+ Treg 

cells from the three donors (for better cluster separation) (Fig. 4C) and integrated them with the 

CD8+ T cells from an independent study that also investigated tumor-infiltrating T cells in breast 

cancer (Savas et al. 2018). From the second dataset (GSE110686), we extracted only CD4+ Treg 

cells and CD8+ tissue-resident memory T cells (CD8+ Trm) (Fig. 4D), which were shown to form 

a functionally distinct T cell group and provide better prognostication prediction than CD8+ T cells 

alone (Savas et al. 2018). Thus, Treg cells from the two reports were expected to be mixed but 

other cells (the majority) were not (Fig. 4E). To our surprise, after integration, we found that a 
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small fraction of the CD8+ cells from the first report (i.e., GSE114727) actually showed 

characteristic gene expression of CD8+ Trm. This subtle but potential important finding was not 

described by Azizi et al, but was clearly supported by the expression of Trm cell markers (CCL3 

and HAVCR2) (Savas et al. 2018) (Fig. S3H). We then checked the CD8+ Trm cells from the 

second report (i.e., GSE110686) and determined how many of them were mixed with non-Trm 

cells (i.e., Trm- CD8+) upon integration by RISC, Seurat and Scran (red cells in Fig. 4E and S3I). 

The result showed that RISC and Scran had good performance, with < 5% being aligned to the 

non-Trm CD8+ cluster. In contrast, >30% of the Trm+ cells were put incorrectly to the non-Trm 

cluster in the Seurat integrated data (Fig. 4F and S3I). Based on these results, we consider that 

RISC has a better performance in preserving subtle but biologically meaningful differences during 

data integration.  

 

Application of RISC for identifying tumor-like cells in normal human kidney tissues  

As RISC can correctly identify and merge small clusters of common cells among samples (Fig. 

2), we decided to test its capability in detecting tumor-like cells present in normal tissues, either 

next to tumors or before tumors emerge. In a recent study, Yang et al used a combination of 

scRNA-seq, genomic, and tumor bulk RNA-seq analysis to find “aberrant” cells in normal human 

kidney whose gene expression profile matches that of malignant kidney tumors, such as Wilms 

tumors and renal cell carcinomas (RCCs) (Young et al. 2018). In their analysis, scRNA-seq 

datasets from the fetal (n = 2; normal kidneys), children (n = 3 for normal kidneys and n = 3 for 

Wilms tumors), and adult samples (n = 5 for normal kidneys, n = 1 for papillary RCCs, and n = 3 

for clear cell RCCs) were generated and analyzed independently, and then the similarity between 

aberrant cells and tumors was ultimately identified from comparisons of the gene expression of 

individual cell clusters to the tumor bulk RNA-seq data and tumor markers. We thus tested 

whether RISC could reproduce the finding by simply performing an integrated analysis of the 

scRNA-seq data from normal and malignant kidneys.  
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Figure 5. RISC integrated analysis of kidney normal cells and tumors. (A) T-SNE plots display 
cell types (left) and clusters (right) of the RISC-integrated data from the fetal and children 
datasets, including normal and tumor cells, colors on the left and right panels representing cell 
types and cell clusters, respectively. The red circles highlight the two clusters containing PV cells 
and Wilms tumors or UB and NR cells. (B ~ C) The pre-integrated (B) and RISC-integrated (C) 
datasets colored by their three sources, fetal, children and adult samples. (D) Clusters of the 
RISC-integrated data in (C), with the clusters PRW5 and PRW10 circled for containing both 
normal cells and tumors. (E) The cell types in the RISC-integrated data, consistent with Fig. S5A 
~ C. (F) T-SNE plot displays the locations of the tumor cells from the original report (Young et al. 
2018). (G) Heatmap displays expression patterns of 33 Wilms- or RCC-specific genes in kidney 
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normal and tumor cells. The cluster FRW5 (navy for cluster label) and FRW10 (red for cluster 
label) are further divided into four subgroups: FRW5/10 (n) for normal cells, FRW5/10 (w) for 
Wilms tumors, FRW5/10 (r) for RCCs and FRW5/10 (nr) for NR cells. The green and black colors 
in cluster label represent tumor or normal-cell cluster, respectively.  
 

Before integration, we reanalyzed the fetal, children and adult scRNA-seq datasets 

independently, and demonstrated that RISC correctly separated the cell types identified by Yang 

et al, based on the expression of the marker genes described in their paper (Fig. S4A ~ C), i.e., 

tumor cells (Wilms and RCC) and tumor-precursor nephrogenic rest (NR) cells were distinguished 

from cell types in the normal kidneys, including endothelium (EN), epithelial (EP), myofibroblast 

(MB), fibroblast (FB), cap mesenchyme (CM), ureteric bud (UB), primitive vesicle (PV), and 

Intermediate population (IP). When the fetal and children datasets were integrated, RISC largely 

removed the batch effects (Fig. S4D); and, more importantly, showed that the fetal PV and UB 

cells were embedded around a subset of Wilms tumor and NR cells (circled clusters in Fig. 5A), 

in agreement with the original finding that fetal UB and PV cells could be the origin of Wilms 

tumors (Young et al. 2018). Distinct from Seurat or Scran, (Fig. S4E), the RISC-integrated dataset 

showed that these cells were co-localized to the cluster FW5 and FW7, but segregated away from 

other normal kidney cell clusters.  

 

When RISC was applied to integrate all kidney normal and tumor cells from fetal, children and 

adult samples, the batch separation was mitigated as more cells from the three sample groups 

became mixed (Fig. 5B ~ C). While normal kidney cells and tumor cells were generally separated, 

some normal cells were clustered together with tumor cells after integration (Fig. 5D ~ E). To help 

elucidate the identities of those cells, we projected the cell annotations by Yang et al onto the 

RISC-integrated and clustered data (Fig. 5F) (Young et al. 2018). The result indicated that two 

clusters contained both normal and tumor cells; FRW5 contained fetal MB cells, Wilms tumors 

and some RCCs, while the FRW10 cluster contained UB, EP, NR cells, and a different set of 

RCCs.  
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To further characterize these two cell clusters, we performed cluster marker analysis (Fig. S5F) 

and identified 1,020 and 192 genes highly expressed in the clusters FRW5 and FRW10, 

respectively, (Table S1, adjusted p-value < 0.05), including proto-oncogenes like KRT8 and 

OLFML3. The signature genes for the cluster FRW5 were enriched in oxidative phosphorylation 

(FDR = 2.6e-23), degradation of GLI2 by the proteasome (FDR = 6.9e-11), G2/M Transition (FDR 

= 1.2e-10) and other terms. The enriched pathways of the FRW10 cluster included apoptotic 

process (FDR = 5.1e-5) and others. We next searched for genes that were significantly 

differentially expressed (FDR < 0.05) between tumor clusters (FRW4, 6, 11 and 12) and normal-

cell clusters (FRW1-3, 7-9, 13 and 14) (Fig. 5D, F) and were markers for at least one of the tumor 

clusters but not for the normal-cell clusters.  Of the 33 genes meeting these criteria (Fig. 5G), 

many of them remarkably also showed high expression in the FRW5 and FRW10 clusters, 

including oncogene EGFR (Zandi et al. 2007) and genes linked to poor prognosis of patients with 

renal tumors, based on the data in the Human Protein Atlas database (Uhlen et al. 2017) , such 

as TGFBI (Table S2). In short, the RISC-integrated data uncovers two small groups of normal 

kidney cells that exhibited high expression of several renal-cancer relevant markers and overall 

similar gene expression profiles to either Wilms tumors or RCCs, as indicated in the t-SNE plots. 
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Discussion 

Data integration is essential for extracting meaningful biological information across multiple 

scRNA-seq datasets, in order to decipher the cell-cell relationship across studies (Regev et al. 

2017; Han et al. 2018). To facilitate robust data integration, we have developed RISC and 

evaluated its performance over multiple scRNA-seq datasets containing small to large portions of 

cell populations with matched gene expression profiles. In comparison to two currently available 

software, Seurat and Scran, RISC showed similar or better performance in merging cells with 

highly comparable cell compositions, but significant improvement in integrating datasets with 

subtle but biologically meaningful differences imbedded in otherwise homogenous datasets.  

 

One advantage of RISC is its tendency to averting over integration when presented with datasets 

containing subtype difference, e.g., same cell types but at distinct functional states (Fig. 4). When 

more scRNA-seq studies begin to investigate cell functional difference beyond cell type 

identification, this feature can become very valuable. This feature can also be important for not to 

integrate unrelated datasets. To illustrate it, we incorporated a brain scRNA-seq dataset as a 

negative control (GSE103723) (Fan et al. 2018), and integrated it to the samples that we used for 

Figure 2, 3 and 4 separately. As Fig. S5A ~ S5C shown, cell integrating only happened to the 

same cell types (identified by cell-type marker genes used in Figure 2, 3 and 4) and brain cells 

were rarely mixed with non-brain cells. In practice, we expect users to analyze individual datasets 

and evaluate whether any of the cell clusters between two datasets share highly expressed gene 

markers before data integration, in order to ensure that the integrated result is biologically 

meaningful. In the future, we plan to develop a quantitative metric for evaluating the cell cluster 

similarity of two datasets and uses it as a guidance for integration.  

 

The CCA, used in Seurat and Scran, is a classic statistic method for inferring signal information 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/483297doi: bioRxiv preprint 

https://doi.org/10.1101/483297


	 	 	 20	

from cross-covariance matrices. However, the CCA has its limitation in handling matrices, in 

which the number of cells (matrix columns) is larger or similar to the number of genes (matrix 

rows). The regularization in CCA can solve this problem and has been developed for years, with 

several methods efficiently implementing the algorithm (Gonzalez et al. 2008; Witten et al. 2009), 

such as regularized CCA / ridge regression. These methods involve a penalizing parameter 

“lambda”, but how to determine the optimal value of lambda becomes a new challenge. In 

regularized CCA, one approach is to sample series of values for determining the optimal lambda 

that yields good fit error in CCA model. This requires a large number of repeated samplings and 

becomes extremely time consuming in scRNA-seq analysis. For instance, if we want to find the 

optimal lambda for two matrices, in the range of 0 to 1 with ten intervals, we have to perform CCA 

100 times, each with a different lambda (Gonzalez et al. 2008). This is computationally infeasible 

for scRNA-seq integration with tens of thousands of cells in each dataset. Therefore, the lack of 

efficient method for identifying optimal lambda restricts the application of regularized CCA in 

scRNA-seq analysis. In RISC, instead of estimating this lambda, the PCR model selects the PCs 

based on dimension reduction, the process regularizes the matrices and generates the unique 

singular vectors at the first step of scRNA-seq data analysis. In addition, the PCs from dimension 

reduction preserves the meaningful biological information of each dataset, so the mathematical 

framework of PCR model allows it to avoid any noise that would not be used in the data analysis 

of individual datasets. 

 

At last, we compared the running time of RISC, Seurat and Scran, from integrating individual 

datasets to generation of the final integrated expression matrix, and found that interestingly, the 

running time of Scran was completely dependent on how many cell pairs were identified from the 

MNN. The running time of RISC is significantly less than that of Seurat in all samples tested in 

the current study (Fig. S6). Although other well-known regularized models, such as lasso and 

partial least square (PLS) regression, also prevent overfitting and are suitable for gene matrices, 
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a large number of time-consuming calculations would limit the practical use of these algorithms 

in most scRNA-seq analysis. Nevertheless, RISC provides an alternative PLS model by using 

SIMPLS algorithm, but the complicated computation looping reduces its performance. 
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Data and Methods 

Description of the scRNA-seq datasets 

PBMCs datasets. Two single-cell gene expression count matrices were generated from 

peripheral blood mononuclear cells of systemic lupus erythematosus (SLE) and Rheumatoid 

arthritis (RA) patient donors by Kang et al. (GSE96583) (Kang et al. 2017), with IFN-beta 

treatment in 6 hours (stimulation) or without treatment (control). The cells were isolated by Ficoll 

and prepared by the 10X genomics protocol. After cell filtration by RISC, 6,573 cells were valid in 

control (GSM2560248) and 7,466 cells in stimulation samples, with ~700 minimum UMIs/counts 

and ~500 expressed genes in each cell. Totally, 6 cell types were identified by marker genes, 

including B, NK, T, CD14 monocytes, CD16 monocytes and DC cells; among them, T cells were 

further divided into four sub-populations, CD4 Naïve T, CD8 T, activated T and CD4 Memory T 

cells (Kang et al. 2017; Butler et al. 2018).  

 

Human and mouse pancreatic-islet single-cell datasets. The single-cell datasets were derived 

from pancreatic islets of four human donors and two mouse strains by Veres A. et al. (GSE84133) 

(Baron et al. 2016), using either inDrop workflow, microfluidic droplet platforms, or the CEL-seq 

protocol. The human cells were from two males and two females, while two mice were the ICR 

and C57BL/6 strains. After cell filtration by RISC, we got 8,100 valid cells for human and 1,781 

cells for mice, with ~11,000 genes expressed in both datasets. Using the cell type annotation from 

the original report (Baron et al. 2016), we identified ten cell populations, including acinar, alpha, 

beta, gamma, delta, ductal, endothelial, stellate and macrophage cells. 

 

Human pancreas single-cell datasets. Three pancreas single-cell datasets were obtained from 

either the ArrayExpress (E-MTAB-5061) (Segerstolpe et al. 2016) or the GEO (GSE81076 and 

GSE85241) (Grun et al. 2016; Muraro et al. 2016). The E-MTAB-5061 was prepared by the Smart-
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seq2 protocol. GSE81076 was collected by the CEL-seq and GSE85241 by the CEL-seq2 

protocol. The E-MTAB-5061 data contained ten donors, six healthy and four T2D (type 2 diabetes) 

cadaveric patients. The single cells in GSE81076 were derived from organ donors with or without 

T2D, and four healthy human donors provided single cells for the GSE85241 data. After 

preprocessing, 680 cells passed quality control in E-MTAB-5061 with the minimum of 1,000 

expressed genes and 1,000 UMIs/counts per cell, 2,241 single cells for GSE81076 with the cutoff 

of 1,000 expressed genes and 3,000 UMIs/counts, and 1,140 valid cells in GSE85241 with more 

than 1,000 expressed genes and 1,000 UMIs/counts. The integrated analyses of RISC, Seurat 

and Scran all identified four cell sub-populations, marked by specific genes (GCG, INS, PPY and 

SST for alpha (α), beta (β), gamma (γ) and delta (δ) cells, respectively) (Grun et al. 2016; Muraro 

et al. 2016; Segerstolpe et al. 2016). 

 

HSPC datasets. Two single-cell datasets of hematopoietic lineage were downloaded from the 

GEO databases (GSE81682 and GSE72857), and contributed by Nestorowa et al. (Nestorowa et 

al. 2016) and Amit et al. (Paul et al. 2015), respectively. In the GSE81682, single cells were 

captured from hematopoietic stem and progenitor populations and followed by Smart-seq2 

protocol for library preparation. The cells in GSE72857 were isolated from Bone marrow Lin- cKit+ 

Sca1- myeloid progenitor cells, and processed with the MARS-seq protocol. After filtering, 803 

cells in GSE81682 and 2,679 cells in GSE72857 passed our quality control, with ~8,400 

expressed genes in the integrated data. According to the original reports (Paul et al. 2015; 

Nestorowa et al. 2016), Gata1, Irf8 and Mpo were used as markers for erythrocyte progenitors, 

monocyte progenitors, and neutrophil progenitors, respectively.  

 

T cell datasets from breast cancers. Three datasets (BC09, BC10 and BC11) for single T cells 

were derived from breast cancer patients by Azizi et al. (GSE114727) (Azizi et al. 2018), and all 

cells were CD3+ leukocytes and sequenced in paired V(D)j platform by the 10X genomics 
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workflow. Both BC09 and BC11 had two technical replicates, but in this study, we only used one 

replicate (GSM3148575 for BC09 and GSM3148578 for BC11); by contrast, BC10 only had one 

replicate (GSM3148577). We first filtered the cells based on the authors’ single cell T cell receptor 

sequencing annotation (Azizi et al. 2018). Then, after preprocessing by RISC, 6,550 single cells 

passed the quality control for BC09, 4,593 for BC10 and 4,982 for BC11, with ~12,500 expressed 

genes across three datasets. These cells were divided into three major types were, including 

CD8+, CD4+ and regulatory T cells (Treg), according to T cell activation signature genes (CD8A, 

CD4 and FOXP3) (Azizi et al. 2018). A second T cell scRNA-seq dataset was also from breast 

cancer patients by Savas et al. (GSE110686) (Savas et al. 2018); all cells were CD3+ and isolated 

by fluorescence-activated cell sorting (FACS) and sequenced by by the 10X genomics workflow. 

After preprocessing by RISC, 5,990 single cells passed the quality control, with ~12,4000 

expressed genes.  

 

Kidney normal and tumor datasets. The scRNA-seq datasets of human kidney normal and 

tumor cells were previously generated from fetal, children and adult patients or donors (Young et 

al. 2018), including ~72,000 single-cell transcriptomes in total. Filtering out the cells labeled as 

“low quality”, immune cells, and normal proximal tubule cells not related to tumors (as defined by 

the original report), we kept ~18,000 single-cell transcriptomes for this study. These single cells 

were derived from the fetal (n = 2 for normal kidneys), the children (n = 3 for normal kidneys and 

n = 3 for Wilms), and the adult (n = 5 for normal kidneys, n = 1 for papillary RCCs, and n = 3 for 

clear cell RCCs) samples. After data preprocessing, 17,067 cells passed the quality control of 

RISC, with ~16,000 expressed genes in common. As the original report provided the cell-type 

markers and labels the tumor-status of each cell, here we used these information as they were in 

the supplemental “Table” file of the original report (Young et al. 2018). 

 

Brain negative control dataset. The dataset was previously derived from single embryonic 
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cortex cells of 22-23 weeks human embryos, using the Smart-seq2 protocol by Fan et al. 

(GSE103723) (Fan et al. 2018). After data preprocessing, 4,408 cells with ~20,000 expressed 

genes were kept for our analysis. 

 

Filtering and processing scRNA-seq data. We filtered all scRNA-seq datasets using standard 

normal distribution to remove cells with extremely low/high UMIs or low/high number of expressed 

genes. We also discarded the genes only expressed in few cells, according to distribution 

analysis. The same filtered datasets were used as inputs for RISC, Seurat and Scran.  

 

To remove the technical batch effect of sequencing depth, we normalized the gene expression 

values of individual datasets by size factors that were equal to the total number of transcripts in 

each cell (i) divided by median value of all cells. 

size	factor	 i =
UMI4

UMI567489
 

We further scaled the gene expression values of all cells in each dataset by Poisson scaling (root-

mean-squaring), and centered gene expression magnitude to the same level with empirical mean 

equal to 0. The root-mean-squaring scaled matrices preserve gene expression signals used for 

data integration. 

 

Identify highly variable genes by Quasi-Poisson model. The default method in RISC utilizes three 

criteria to pick up highly variable genes. First, coefficient of variation is calculated for each gene, 

given by 

C4 = 	
;<
=<

 , 

where S4  and µ4  denote standard devotion and mean value, respectively, for gene i  ( i ∈

1, 2, … , n ), and the genes with Ci > 0.5 are selected. To control for the relationship between S4 

and µ4,  Quasi-Poisson regression is used to further filter genes with over-dispersion C caused by 
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small µ (Ver Hoef and Boveng 2007). Specifically, genes are put into a set of bins (e.g. 20 bins) 

based on their expression level. For genes in a bin (b ∈ 1, 2, … , 20 ), Quasi-Poisson regression 

is used to predict SI4 by µI4 as 

Var SI4 = θµI4 

where θ for the Quasi-Poisson over-dispersion parameter. The predicted CI4  is calculated by ;L<
=L<

, 

and the corresponding ratio between the observed Ci and the predicted CI4 is given by r4 =
M<
ML<

 for 

each gene. The genes with r > 1 is considered as highly variable for further subsequent analysis. 

We limit the number of the highly variable genes < 1,500 by ranking r4 , with z-score test. 

 

Besides the Quasi-Poisson regression model, RISC also provides an alternative method, named 

“residuals”, to choose the highly variable genes, and this method is similar to what is used in the 

Seurat package (Butler et al. 2018). 

 

Data integration by PCR. The principal PCR model is designed to identify a covariance hyper-

plane between two matrices.  To illustrate the idea, we consider two datasets (two matrices of 

gene expression values). The extension to multiple datasets is straightforward.  

 

PCR model in two datasets. The core of PCR is based on an ordinary least square linear 

regression. Let two gene-expression-value matrices be a reference n×p matrix X9×R with n rows 

of genes and p columns of cells and an n×q matrix Y9×U. PCR provides the estimated regression 

coefficients between the two matrices (also shown in Fig. 1B) given by 

βR×U = (X9×RWX9×R)XYX9×RWY9×U 

in which p ≥ q due to the reference dataset is selected to have the larger cell number.  
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PCR model is based on the principal component (PCs) of the matrix X9×R . Thus, under the 

condition that  

n ≫ p + q 

(the condition n ≅ p + q or n ≤ max		(p, q) will be discussed in “Regularized procedure in PCR 

model” section), the matrix can be decomposed using SVD. Then, after removing the 

uninformative components n − p , the matrix is given by 

X9×R = U9×RΔR×RVR×RW  

where Δc×c denotes the singular values, and 𝑈e×c and 𝑉g×g represent the left- and right-singular 

vectors of the matrix 𝑋e×c, respectively. Hence,  

𝑋e×ci𝑋e×c = 𝑉c×c ∧c×c 𝑉c×ci  

where ∧c×c denotes ∆c×cl .  

 

When all PCs are used, the regression coefficient estimates of PCR are equivalent to the product 

of two matrices. Of note, PCR only uses top PCs, which is different with the principal CCA that is 

equivalent to an approach using all PCs. Let  

𝑊e×n = 𝑋𝑉c×n, 

where  𝑉c×n  is the corresponding submatrix of 𝑉 for 𝑙 ∈ 1, 2, … , 𝑝 . Therefore, we have 

𝛾n = (𝑊e×n
i 𝑊e×n)XY𝑊e×n

i 𝑌e×g 

 and 

𝛽′c×g = 𝑉c×n𝛾n. 

In briefly, the coefficient matrix 𝛽′c×g between 𝑋e×c and 𝑌e×g is estimated and dependent on the 

first 𝑙 PCs in PCR model.  

 

Regularized procedure in PCR model. In most cases, the dimension reduction and data 
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integration of scRNA-seq data are based on the highly variable genes (usually 𝑛 ≤ 1,500). Since 

the cell number of scRNA-seq data are often thousands and more, the matrix 𝑋e×c and 𝑌e×g are 

most likely in the condition 

𝑛 ≅ 𝑝 + 𝑞 or 𝑛 ≤ max		(𝑝, 𝑞). 

Thus, unique SVD may not be obtained from either 𝑋e×c or 𝑌e×g in real scRNA-seq data. This 

issue cannot be handled by the principal CCA, and needs to be corrected by the regularized CCA 

(Gonzalez et al. 2008). In contrast, the PCR model itself undergoes the regularized solution. The 

PCR model utilizes the first 𝑙-column PCs of 𝑋e×c, and in practice 𝑙 ≪ 𝑛, so the 𝑉c×n and 𝑊e×n will 

be unique in PCR model. Our challenging is to find the optimal 𝑙 that can preserve most important 

biological information of datasets, and to solve the constrained minimization problem of the rest 

(𝑞 − 𝑙) columns of PCs through 

𝛽y = 𝑎𝑟𝑔 min
}∗∈ℝ�

∥ 𝑌 − 𝑋𝛽∗ ∥l 			𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜			𝐿gXni 𝛽∗ = 	0 

𝐿(gXn) = 𝑉(gXn)⋀(gXn)
Y l  

However, we know the optimal first 𝑙 -column PCs is equal or approximate to the maximum 

number of PCs used for dimension reduction in each dataset, so the PCR model forms a 

regularized procedure by itself when we insure 𝑙 ≪ 𝑛. 

 

Alignment of gene expression values. For the downstream scRNA-seq analysis, RISC aligns 

gene expression values across datasets by two options. Primarily, according to PCR model, one 

can predict the target-matrix values based on the reference matrix 𝑋e×c  directly, i.e. in data 

integration of two datasets, the predicted 𝑌e×g is given by 

𝑌e×g = 𝑋e×c𝛽c×g 

where 𝛽c×g denoting regression coefficient matrix. Then, the expression range of each gene is 

adjusted. Since the minimum of normalized counts in gene expression matrix is zero, 99.5% 
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quantiles of individual genes denote the expression ranges of the genes in all cells.  

 

Instead of simply balancing every gene to have the same expression range, we first get a set of 

range vectors for all shared expressed genes between two datasets.  

Let 

𝜆� =
���
���

, for 𝑖 ∈ 1, … , 𝑛 , 

denote range vectors for all the genes, where 𝑔�� represents expression range of gene 𝑔� in the 

reference matrix 𝑋e×c and 𝑔�� for expression range of gene 𝑔� in the predicted matrix 𝑌e×g. Based 

on our kernel assumption, a large number of genes is not differentially expressed across datasets, 

we thus utilize log-linked linear regression model with Gaussian distribution to predict the 

empirical confidence intervals of 𝜆�,  

log(𝐸(𝜆�)) = 	 log(𝜇��) 𝜉, for 𝑖 ∈ 1, … , 𝑛  

where 𝜇�� denoting average expression value of gene 𝑔� in the reference matrix 𝑋e×c, and 𝜉 for 

a linear coefficient based on 𝜆� by 𝜇��. The genes are considered to be in different expression 

ranges across datasets, with 𝜆 > max(𝜆�) or 𝜆 < min(𝜆�) for 𝑖 ∈ 1, … , 𝑛 . For multiple datasets, 

the processes are repeated between the reference and the rest datasets respectively, then the 

values of all the matrices are modified according to the reference dataset and made comparable 

for the downstream analysis.  

 

An alternative method in RISC is to skip the step of gene-expression-value prediction according 

to PCR model. It is still based on the kernel assumption that most genes are not differentially 

expressed across datasets. Thus, we directly adjust the expression ranges of each gene. Since 

PCR-prediction will transform the variance structures of multiple datasets to be similar to the 

variance structure of the reference dataset. This alternative method can optimally reserve the 

original variance structures of individual datasets. 
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Cell clustering in RISC. Three cell clustering methods are provided in RISC. The first is based 

on the k-nearest neighbor (KNNs) algorithm, the second is by Gaussian Mixture Models (GMMs), 

and the last extends and improves from density peak clustering algorithm. These clustering 

methods were previously described in R packages “densityClust” (Rodriguez and Laio 2014)  and 

“ClusterR” (Maechler 2018) . The default method (used in this report) is the “density-based 

clustering”. 

 

Running of Seurat and Scran. We used the default parameters to run Seurat (v2.3.4) and Scran 

(v1.8.0) in all analyses. The normalization and scaling of gene expression values were performed 

by Seurat or Scran themselves. The top variable genes for running Scran were taken from the 

Seurat, as Scran does not identify top variable genes and both software utilize the algorithm CCA. 

We should point out that the default t-SNE function in RISC, Seurat and Scran (Scran calculating 

t-SNE using the “scater” package) calls the same function in the “Rtsne” package (van der Maaten 

2014; McCarthy et al. 2017; Butler et al. 2018; Haghverdi et al. 2018), so the t-SNE plots from the 

three software are directly comparable. 
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Data and code availability 

All scRNA-seq datasets in this study have been published by other research groups. The RISC 

is prepared as a R package and will be released as a R CRAN package for free usage.  
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Supplemental Figures 

 

Figure S1. The performance of RISC in data integration with 50% reducing cell-population 
similarities. The upper plots display the “IFN+” data subsets with reduction of cell-population 
similarity to the “IFN-“ data (from left to right), gray color marking the 50% cells removed. The 
lower plots show cell embedding of the integrated dataset between the “IFN-” data (full cell 
populations) and the individual “IFN+” subsets. The colors for cell populations correspond to Fig. 
2C. 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 29, 2018. ; https://doi.org/10.1101/483297doi: bioRxiv preprint 

https://doi.org/10.1101/483297


	 	 	 33	

 

Figure S2. Integration of data from different studies and platforms. (A ~ D) The t-SNE plots show 
the cell embedding of the pre-integrated datasets (A) from three pancreas scRNA-seq data, and 
the integrated datasets by RISC (B), Seurat (C) and Scran (D). (E) The plots display expression 
patterns of cell-type marker genes. (F ~ I) The t-SNE plots indicate the cell embedding of the pre-
integrated datasets (F) of the hematopoietic lineages from different platforms, and the integrated 
datasets by RISC (G), Seurat (H) and Scran (I). (J) The expression patterns of the known cell-
type markers. 
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Figure S3. Integration of full T-cell datasets. (A ~ B) The cell types of the Seurat-integrated (A) 
and Scran-integrated (B) data from the two PBMC datasets in Fig. 2, the colors for cell types 
corresponding to the colors in Fig. 2D. (C ~ F) Comparison of the data before (C) and after 
integration by RISC (D), Seurat (E) and Scran (F). The three colors indicate T cells from three 
breast cancer patients (BC09, BC10 and BC11). (G) Expression patterns of marker genes (CD4, 
CD8A and FOXP3) for three distinct T cell types. (H) Expression patterns of marker genes (CD8A, 
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FOXP3, CCL3 and HAVCR2) for CD8+ Trm-, CD4+ Treg and CD8+ Trm+ cells. (H) T-SNE plots 
display the CD8+ Trm cells that were integrated incorrectly to non-Trim cells. 
 

 

Figure S4. Application of RISC to normal and malignant kidney cells. (A ~ C) The t-SNE plots 
show cell clustering (left) and cell types (right) of the fetal (A), children (B) and adult (C) datasets 
by RISC. (D) Comparison of the fetal and children datasets before and after integration by RISC, 
Seurat or Scran, with cells colored by their sources. (E) The t-SNE plots highlight the cell types in 
the integrated datasets (D) by Seurat or Scran, respectively. (F) The heat-map shows expression 
patterns of the top cluster markers in the RISC-integrated data, from the full three datasets 
consistent to Fig. 5D. 
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Figure S5. No integration of brain to non-brain cells. (A ~ C) The combination of single-cell profiles 
of human brain to PBMC (A), pancreas (B), or T cell (C) datasets, respectively. In each panel, 
middle t-SNE plot shows clusters of the integrated data and right plot for expression pattern of 
marker gene in the integrated data. 
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Figure S6. The runtime of RISC, Seurat and Scran in data integration. Each point in the plot 
represents the running time for a specific data integration described in this study.  
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Supplemental Tables 

Table S1. Cluster markers for the integrated liver scRNA-seq data 

Table S2. Tumor specifically expressed genes 
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