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Human brain has developed mechanisms to efficiently decode sensory information according to perceptual
categories of high prevalence in the environment, such as faces, symbols, objects. Neural activity produced
within localized brain networks has been associated with the process that integrates both sensory bottom-up
and cognitive top-down information processing. Yet, how specifically the different types and components of
neural responses reflect the local networks selectivity for categorical information processing is still unknown.
By mimicking the decoding of the sensory information with machine learning we can obtain accurate artificial
decoding models. Having the artificial system functionally on par with the biological one we can analyze the
mechanics of the artificial system to gain insights into the inner workings of its biological counterpart. In this
work we train a Random Forest classification model to decode eight perceptual categories from visual stimuli
given a broad spectrum of human intracranial signals (4− 150 Hz) obtained during a visual perception task,
and analyze which of the spectral features the algorithm deemed relevant to the perceptual decoding. We
show that network selectivity for a single or multiple categories in sensory and non-sensory cortices is related
to specific patterns of power increases and decreases in both low (4− 50 Hz) and high (50− 150 Hz) frequency
bands. We demonstrate that the locations and patterns of activity that are identified by the algorithm not
only coincide with the known spectro-spatial signatures, but extend our knowledge by uncovering additional
spectral signatures describing neural mechanisms of visual category perception in human brain.
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Significance statement

Previous works have shown where and when perceptual category
information can be decoded from the human brain, our study
adds to that line of research by allowing to identify spectrotem-
poral patterns that contribute to category decoding without the
need to formulate a priori hypothesis on which spectral compo-
nents and at which times are worth investigating. Application
of this method to an extensive dataset of human intracere-
bral recordings delineates the locations that are predictive of
several perceptual categories from the locations that are have
narrow specialization, identifies spectral signatures character-
istic of each of 8 perceptual categories and allows to observe
global and category-specific patterns of neural activity pertinent
to functional perceptual categorization.

Introduction

Our capacity to categorize sensory information allows us to
quickly process and recognize complex elements in our envi-
ronment. Early studies revealed strong relations between brain
activity within certain localized networks and neural representa-
tions of certain stimulus categories, as for example faces, bodies,
houses, cars, objects and words (Kanwisher et al., 1997; Epstein
et al., 1999; Peelen et al., 2009; Malach et al., 1995; Haxby et al.,
2001; Ishai et al., 1999; Cohen et al., 2000). These early assess-
ments also revealed brain networks capability to rapidly extract
categorical information from short exposure to natural scenes
(Potter and Faulconer, 1975; Thorpe et al., 1996; Li et al., 2002)
based on models of parallel processing across neural networks
(Rousselet et al., 2002; Peelen et al., 2009). In both animal and
human studies, visual cortices and particularly inferior temporal
cortex (ITC) appears as a key region to integrate information
at the object-level (Grill-Spector and Weiner, 2014). In humans,
a great deal of observations of cortical response selectivity have
been achieved using fMRI, but measuring direct neuronal activity
(Quiroga et al., 2005; Kreiman et al., 2000) also revealed similar
patterns. To further understand how stimulus features and per-
ceptual experience is processed in neural networks, brain activity,
especially in sensory cortices, has been decoded using a variety of
methods and signals (Haynes and Rees, 2006; Kriegeskorte et al.,
2006; Kamitani and Tong, 2006). This decoding often relies on
machine learning to avoid a priori selection of partial aspects of
the data by the human observer, and unless additional analysis
is performed on the model itself it does not emphasize the mech-
anisms of neuronal communication within and between neural
networks involved in this processing.

A pervasive feature of electrophysiological neural activity are
its spectral fingerprints. Neural oscillations have been proposed
to reflect functional communication processes between neural
networks (Fries, 2009; Buzsaki, 2006; Siegel et al., 2012). Cer-
tain frequency bands are selectively associated with the operating
of different cognitive processes in the human and animal brain,
(Vidal et al., 2006; Wyart and Tallon-Baudry, 2008; Jensen and
Mazaheri, 2010; VanRullen, 2016; Engel and Fries, 2010; Dalal
et al., 2011) and lately, direct recordings from the human cor-
tex have revealed the remarkable representation selectivity of
high gamma-band activity (50− 150 Hz) (Lachaux et al., 2012;

Parvizi and Kastner, 2018; Fox et al., 2018). Human intracra-
nial recordings have previously shown evidence of functional
processing of neural networks related to perceptual category rep-
resentation (McCarthy et al., 1997) and lately the prominence of
broadband high-gamma activity in selective category responses
in visual areas (Vidal et al., 2010; Davidesco et al., 2013; Hamamé
et al., 2014; Privman et al., 2007; Fisch et al., 2009). Yet, very
little is known about the specific relation between the different
components of the full power-spectrum, including high-gamma
activity, and their level of selectivity in processing perceptual
categories. Previous works have shown where and when per-
ceptual category information can be decoded from the human
brain, the approached introduced in this work adds to that line
of research by allowing to identify spectrotemporal patterns that
contribute to category decoding without the need to formulate
a priori hypothesis on which spectrotemporal regions of interest
are worth investigating.

In this work we capitalize on an extensive dataset of deep
intracranial electrical recordings on 100 human subjects to
decode neural activity produced by 8 different stimulus cat-
egories. We analyzed the decoding model built by a random
forest classifier to disentangle the most informative components
of the time-frequency spectrum related to the simultaneous
classification of 8 different perceptual categories. Focusing on
feature importance allowed us to identify activity patterns that
were either characteristic of a specific visual category or were
shared by several categories. In addition to feature importance
we analyzed the predictive power of each activity pattern and
identified how informative was their spectral signature for the
classification of visual categories. In particular we tested the pre-
dictive power of high broadband gamma activity in comparison
to lower frequency activity as they reflect different communi-
cation mechanisms elicited by networks seemingly involved in
distinct temporal windows of functional neuronal processing.
Through the analysis of feature importance of a random for-
est classifier we show the specific neuronal spectral fingerprints
from highly distributed human cortical networks elicited during
efficient perceptual categorization.

Methods

Patients and recordings

100 patients of either gender with drug-resistant partial epilepsy
and candidates for surgery were considered in this study and
recruited from Neurological Hospitals in Grenoble and Lyon
(France). All patients were stereotactically implanted with multi-
lead EEG depth electrodes (DIXI Medical, Besançon, France).
All participants provided written informed consent, and the
experimental procedures were approved by local ethical commit-
tee of Grenoble hospital (CPP Sud-Est V 09-CHU-12). Recording
sites were selected solely according to clinical indications, with
no reference to the current experiment. All patients had normal
or corrected to normal vision.

Electrode implantation

11 to 15 semi-rigid electrodes were implanted per patient. Each
electrode had a diameter of 0.8 mm and was comprised of 10
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or 15 contacts of 2 mm length, depending on the target region,
1.5 mm apart. The coordinates of each electrode contact with
their stereotactic scheme were used to anatomically localize the
contacts using the proportional atlas of Talairach and Tournoux
(Talairach and Tournoux, 1993), after a linear scale adjustment
to correct size differences between the patients brain and the
Talairach model. These locations were further confirmed by over-
laying a post-implantation MRI scan (showing contact sites)
with a pre-implantation structural MRI with VOXIM R© (IVS
Solutions, Chemnitz, Germany), allowing direct visualization of
contact sites relative to brain anatomy.

All patients voluntarily participated in a series of short exper-
iments to identify local functional responses at the recorded sites
(Vidal et al., 2010). The results presented here were obtained
from a test exploring visual recognition. All data were recorded
using approximately 120 implanted depth electrode contacts per
patient with a sampling rate of 512 Hz. Data were obtained in a
total of 11321 recording sites.

Stimuli and task

The visual recognition task lasted for about 15 minutes. Patients
were instructed to press a button each time a picture of a fruit
appeared on screen (visual oddball paradigm). Non-target stim-
uli consisted of pictures of objects of eight possible categories:
houses, faces, animals, scenes, tools, pseudo words, consonant
strings, and scrambled images. All the included stimuli had the
same average luminance. All categories were presented within an
oval aperture (illustrated on Figure 1a). Stimuli were presented
for a duration of 200 ms every 1000− 1200 ms in series of 5 pic-
tures interleaved by 3 second pause periods during which patients
could freely blink. Patients reported the detection of a target
through a right-hand button press and were given feedback of
their performance after each report. A 2 second delay was placed
after each button press before presenting the follow-up stimulus
in order to avoid mixing signals related to motor action with
signals from stimulus presentation. Altogether, responses to 400
natural images were measured per subject.

Processing of neural data

The analyzed dataset consisted of 4528400 local field potential
(LFP) recordings – 11321 electrode responses to 400 stimuli. To
remove the artifacts the signals were linearly detrended and the
recordings that contained values ≥ 10σimages, where σimages is
the standard deviation of responses (in the time window from
−500 ms to 1000 ms) of that particular probe over all stimuli,
were excluded from data. All electrodes were re-referenced to a
bipolar reference. The signal was segmented in the range from
−500 ms to 1000 ms, where 0 marks the moment when the stim-
ulus was shown. The −500 to −100 ms time window served as a
baseline.

To quantify the power modulation of the signals across time
and frequency we used standard time-frequency (TF) wavelet
decomposition (Daubechies, 1990). The signal s(t) was convo-
luted with a complex Morlet wavelet w(t, f0), which has Gaussian
shape in time (σt) and frequency (σf ) around a central frequency
f0 and defined by σf = 1/2πσt and a normalization factor. To
achieve good time and frequency resolution over all frequencies

we slowly increased the number of wavelet cycles with frequency
( f0σf

was set to 6 for high and low gamma, 5 for beta, 4 for alpha

and 3 for theta frequency ranges). This method allowed to obtain
better frequency resolution than applying a constant cycle length
(Delorme and Makeig, 2004). The square norm of the convolu-
tion results in a time-varying representation of spectral power,
given by: P (t, f0) = |w(t, f0)s(t)|2. Baseline normalization was
performed by dividing the signal in each frequency by the aver-
age power of that frequency in the baseline window −500 to −100
ms. Each LFP recording was transformed from 768 data points
(1.5 seconds of voltage readings at 512 Hz sampling rate) into
a matrix of size 146× 48 where each row represents a 1 Hz fre-
quency band from 4 Hz to 150 Hz and columns represent 31.25
ms time bins. Value in each cell of that matrix is the power of
that specific frequency averaged over 16 time points.

Further analysis was done only on the electrodes that were
responsive to the visual task. In each frequency band we com-
pared each electrode’s average post-stimulus band power to the
average baseline power with a Wilcoxon signed-rank test for
matched-pairs. Only the probes that showed a post-stimulus
response that is statistically significantly (p-value ≤ 0.005) dif-
ferent from the baseline response in at least two frequency bands
were preserved for future analysis. All p-values from this test
were corrected for multiple comparisons across all electrodes with
a false discovery rate (FDR) procedure (Genovese et al., 2002).

To anatomically localize the source of each signal in sub-
ject’s brain each electrode’s MNI coordinates were mapped to
a corresponding Brodmann brain area (Brodmann, 1909) using
Brodmann area atlas from MRICron (Rorden, 2007) software.

To confirm that probe’s predictiveness of a certain category
implies that the probe belongs to the network selective of that
category we ran a set of experiments on three well-known func-
tional areas: Fusiform Face Area (FFA) (Kanwisher et al., 1997),
Visual Word Form Area (VWFA) (Cohen et al., 2000) and
Parahippocampal Place Area (PPA). Following Montreal Neuro-
logical Institute (MNI) coordinates of FFA reported in (Harris et
al., 2012) and (Axelrod and Yovel, 2015) we defined FFA bound-
ing box as x ∈ [−44,−38], y ∈ [−61,−50], z ∈ [−24,−15] in the
left hemisphere and x ∈ [36, 43], y ∈ [−55,−49], z ∈ [−25,−13]
in the right hemisphere. Based on the Table 1 from (Price and
Devlin, 2003) we defined VWFA area as MNI bounding box x ∈
[−50,−38], y ∈ [−61,−50], z ∈ [−30,−16] in the left hemisphere.
From MNI coordinates reported in (Bastin et al., 2013) and (Park
and Chun, 2009; Hamamé et al., 2013) we defined PPA bound-
ing box to be x ∈ [−31,−22], y ∈ [−55,−49], z ∈ [−12,−6] in the
left hemisphere and x ∈ [24, 32], y ∈ [−54,−45], z ∈ [−12,−6] in
the right hemisphere.

Random Forest as a decoding model

A Random Forest (Breiman, 2001) is a collection of decision
trees, where each tree gets to operate on a subset of features.
Each tree is assigned a random set of features and it has to find
the decision boundaries on those features that lead to best clas-
sification performance. At each branching point the algorithm
must decide using which feature will be most efficient in terms
of reducing the entropy of class assignations to the data points
under current branch of the decision tree. To achieve that, the
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feature that is most useful will be selected first and will be
responsible for largest information gain. For example, if the activ-
ity of a probe at 52 Hz at 340 ms is high when a subject is
presented with a face and low for all other categories, decision
tree will use that fact and rely on the “52 Hz at 340 ms” feature,
thus assigning it some importance. How high the importance of
a feature is will depend on how well does this feature distinguish
faces from all other categories. As Random Forest is a collection
of trees and the same feature will end up being included into sev-
eral different trees, being important in many trees contributes to
the overall importance of a feature (for the exact computation
see the section on feature importance below).

We treated each electrode’s responses as a separate dataset
consisting of 400 data points (one per stimulus image), and 7008
features – time-frequency transformation of LFP response into
146 frequencies and 48 time bins. For each electrode we trained a
Random Forest with 3000 trees and used 5-fold cross-validation
to measure the predictive power of the neural activity recorded
by each of the electrodes. Per-class F1 score, a harmonic mean of
precision and recall of a statistical model, provides us with a met-
ric of success of the classification. The parameters were selected
by performing informal parameter search. Random Forest was
the algorithm of choice for our analysis due to interpretability
of the resulting models, that allowed us to track the process
that led each particular model to a decoding decision and due
to its previous application to spectrotemporal features (West-
ner et al., 2018). We used scikit-learn (Pedregosa et al., 2011)
implementation of the above-mentioned methods.

As the first step of the decoding analysis we estimated which
of 11321 electrodes have predictive power. For that we split each
electrode’s 400-sample dataset into 320 samples for training and
80 for prediction estimation. Repeating this procedure 5 times
provided us with 400 predictions that we could compare to the
true categories. By running a permutation test 100000 times on
electrodes with randomly permuted class labels we estimated
that 99.999th percentile (equivalent to significance threshold of
p ≤ 0.00001) of F1 score is 0.390278. In total 787 electrodes had
a predictive power of F1 > 0.390278 in at least one of the cate-
gories. For each of those electrodes a Random Forest model was
retrained once more on whole data (400 samples instead of 320)
and that model was used for calculating feature importances and,
ultimately, for understanding which parts of the recorded activity
were relevant for visual object recognition in human brain.

Feature importance for the analysis of task-relevant
neural activity

During the process of constructing the decision trees Random
Forest relies on some features more than on the others. We chose
Gini impurity (Breiman, 2017) as a measure of which feature
should be used to make the branching decisions in the nodes of a
tree. This score, along with the number of times each particular
feature was used across trees, informed us on the relative impor-
tance of each particular feature with respect to other features.
Gini impurity G is calculated as

G =

i=nc∑
i=1

pi(1− pi), (1)

400 stimuli from 
8 categories

11293 probes across 
100 subjects

Feature vector with 146 
frequencies in 48 time bins

x = {f1, f2, . . . , f3504, . . . , f7008}

Random Forest

Feature importance map

a b c

de

Figure 1: Major steps of the data processing pipeline. a: Image
stimuli from 8 categories were presented to test subjects. b:
Human brain responses to images were recorded with deep
intracranial electrodes. c: LFP signals were preprocessed and
transformed into time-frequency domain. d: Random Forest
models were trained to decode image category from each elec-
trode’s activity. e: Feature importances of each model were
calculated to identify the region on each electrode’s activity
map that was relevant to visual object recognition. Notice how
the final results on panel e tell us that high gamma activity
in 90− 120 ms window and the subsequent activity in the low
gamma range in 120− 250 ms window are the only bands and
time windows in that particular electrode’s activity that are rel-
evant for the classification task, while the spectrogram on panel
c also shows that there was activity in early theta, beta and low
gamma bands. Our analysis revealed that not all activity was
relevant (or useful) for the classification of an object and showed
which parts of the activity are actually playing the role in the
process.

where nc is the number of categories and pi is the proportion of
class i in a node. To pick a feature for a parent node Gini impurity
of both children nodes of the parent node are calculated. The
feature that decreases impurity the most is selected to be the
branching factor of that parent node. The reduction in impurity
is calculated as

I = Gparent −Gleft child −Gright child (2)

and is called node importance. Feature importance of feature f
is estimated by calculating the sum of Gini impurity reductions
over all samples in the dataset that were achieved with the use
of a particular feature f and normalizing it by the total number
of samples. Figure 1e is a visual representation of relative feature
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importance, color intensity shows the importance of each of 7008
(146 frequencies ×48 time bins) spectrotemporal features from
one probe. In total our analysis has produced 787× 8 such images
– one for each probe-class pair.

The importance map computed as depicted on Figure 1 is a
global map for all 8 categories, such that the regions that are
highlighted on the map are important for distinguishing between
all 8 categories. There is, however, a way to look at category-
specific importances as well. The final set of nodes of a decision
tree, called leaves, are the end-points of the classification process
and each leaf is associated with a certain category, for example,
if we take one TF activity map and start traversing a decision
tree following the rules set by the nodes of the tree, we will
end up in a certain leaf. And that leaf will be associated with
a certain category, for example, with faces. The fact that we
followed the rules and ended up in that leaf indicates that the
TF map we used as the input to the tree probably comes from
a trial where a “face” stimulus was shown to the subject. In
order to get category-specific importance map we took all the
leaves associated with a category, traverse the tree backwards
and track all the features that were used on the path from the
leaf to the root of the tree. This way we got a list of features
that were used to classify a response to a certain category as
such. Random Forest feature importance allowed us to identify
which sub-regions of neural activity are relevant for decoding. It
also showed that only small portion of activity is actually crucial
for discrimination between the categories.

To compare importance maps between each other we fit a
normal distribution on the difference between two maps and
considered statistically significant the differences that are big-
ger than µ+ 4σ. One spectrotemporal importance map consists
of 7008 values. To filter out false positives we stipulated that only
1 false positive out of 7008 pixels can be tolerated and tuned the
threshold accordingly. That requirement resulted in the p-value
of 0.0001427 and confidence level of 99.99%, corresponding to
3.89σ, which we rounded up to σ = 4.0.

Hierarchical clustering to reveal types of activity
patterns

To further analyze the spectrotemporal signatures elicited by
different visual categories in different parts of human brain we
clustered filtered activity patterns and identified the most promi-
nent groups. The result of this analysis is shown in the second
column of Figure 7. For each category there are four clusters
show the most common activity patterns elicited by stimuli from
that category.

To do the clustering we first took each probe’s category-
specific activity separately by averaging probe’s responses to 50
images of each particular category in time-frequency domain. We
then masked the activity with the category importance map (as
shown on Figure 3), leaving only those features out of 146× 48
that have importance score larger that µ+ σ, where µ is the
average importance score for that category and σ is one standard
deviation of the score distribution.

Masked activity patterns were hierarchically clustered using
equation 3 to calculate the distance between a pair of clusters U
and V as the maximal cosine distance between all of the clusters’

member observations (complete linkage clustering):

d(U, V ) = max
( u · v
‖u‖‖v‖

)
∀u ∈ U, ∀v ∈ V (3)

SciPy(Jones et al., 2001) implementation of the hierarchical
clustering methods was used in this work. Resulting clustering
assignments were visually inspected and corrected.

Results

Feature importance allows to dissociate the neural
signals that are predictive of perceptual categorization
from the rest of the stimulus-induced neural responses

To identify spectrotemporal features that are characteristic of
perceptual categorization of a particular category we relied on
time-frequency (TF) maps of the neural responses of intracra-
nially implanted electrodes. Out of the total set of 11321 probes
11094 (98%) were responsive (see the Methods section on pro-
cessing of neural data for details) to the stimuli from at least one
of the categories. On one hand this provides us with abundance
of data, on the other raises the question whether all of that activ-
ity was relevant to the processes that encode and process visual
input.

Training a decoding model (see the Methods section on Ran-
dom Forest as decoding model) for each of the probes allowed
us to dissociate the predictive probes that exhibited activity that
was useful for decoding from the rest of the responsive probes
that did not carry such activity.

Green markers on Figure 2a show the set of probes that are
responsive to the house category, while the blue markers are the
probes that are predictive of that category (4.8%, 535 probes).
Decoding models built on the neural responses of the predictive
probes were successful at classifying at least one perceptual cat-
egory, focusing on them in our further analysis allowed to work
only with the locations that carry information relevant to the
task of perceptual categorization.

Predictive probes had heterogeneous distribution in the brain,
yet remained mostly concentrated in visual cortices and inferior
temporal regions (76%), from BA17 to BA20, including early
visual areas (BA 18, 19), fusiform gyrus (BA 37) and inferior
temporal cortex (BA 20). A majority of the predictive probes
were in fusiform cortex (average of 52% over all categories, Figure
2b), followed by BA 19 (27%), across all category networks.

Within the primary visual cortex, BA 17 and 18, the
scrambled (control condition) was the stimulus that elicited most
predictive probes amongst all stimulus categories (Figure 2c),
followed by pseudowords and characters. Probes predictive of
faces were mostly concentrated in BA19, BA37 and BA20. The
low number of predictive probes in area 17 is explained by the
fact that less than 1% of the implantation sites in the original
dataset were located in primary visual cortex.

Previous studies have shown that perceptual category-
selective networks are located in occipito-temporal cortex (Grill-
Spector and Weiner, 2014; Ishai et al., 1999; Malach et al., 1995).
To test whether predictive power computed by the Random For-
est model trained to decode activity of probes is coherent with
known functional processing by cortical networks we evaluated
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cb

a

Brodmann area Brodmann area

Figure 2: Distribution of predictive probes. a. Green markers indicate the probes that were responsive to stimuli from the house

category. Blue markers are the predictive probes that carry information that is relevant to decoding the neural response as reaction
to house stimulus. b. Distribution of predictive probes over areas within each category. c. Distribution of predictive probes over a
category with each area.
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a b c
Patient 23, probe 74, animal Patient 23, probe 74, animal Patient 23, probe 74, animal

Patient 27, probe 97, tool Patient 27, probe 97, tool Patient 27, probe 97, tool

Patient 87, probe 52, animal Patient 87, probe 52, animal Patient 87, probe 52, animal

Figure 3: Using the importance map to filter out irrelevant activity. The three rows show three different examples of how filtering
of the activity by importance is beneficial: in patient 23, probe 74 we see that only later portion of the broadband gamma activity
increase was useful for identifying this activity as a response to the animal stimulus; patient 27, probe 97 shows that although there
is an increase in broadband activity, the actually useful information contained in decrease in the lower frequency bands; patient
87, probe 52 demonstrates that for decoding this particular probe’s activity one must focus on the activity in lower frequencies at
specific time and, despite prominent presence, ignore the increase in broadband gamma. a. Probe’s importance map, color codes
the relative importance of each spectrotemporal feature within the map. b. Full spectrotemporal activity of the probe, features
with importances one standard deviation higher than the average (in contour) mark the regions of activity that were useful for the
decoding model. c. Activity of the probes filtered by the importance mask, only the relevant activity is preserved.
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Figure 4: Average importance map of each of eight categories over probes predictive of that category. The color shows the relative
importance of each spectrotemporal feature, indicating how informative that particular feature was for the task of decoding.

the selectivity of the predictive power in three known func-
tional networks: Fusiform Face Area (FFA) (Kanwisher et al.,
1997), Visual Word Form Area (VWFA) (Cohen et al., 2000)
and Parahippocampal Place Area (PPA) (Epstein and Kan-
wisher, 1998). We checked whether the probes located in each
of these areas and the Random Forest model trained on these
probe’s activity to discriminate between 8 categories produces
the highest predictive power for the category for which this area
is known to be selective. Probes in FFA are expected to be good
at discriminating faces, probes in VWFA should be predictive
of characters and pseudowords categories and probes in PPA
should be responsive to scenes and houses.

There were 12 probes in the FFA that were predictive of
a category: 5 were predictive of faces, 4 of animals (which
mostly have faces on the image), 2 of pseudowords and 1 of
scrambled images. Most probes that were in FFA and were pre-
dictive, carried information of the categories containing facial
features.

There were 8 probes in the VWFA that were predictive of a
category: 5 were predictive of pseudowords, 2 of characters and
1 of faces. This points to the fact that the predictive probes in
VWFA are predictive of the stimuli with written characters on
them. These results confirm that predictive power of a Random
Forest model trained on probes activity in VWFA reflects the
functional role known to be carried by this area.

For probes in the PPA results were less selective. There were
23 probes inside that area that were predictive of a category:
5 were predictive of houses, 4 of scenes, 5 of characters, 5
of scrambled images, 2 of tools and 2 of pseudowords. Here
the case for functional role of the area is less straightforward as
the probes from PPA predicted not only houses and scenes,

but also other categories. However, houses and scenes were
among the categories that the probes from PPA were able to
identify successfully in highest proportion as compared to the
other categories.

We find that these confirmatory findings give credibility to
the fact that the probes that are predictive of a certain category
according to our method are indeed involved in the processing of
the stimuli that belong to that category.

Training per-probe decoding models not only allowed us to
identify the predictive locations, but also to apply feature impor-
tance analysis to decoding models trained on local activity.
Computing the feature importance across the time-frequency
map (4− 150 Hz and −500 to 1000 ms) allowed us to see which
part of neural activity is crucial for in the decoding. Overlaying
the importance over time-frequency map showed at which fre-
quencies and at what times the activity that was important for
the algorithm has occurred. This can be done both on aggre-
gated level, where the importance map is averaged over probes,
and on individual probe level. Figure 3 illustrates the application
of probe importance map to filter irrelevant activity and obtain
spectrotemporal signature of a particular category on a particu-
lar probe. Now we can use the feature importance map as a mask
and dive into the analysis of the activity itself, but focus only on
the relevant parts of it. We believe that, when applicable, this
methodology helps to filter out irrelevant activity and allows to
focus on the activity that is important to the scientific question
under investigation.

We took an average over importance maps of all individual
probes within each category to obtain the global picture of where
the category-specific activity lies in time and frequency space.
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a b

Figure 5: Anatomical distribution of mono- and polypredictive locations. a: Red markers are the locations of monopredictive probes,
blue markers are the locations of polypredictive ones. Polypredictive probes (145 unique locations) are mostly confined to visual
areas and temporal lobe (both parts of the ventral stream), while monopredictive (specialized, 401 unique locations) probes are,
in addition to visual areas, also found in frontal and parietal cortical structures. b: The histogram shows how many categories are
predictable by how many probes.

Figure 4 summarizes such analysis and allows to see which spec-
trotemporal signatures are unique to perceptual categorization
of specific categories and which ones are shared across several
ones. From these importance maps we notice that certain TF
components are distinctly present per category, as for example
high importance of the transient theta activity (theta burst) in
all categories, or the almost absence of broadband gamma in the
control scrambled condition. In the following sections we expand
our analysis to the comparison of the feature maps and ana-
lyzing the activity under the regions that we have identified as
important.

Polypredictive and monopredictive probes

Spectral decomposed neural activity revealed two types of probes
regarding the number of categories that could be decoded. From
some probes it was possible to decode more than one cate-
gory with above-chance classification accuracy (Figure 5b). We
considered a probe to be predictive of a category if cross-
validation F1 score for that category was higher than 0.39 (see
the Methods section for details on threshold selection), which is
a stricter condition than above-chance criterion (corresponding
to F1 > 0.125). There is a subset of networks in the brain that
processes information relevant to more than a single visual cate-
gory, we refer to the locations that constitute those networks as
polypredictive. Other locations, which we call monopredictive, are
useful in predicting only one out of 8 different types of stimuli
revealing a high degree of specialization. Figure 5a shows that
polypredictive probes reside mainly in posterior occipital and
posterior temporal cortex networks, while monopredictive probes
extend, in addition to occupying similar posterior occipital and

temporal locations, to frontal cortex and anterior temporal cor-
tex. Both mono- and polypredictive probes are also observed
in parietal cortex. Monopredictive probes that extend beyond
ventral stream and temporal cortex pertain to the following per-
ceptual categories: faces (orbitofrontal cortex), animals and
pseudowords (dorsofrontal cortex, inferior frontolateral cortex,
premotor cortex), and, to a smaller extent, scrambled images
(prefrontal cortex).

The unique association of specific TF feature importance com-
ponents with either polypredictive and monopredictive probes
was category specific, as shown in figures 6a to 6h. For face

stimuli, most of the feature importance in the early broadband
gamma response and a part of the early theta response was
significantly stronger in polypredictive probes as compared to
monopredictive probes, yet present in both and predictive of
the category as compared to all other categories (Figure 6b).
For face stimuli no specific part of the TF feature impor-
tance was stronger in monopredictive probes as compared to
polypredictive probes. Animals and tools categories showed
a prevalence of feature importance of monopredictive activity
patterns in late broadband gamma range (> 300 ms) and in
the alpha/beta range, with very little dominant feature impor-
tance TF components in polypredictive probes. Scenes and
houses also show stronger feature importance in late alpha and
beta band responses in monopredictive probes. Interestingly, for
characters (Figure 6g), feature importance in the early broad-
band gamma range was dominant for polypredictive probes,
while for pseudowords (Figure 6f) the late broadband gamma
revealed to be dominant for monopredictive probes. Pseudowords
also elicited a significantly stronger TF feature importance in
monopredictive probes in the low-frequency range, similar to
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Figure 6: Difference between time-frequency feature importances and locations of monopredictive (red) and polypredictive (blue)
probes for each category. a: house, b: face, c: animal, d: scene, e: tool, f: pseudoword, g: characters, f: scrambled.

animal and tool stimulus categories. Finally, an interesting
observation was that animals and faces share most of their
polypredictive probes (more than 50%) indicating a large overlap
of categorization networks of these two categories.

Diversity of time-frequency patterns plays a role in
functional perceptual categorization not only across
but also within each perceptual category

To quantify which TF components group together within each
category network across the probes predictive of that category
we clustered the probes according to their activity masked by
feature importance. Left column of figure 7a shows an averaged
feature importance map for a given category. Next, we look into
the regions of time-frequency map that are indicated as impor-
tant by the feature importance map, extract baseline normalized
activity in those regions and cluster that activity using hierar-
chical complete linkage clustering with cosine distance (see the
Methods section on hierarchical clustering for details). The sec-
ond column of figure 7 shows the activity of four most populated

clusters for each category. Each cluster represents the activity
pattern exhibited by the probes in that cluster. Only the probes
whose activity had predictive power are included in this analy-
sis. As the final step we identified the anatomical locations of the
probes from each cluster to see whether difference in the activ-
ity patterns could be attributed to the functional regions of the
brain. The visualization of this step in the last two columns of
figure 7.

This analysis allowed us make a number of global, pertaining
to the categorization of visual stimuli over all categories, as well
as number of category-specific observations.

The first global observation was that it is not only broadband
gamma activity that is useful for the random forest model perfor-
mance, but low-frequency activity also contributed significantly
sometimes overshadowing the activity of higher frequency bands
altogether. Most clusters were composed of a combination of low
and high-frequency components (Figure 7, second column) and
were mostly located in occipito-temporal cortices, though some
electrodes in parietal and frontal cortex also appeared to con-
tribute with significant responses in the classification (Figure 7,
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Figure 7: Detailed analysis of spectral activity of (a) animals, (b) faces, (c) pseudowords and (d) scrambled images. Leftmost
column contains the importance maps extracted from Random Forest models and shows where in time and frequency the important
activity is. Second column visualizes the four largest (by the number of recording sites) clusters of activity patterns inside those
spectrotemporal regions that are deemed important. The numbers in the top right corner of each cluster’s activity pattern show
the average predictive power (F1 score) of the probes in that cluster and proportion of polypredictive locations that exhibited this
particular pattern of activity. Note how every cluster has a designated color: green, blue, red or black. This color of the cluster
matches the color of MNI location markers in the last two columns, that show sagittal and dorsal views of the brain. White markers
show the probes that have predictive power, but their activity pattern does not belong to any of the four major clusters.
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Figure 8: Comparison of predictive power of three different sets of features: full spectrum (4− 150 Hz), broadband gamma alone
(50− 150 Hz) and lower frequencies alone (4− 50 Hz) across categories. The bracket with the p-value indicates a significant difference
according to Mann–Whitney U test.

two right columns), especially for such stimulus categories as
animal and pseudoword.

The second observation spanning across all categories was that
the classifier used not only the increases in power to perform the
classification, but also relied on power decreases in different brain
networks. The most prominent examples are the clusters faces-2
(Figure 7b), animals-2 (Figure 7a), tools-2, pseudowords-1,
pseudowords-2 (Figure 7c), characters-1 and characters-2

(Figure 7d). For example, to decode face or pseudowords from
the activity of the blue cluster network, the RF classifier used
broadband gamma power decreases located in posterior inferior
temporal cortex and inferior occipital gyrus. None of the probes
for which the decrease in activity was identified as important
for decoding were located in classically defined Default Mode
Network (Buckner et al., 2008; Raichle, 2015).

Across all categories, the earliest component that often
appeared in clusters was the brief power increase in the low-
frequency interval (2-25 Hz), which for one group of probes can be
associated to an almost instantaneous broadband gamma power
increase (7b, cluster 3), but remains the only source of important
activity for another group of probes (7b, cluster 1).

Studying the anatomical locations of the probes belonging
to different clusters of activity revealed interesting observations.

Figure 7c, pseudowords, clusters 1 and 3 show a clear exam-
ple how clustering by activity patterns leads to assigning the
probes into functionally different anatomical areas. The gamma-
band increase signature captured by cluster 3 occurs only in the
left hemisphere (red markers on Figure 7c), the late theta-alpha
power decrease captured by cluster 1 also occurs only in the
left hemisphere (green markers) and is spatially clearly distinct
from probes in cluster 3. Because it is known that pseudoword

stimuli elicit top-down language-related (phonological) analysis,
which elicits highly left-lateralized networks identifiable in iEEG
recordings (Juphard et al., 2011; Mainy et al., 2008), we know
that this observation reflects a functional brain process. This dis-
sociation in both the spectrotemporal and anatomical domains
provides us with valuable information about the process of per-
ceptual categorization and highlights the benefit of disentangling
the activity into functionally and anatomically disassociated
components.

We were also interested to study the relevance of the dif-
ferent components in the TF domain for the Random Forest
classification process. Specifically, we wanted to see whether the
activity in the broadband gamma range, commonly present on
most clusters across categories, is in general the most valuable
neural signature for category networks as compared to the low-
frequency parts of the spectrum. To test whether broadband
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gamma was solely the most informative frequency interval we
statistically compared predictive power of three intervals: broad-
band gamma (50− 150 Hz), low-frequency (4− 50 Hz) and full
spectrum (4− 150 Hz). Overall, across 7 perceptual categories
out of 8 (except for scenes), using the full spectrum was more
informative than using the broadband gamma interval or the low-
frequency interval alone (Mann–Whitney U test, p < 0.001563
(0.05 Bonferroni-corrected to the number of clusters compared,
see Figure 8). For scrambled images and faces the broadband
gamma carried less information that was relevant for decoder
than the lower frequencies.

Discussion

In the present work we trained a machine learning model to
decode 8 different perceptual categories from human intracere-
bral neural spectral activity and analyzed the resulting statistical
model to expose what information does the model rely on in
order to make decoding decisions. We then drew the paral-
lels between the patterns of neural activity that the machine
learning algorithm deemed important and the functional role of
that activity for the task of decoding perceptual categories in
human brain. This allowed us to distinguish between the spec-
tral activity that is relevant for the task from the activity that
is not. The study was conducted using a large dataset consist-
ing of 2823250 local field potential recordings, from a cohort
of 100 human patients whose combined electrode implantations
spanned across all major brain cortical areas. The decoding pro-
cess confronted neural responses elicited by 8 different perceptual
categories (from 8 different stimulus sets), which allowed obtain-
ing a high resolution in the dissociation between neural response
patterns across categories. All classifications were operated on a
broad frequency spectrum ranging from 4 to 150 Hz and allowed
to distinguish degrees of selectivity of neural responses and which
spectral components most strongly enable this selectivity. Pre-
vious works have shown where and when perceptual category
information can be decoded from the human brain, our study
adds to that line of research by allowing to identify spectrotem-
poral patterns that contribute to category decoding without
the need to formulate a priori hypothesis on which spectral
components and at which times are worth investigating.

The classifier model first allowed us to globally identify two
types of neural responses: those that were predictive of a certain
category and those that did not predict any category despite
eliciting strong amplitude modulation across multiple frequency
bands. Surprisingly, when comparing the level of predictability of
probe responses we found that only 4.8% of the responsive probes
were predictive of a category. This very low percentage highlights
an important fact regarding the level of “selectivity” of a neural
responses. When comparing neural responses, elicited by a spe-
cific stimulus, to a single or few other stimulation conditions it
might seem to be distinct and thus selective, yet, when increas-
ing the number of comparisons to a broader variety of response
conditions, the degree of its selectivity might narrow down as
its similarity to other responses increases. Stimulus-induced neu-
ral signal selectivity is thus a graded quality that can be assessed
through multiple comparisons with a broad variety of stimulation
conditions. This result also implies that although any stimulus

can elicit a local neural response throughout the cerebral cortex,
in the light of our results, there is a high probability of it being
non-predictive of any of the categories or being polypredictive of
several categories at once.

In line with a vast literature on the localization of category
related networks (Kanwisher et al., 1997; Epstein et al., 1999;
Malach et al., 1995; Haxby et al., 2001; Ishai et al., 1999; Grill-
Spector and Weiner, 2014; Cohen et al., 2000; Peelen et al., 2009)
predictive probes concentrated mostly in the inferior temporal
cortex, namely the fusiform gyrus (BA 37), yet surprisingly for
some categories, probes in primary visual cortex were also pre-
dictive of these categories. This effect is probably related to the
specifics of the physical content of certain images that uniquely
characterize certain categories amongst all others, as for example
the content in high-contrast edge information in scrambled and
written text stimuli.

Predictive probes were subsequently classified according to
their level of selectivity towards a single or multiple visual cat-
egories. Polypredictive probes (36%) clustered in visual cortices
and inferior temporal cortex and were associated with early spec-
tral components (< 300 ms) such as broadband gamma power
increases and a transient theta burst shortly after stimulus pre-
sentation. Monopredictive probes (64%) were abundant in these
same regions, but extending uniquely in frontal, parietal, superior
temporal and anterior limbic cortex. Their activity was strongly
associated with the later (> 300 ms) time and with power sup-
pression of spectral importance features, versus baseline, in the
theta (4− 7 Hz), alpha (8− 15 Hz) and beta bands (16− 40
Hz). In a subgroup of probes the associated power suppression
of the feature importances extended into the broad gamma band
(50− 150 Hz).

Importantly, the capacity to ascribe category selectivity to
predictive probes (mono vs polypredictive probes) arises from
the fact that the decoding model was trained to discriminate
between all 8 categories simultaneously. The separation between
mono and polypredictive probes revealed specific effects in terms
of network localization and time-frequency components. The high
concentration of polypredictive probes (and local networks) in
early visual cortices, from primary visual cortex up to inferior
temporal cortex is coherent with the idea that networks in the
ventral visual stream progressively integrate more complex fea-
tures into object representations, thus becoming progressively
more selective, and converge within median temporal lobe to
more stimulus-invariant representations (Quiroga et al., 2005).
This progressive information integration by spectral features of
neuronal responses across the visual hierarchy has been recently
connected with the computations carried out by deep convo-
lutional neural networks trained to solve the task of visual
recognition (Kuzovkin et al., 2018).

Globally, the random forest data classification provided
results that are coherent with current knowledge on 1) the impli-
cation of networks located in visual cortex and inferior temporal
cortex in processing visual categories, 2) the timing of object
categorization in the human brain and 3) the role of broadband
gamma responses in processing category-selective information
within these networks. Previous studies have shown that certain
stimulus categories elicit clustered cortical responses of highly
localized networks in the occipito-temporal ventral stream such
as the fusiform-face-area (FFA) and the visual-word-form area
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(VWFA) (Kanwisher et al., 1997; Cohen et al., 2000). Yet,
other studies have broadened this scope by showing that cer-
tain categories, as for example faces, rely on the involvement of
a larger brain-wide distributed network (Ishai et al., 2005; Vidal
et al., 2010). Our classification analysis shows that the spatial
extent of this network distribution is category specific, certain
stimuli eliciting larger network responses, such as for faces,
animals and pseudowords, as compared to scenes, houses and
scrambled images which concentrate in the fusiform cortex, the
parahippocampal cortex and primary visual cortex respectively.

Our results largely agree with previous works trying to decode
visual object categories over time with MEG (Carlson et al.,
2013; Cichy et al., 2014) or intracranial recordings (Liu et al.,
2009). All these studies converge on the result that perceptual
categories can be decoded from human brain signals as early
as 100 ms. Our current work goes a step beyond these previ-
ous investigations by demonstrating which spectral components
underlie this fast decoding. Previous intracranial studies have
also shown that broadband gamma is modulated by informa-
tion about object categories (Vidal et al., 2010; Privman et al.,
2007; Fisch et al., 2009). Moreover, broadband gamma has been
suggested as a proxy to population spiking output activity (Man-
ning et al., 2009; Ray and Maunsell, 2011; Lachaux et al., 2012;
Ray et al., 2008). It has since then been considered as a hall-
mark of local population processing (Parvizi and Kastner, 2018).
Our classification results however show that broadband gamma
is not the sole selectivity marker of functional neural processing,
and that higher decoding accuracy can be achieved by including
low-frequency components of the spectrum. For certain stimulus
categories, as scrambled images, the broadband gamma range is
even outperformed by the predictive power of the low-frequency
range.

To understand which spectral components play a specific
role in stimulus categorization we analyzed the decision pro-
cess that drives the decoding model and identified the combined
spectrotemporal regions that are informative for the output of
the random forest classification procedure. This allowed us 1)
to show the category-selective association of different spectral
components with activity patterns represented by high feature
importance, and 2) identify a functional role of positive as well
as negative power modulations (increases and decreases versus
baseline) in early and late time windows of neural processing
involved in visual categorization.

While early TF components (i.e. broadband gamma and theta
burst) appeared to reflect a polypredictive neural process across
categories, especially for faces, the sustained decrease in power
in the alpha/beta band was extended in space and time. This
process is probably dependent on the degree of difficulty for the
networks in reaching a perceptual decision and which appeals to
the involvement of top-down processing required to resolve per-
ceptual ambiguity elicited by the different stimulus categories.
For example, animal and tool stimuli are highly diverse in
their physical image structure, as compared to face stimuli.
This affects the efficiency of bottom-up process in extracting
category information, often associated with increase in gamma
activity, and probably in parallel triggers top-down processes
through selective activity modulation in low-frequency chan-
nels (Bastos et al., 2015). In our data, this latter phenomenon

could be mirrored by a decrease of predictive power in the low-
frequency range. Studies have shown that power modulations
reflect changes in network connectivity (Tewarie et al., 2018)
and that top-down processes, eliciting a decrease in power in
the alpha-beta band, are accompanied by an increase in distant
network connectivity (Gaillard et al., 2009).

Finally, we also show that certain probes elicit decreased
broadband gamma responses (versus baseline) while representing
a significant feature importance for the classification model. It
has been shown that neural activity in the Default Mode Network
can be negatively modulated by attending sensory stimulation
(Buckner et al., 2008), and intracranial studies have found that
this was reflected by decreases (versus baseline) in the broad
gamma range (Ossandón et al., 2011; Jerbi et al., 2010; Dastjerdi
et al., 2011). Here we found no evidence of such power decreases
in probes located in the DMN (Buckner et al., 2008). However,
the random forest classifier singled-out broad spectral patterns of
power decreases at probes located in visual regions and beyond
for categories faces, pseudowords and characters. This is the
first time, to our knowledge, that power decreases in the broad-
band gamma range outside the DMN have been associated with
highly functional neural signal classification of perceptual cat-
egories. Their functional significance should be studied in the
future as they could reflect an important phenomenon of commu-
nication regulation between networks during perceptual decision
making of visual categories.

In this work we studied the information that allows local cor-
tical populations of neurons to make predictions of the category
of a visual stimulus. The number of locations per patient we were
able to record from was below a hundred, expanding on this work
by including more subject data in the future might allow us to
make a transition from the observations of local activity and the
analysis of its role to being able to detect signatures of global
decision-making processes. It is possible that these signatures
would be reflected in specific spectral fingerprints as many clas-
sic theories would suggest (Rodriguez et al., 1999; Varela et al.,
2001; Engel et al., 2001; Siegel et al., 2012). We believe that the
methodology proposed in this study can facilitate the search of
those fingerprints.

Our work explored which spectral components reflect the per-
ceptual categorization process. We observed that some spectral
signatures were specific to certain categories, while other were
common across multiple categories. Moreover, we found that
broadband gamma band is not the only or for some categories
even not the main spectral component relevant for successful
categorization. Intracranial recordings allowed us to see where,
when and at which frequencies category information is available
for the brain, hence providing fuller picture of neural processes
leading up to perceptual categorization.
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