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Figure 7: Detailed analysis of spectral activity of (a) animals, (b) faces, (C) pseudowords and (d) scrambled images. Leftmost
column contains the importance maps extracted from Random Forest models and shows where in time and frequency the important
activity is. Second column visualizes the four largest (by the number of recording sites) clusters of activity patterns inside those
spectrotemporal regions that are deemed important. The numbers in the top right corner of each cluster’s activity pattern show
the average predictive power (F1 score) of the probes in that cluster and proportion of polypredictive locations that exhibited this
particular pattern of activity. Note how every cluster has a designated color: green, blue, red or black. This color of the cluster
matches the color of MNI location markers in the last two columns, that show sagittal and dorsal views of the brain. White markers
show the probes that have predictive power, but their activity pattern does not belong to any of the four major clusters.
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Figure 8: Comparison of predictive power of three different sets of features: full spectrum (4 — 150 Hz), broadband gamma alone
(50 — 150 Hz) and lower frequencies alone (4 — 50 Hz) across categories. The bracket with the p-value indicates a significant difference

according to Mann—Whitney U test.

two right columns), especially for such stimulus categories as
animal and pseudoword.

The second observation spanning across all categories was that
the classifier used not only the increases in power to perform the
classification, but also relied on power decreases in different brain
networks. The most prominent examples are the clusters faces-2
(Figure [7b), animals-2 (Figure [7h), tools-2, pseudowords-1,
pseudowords-2 (Figure )7 characters-1 and characters-2
(Figure [7d). For example, to decode face or pseudowords from
the activity of the blue cluster network, the RF classifier used
broadband gamma power decreases located in posterior inferior
temporal cortex and inferior occipital gyrus. None of the probes
for which the decrease in activity was identified as important
for decoding were located in classically defined Default Mode
Network (Buckner et al., |2008; |Raichle, [2015)).

Across all categories, the earliest component that often
appeared in clusters was the brief power increase in the low-
frequency interval (2-25 Hz), which for one group of probes can be
associated to an almost instantaneous broadband gamma power
increase ([7b, cluster 3), but remains the only source of important
activity for another group of probes , cluster 1).

Studying the anatomical locations of the probes belonging
to different clusters of activity revealed interesting observations.
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Figure , pseudowords, clusters 1 and 3 show a clear exam-
ple how clustering by activity patterns leads to assigning the
probes into functionally different anatomical areas. The gamma-
band increase signature captured by cluster 3 occurs only in the
left hemisphere (red markers on Figure Ek), the late theta-alpha
power decrease captured by cluster 1 also occurs only in the
left hemisphere (green markers) and is spatially clearly distinct
from probes in cluster 3. Because it is known that pseudoword
stimuli elicit top-down language-related (phonological) analysis,
which elicits highly left-lateralized networks identifiable in iEEG
recordings (Juphard et al., [2011; Mainy et al., 2008), we know
that this observation reflects a functional brain process. This dis-
sociation in both the spectrotemporal and anatomical domains
provides us with valuable information about the process of per-
ceptual categorization and highlights the benefit of disentangling
the activity into functionally and anatomically disassociated
components.

We were also interested to study the relevance of the dif-
ferent components in the TF domain for the Random Forest
classification process. Specifically, we wanted to see whether the
activity in the broadband gamma range, commonly present on
most clusters across categories, is in general the most valuable
neural signature for category networks as compared to the low-
frequency parts of the spectrum. To test whether broadband
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gamma was solely the most informative frequency interval we
statistically compared predictive power of three intervals: broad-
band gamma (50 — 150 Hz), low-frequency (4 — 50 Hz) and full
spectrum (4 — 150 Hz). Overall, across 7 perceptual categories
out of 8 (except for scenes), using the full spectrum was more
informative than using the broadband gamma interval or the low-
frequency interval alone (Mann—Whitney U test, p < 0.001563
(0.05 Bonferroni-corrected to the number of clusters compared,
see Figure . For scrambled images and faces the broadband
gamma carried less information that was relevant for decoder
than the lower frequencies.

Discussion

In the present work we trained a machine learning model to
decode 8 different perceptual categories from human intracere-
bral neural spectral activity and analyzed the resulting statistical
model to expose what information does the model rely on in
order to make decoding decisions. We then drew the paral-
lels between the patterns of neural activity that the machine
learning algorithm deemed important and the functional role of
that activity for the task of decoding perceptual categories in
human brain. This allowed us to distinguish between the spec-
tral activity that is relevant for the task from the activity that
is not. The study was conducted using a large dataset consist-
ing of 2823250 local field potential recordings, from a cohort
of 100 human patients whose combined electrode implantations
spanned across all major brain cortical areas. The decoding pro-
cess confronted neural responses elicited by 8 different perceptual
categories (from 8 different stimulus sets), which allowed obtain-
ing a high resolution in the dissociation between neural response
patterns across categories. All classifications were operated on a
broad frequency spectrum ranging from 4 to 150 Hz and allowed
to distinguish degrees of selectivity of neural responses and which
spectral components most strongly enable this selectivity. Pre-
vious works have shown where and when perceptual category
information can be decoded from the human brain, our study
adds to that line of research by allowing to identify spectrotem-
poral patterns that contribute to category decoding without
the need to formulate a priori hypothesis on which spectral
components and at which times are worth investigating.

The classifier model first allowed us to globally identify two
types of neural responses: those that were predictive of a certain
category and those that did not predict any category despite
eliciting strong amplitude modulation across multiple frequency
bands. Surprisingly, when comparing the level of predictability of
probe responses we found that only 4.8% of the responsive probes
were predictive of a category. This very low percentage highlights
an important fact regarding the level of “selectivity” of a neural
responses. When comparing neural responses, elicited by a spe-
cific stimulus, to a single or few other stimulation conditions it
might seem to be distinct and thus selective, yet, when increas-
ing the number of comparisons to a broader variety of response
conditions, the degree of its selectivity might narrow down as
its similarity to other responses increases. Stimulus-induced neu-
ral signal selectivity is thus a graded quality that can be assessed
through multiple comparisons with a broad variety of stimulation
conditions. This result also implies that although any stimulus

can elicit a local neural response throughout the cerebral cortex,
in the light of our results, there is a high probability of it being
non-predictive of any of the categories or being polypredictive of
several categories at once.

In line with a vast literature on the localization of category
related networks (Kanwisher et al.l [1997; [Epstein et al., [1999;
Malach et al., [1995; [Haxby et al., |2001} [Ishai et al.| [1999; |Grill-
Spector and Weiner, 2014;|Cohen et al., |2000; |Peelen et al., [2009))
predictive probes concentrated mostly in the inferior temporal
cortex, namely the fusiform gyrus (BA 37), yet surprisingly for
some categories, probes in primary visual cortex were also pre-
dictive of these categories. This effect is probably related to the
specifics of the physical content of certain images that uniquely
characterize certain categories amongst all others, as for example
the content in high-contrast edge information in scrambled and
written text stimuli.

Predictive probes were subsequently classified according to
their level of selectivity towards a single or multiple visual cat-
egories. Polypredictive probes (36%) clustered in visual cortices
and inferior temporal cortex and were associated with early spec-
tral components (< 300 ms) such as broadband gamma power
increases and a transient theta burst shortly after stimulus pre-
sentation. Monopredictive probes (64%) were abundant in these
same regions, but extending uniquely in frontal, parietal, superior
temporal and anterior limbic cortex. Their activity was strongly
associated with the later (> 300 ms) time and with power sup-
pression of spectral importance features, versus baseline, in the
theta (4 —7 Hz), alpha (8 — 15 Hz) and beta bands (16 — 40
Hz). In a subgroup of probes the associated power suppression
of the feature importances extended into the broad gamma band
(50 — 150 Hz).

Importantly, the capacity to ascribe category selectivity to
predictive probes (mono vs polypredictive probes) arises from
the fact that the decoding model was trained to discriminate
between all 8 categories simultaneously. The separation between
mono and polypredictive probes revealed specific effects in terms
of network localization and time-frequency components. The high
concentration of polypredictive probes (and local networks) in
early visual cortices, from primary visual cortex up to inferior
temporal cortex is coherent with the idea that networks in the
ventral visual stream progressively integrate more complex fea-
tures into object representations, thus becoming progressively
more selective, and converge within median temporal lobe to
more stimulus-invariant representations (Quiroga et al.l 2005).
This progressive information integration by spectral features of
neuronal responses across the visual hierarchy has been recently
connected with the computations carried out by deep convo-
lutional neural networks trained to solve the task of visual
recognition (Kuzovkin et al.l 2018]).

Globally, the random forest data -classification provided
results that are coherent with current knowledge on 1) the impli-
cation of networks located in visual cortex and inferior temporal
cortex in processing visual categories, 2) the timing of object
categorization in the human brain and 3) the role of broadband
gamma responses in processing category-selective information
within these networks. Previous studies have shown that certain
stimulus categories elicit clustered cortical responses of highly
localized networks in the occipito-temporal ventral stream such
as the fusiform-face-area (FFA) and the visual-word-form area
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(VWFA) (Kanwisher et all [1997; |Cohen et all [2000). Yet,
other studies have broadened this scope by showing that cer-
tain categories, as for example faces, rely on the involvement of
a larger brain-wide distributed network (Ishai et al.l [2005; |Vidal
et al.| 2010). Our classification analysis shows that the spatial
extent of this network distribution is category specific, certain
stimuli eliciting larger network responses, such as for faces,
animals and pseudowords, as compared to scenes, houses and
scrambled images which concentrate in the fusiform cortex, the
parahippocampal cortex and primary visual cortex respectively.

Our results largely agree with previous works trying to decode
visual object categories over time with MEG (Carlson et al.|
2013} |Cichy et al., |2014) or intracranial recordings (Liu et al.
2009). All these studies converge on the result that perceptual
categories can be decoded from human brain signals as early
as 100 ms. Our current work goes a step beyond these previ-
ous investigations by demonstrating which spectral components
underlie this fast decoding. Previous intracranial studies have
also shown that broadband gamma is modulated by informa-
tion about object categories (Vidal et al., |2010; |[Privman et al.l
2007; [Fisch et al., |2009). Moreover, broadband gamma has been
suggested as a proxy to population spiking output activity (Man-
ning et al., 2009; [Ray and Maunsell, |2011; Lachaux et al.l |2012;
Ray et al., |2008). It has since then been considered as a hall-
mark of local population processing (Parvizi and Kastner| 2018)).
Our classification results however show that broadband gamma
is not the sole selectivity marker of functional neural processing,
and that higher decoding accuracy can be achieved by including
low-frequency components of the spectrum. For certain stimulus
categories, as scrambled images, the broadband gamma range is
even outperformed by the predictive power of the low-frequency
range.

To understand which spectral components play a specific
role in stimulus categorization we analyzed the decision pro-
cess that drives the decoding model and identified the combined
spectrotemporal regions that are informative for the output of
the random forest classification procedure. This allowed us 1)
to show the category-selective association of different spectral
components with activity patterns represented by high feature
importance, and 2) identify a functional role of positive as well
as negative power modulations (increases and decreases versus
baseline) in early and late time windows of neural processing
involved in visual categorization.

While early TF components (i.e. broadband gamma and theta
burst) appeared to reflect a polypredictive neural process across
categories, especially for faces, the sustained decrease in power
in the alpha/beta band was extended in space and time. This
process is probably dependent on the degree of difficulty for the
networks in reaching a perceptual decision and which appeals to
the involvement of top-down processing required to resolve per-
ceptual ambiguity elicited by the different stimulus categories.
For example, animal and tool stimuli are highly diverse in
their physical image structure, as compared to face stimuli.
This affects the efficiency of bottom-up process in extracting
category information, often associated with increase in gamma
activity, and probably in parallel triggers top-down processes
through selective activity modulation in low-frequency chan-
nels (Bastos et all [2015)). In our data, this latter phenomenon
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could be mirrored by a decrease of predictive power in the low-
frequency range. Studies have shown that power modulations
reflect changes in network connectivity (Tewarie et al., 2018)
and that top-down processes, eliciting a decrease in power in
the alpha-beta band, are accompanied by an increase in distant
network connectivity (Gaillard et al., [2009)).

Finally, we also show that certain probes elicit decreased
broadband gamma responses (versus baseline) while representing
a significant feature importance for the classification model. It
has been shown that neural activity in the Default Mode Network
can be negatively modulated by attending sensory stimulation
(Buckner et al. |2008), and intracranial studies have found that
this was reflected by decreases (versus baseline) in the broad
gamma range (Ossandon et al., |2011} |Jerbi et al.l|2010; Dastjerdi
et al., 12011)). Here we found no evidence of such power decreases
in probes located in the DMN (Buckner et al., [2008]). However,
the random forest classifier singled-out broad spectral patterns of
power decreases at probes located in visual regions and beyond
for categories faces, pseudowords and characters. This is the
first time, to our knowledge, that power decreases in the broad-
band gamma range outside the DMN have been associated with
highly functional neural signal classification of perceptual cat-
egories. Their functional significance should be studied in the
future as they could reflect an important phenomenon of commu-
nication regulation between networks during perceptual decision
making of visual categories.

In this work we studied the information that allows local cor-
tical populations of neurons to make predictions of the category
of a visual stimulus. The number of locations per patient we were
able to record from was below a hundred, expanding on this work
by including more subject data in the future might allow us to
make a transition from the observations of local activity and the
analysis of its role to being able to detect signatures of global
decision-making processes. It is possible that these signatures
would be reflected in specific spectral fingerprints as many clas-
sic theories would suggest (Rodriguez et al., [1999; |Varela et al.,
2001; [Engel et al 2001} Siegel et al., |2012). We believe that the
methodology proposed in this study can facilitate the search of
those fingerprints.

Our work explored which spectral components reflect the per-
ceptual categorization process. We observed that some spectral
signatures were specific to certain categories, while other were
common across multiple categories. Moreover, we found that
broadband gamma band is not the only or for some categories
even not the main spectral component relevant for successful
categorization. Intracranial recordings allowed us to see where,
when and at which frequencies category information is available
for the brain, hence providing fuller picture of neural processes
leading up to perceptual categorization.
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