Itakura et al. 2018-11-21

- 1 Trynity controls epidermal barrier function and respiratory tube
- 2 maturation in *Drosophila* by modulating apical extracellular matrix
- 3 nano-patterning.
- 4
- 5 Yuki Itakura¹, Sachi Inagaki³, Housei Wada¹ and Shigeo Hayashi^{1, 2, *}
- ⁶ ¹ Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems
- 7 Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo,
- 8 650-0047, Japan
- 9 ² Department of Biology, Kobe University Graduate School of Science, 1-1
- 10 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8051, Japan
- ³ Biosignal Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-
- 12 **8501**, JAPAN.
- 13
- 14 *Correspondence to:
- 15 Shigeo Hayashi
- 16 RIKEN Center for Biosystems Dynamics Research
- 17 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047
- 18 Japan
- 19 Tel: 81-78-306-3185; Fax: 81-78-306-3183
- 20 E-mail: shayashi@cdb.riken.jp

Itakura et al. 2018-11-21

- 21
- 22 Running title: ZP protein function in the cuticle of Drosophila
- 23
- 24 Key words: aECM, ZP domain protein, organogenesis, epidermis, trachea

25

26 Summary Statement

- 27 The zona pellucida domain protein Trynity controls the structural organization
- and function of the apical extracellular matrix in the epidermis and trachea of
- 29 Drosophila.

Itakura et al. 2018-11-21

30 Abstract

31	The outer surface of insects is covered by the cuticle, which is derived from the
32	apical extracellular matrix (aECM). The aECM is secreted by epidermal cells
33	during embryogenesis. The aECM exhibits large variations in structure, function,
34	and constituent molecules, reflecting the enormous diversity in insect
35	appearances. To investigate the molecular principles of aECM organization and
36	function, here we studied the role of a conserved aECM protein, the ZP domain
37	protein Trynity, in Drosophila melanogaster. We first identified trynity as an
38	essential gene for epidermal barrier function. trynity mutation caused
39	disintegration of the outermost envelope layer of the cuticle, resulting in small-
40	molecule leakage and in growth and molting defects. In addition, the tracheal
41	tubules of trynity mutants showed defects in pore-like structures of the cuticle,
42	and the mutant tracheal cells failed to absorb luminal proteins and liquid. Our
43	findings indicated that trynity plays essential roles in organizing nano-level
44	structures in the envelope layer of the cuticle that both restrict molecular
45	trafficking through the epidermis and promote the massive absorption pulse in

Itakura et al. 2018-11-21

- 46 the trachea.
- 47
- 48 Introduction

49	The skin is one of the largest organs of the body, with various functions
50	including body temperature regulation [1] and sensory-information detection [2],
51	along with its role as a barrier protecting the internal organs from the external
52	environment. The barrier function is provided by the epidermis, which consists
53	of multiple layers: the epidermal cell, stratum corneum, and sebum layers. The
54	outer two layers are non-cellular structures that prevent the entry of external
55	agents such as microbes, viruses, and chemicals, and maintain moisture in the
56	skin [3-5]. Pathogenic conditions that disorganize those layers allow the
57	invasion of external agents through the skin and cause a loss of moisture,
58	resulting in dry skin, asteatosis, and atopic dermatitis [6]. In insects, the body is
59	covered with cuticle layers: the envelope, epicuticle, and procuticle [7]. The
60	cuticle is produced by epidermal cells and provides the barrier function. In both
61	the skin epidermis and cuticle systems, the outermost layers are rich in lipid.
62	The inner layers of the vertebrate epidermis are rich in keratin-family proteins,

Itakura et al. 2018-11-21

63	while the insect epicuticle and procuticle are rich in proteins and polysaccharide
64	chitin, respectively. Thus, these systems share functional and structural
65	similarities.
66	ZP domain proteins were first identified as structural components of the
67	zona pellucida, the mammalian egg coat [8]. ZP domains are typically \sim 260
68	residues long, divided into N-terminal and C-terminal halves with conserved
69	cysteine residues [9], and act as protein-oligomerization modules in the
70	formation of filaments and matrices [10]. ZP domain proteins are reported to
71	function in mammalian-egg fertilization, body-shape regulation, and mammalian
72	auditory-organ formation [reviewed in [11] and [9]].
73	Twenty ZP domain proteins have been identified in the genome of
74	Drosophila melanogaster [12,13], among which dumpy (dpy) and piopio (pio)
75	play critical roles in the morphological development of the trachea, wing, and
76	notum [14-16] . In these processes, the ZP domain proteins serve as an
77	anchoring structure that stabilizes the apical plasma membrane of the
78	epidermal tissues undergoing morphogenetic movement [15-18] . ZP proteins

Itakura et al. 2018-11-21

79	also function to shape the denticles, actin-rich apical protrusions in the larval
80	epidermis, by differentially distributing to specific subcellular locations [13].
81	However, the ZP protein functions are still incompletely understood, in part
82	because many of the available mutant alleles are caused by transposon
83	insertions or large chromosomal deletions. Thus, as a first step toward
84	comprehensively understanding the ZP domain proteins, we performed a
85	systematic mutagenesis of ZP domain proteins in Drosophila using the
86	CRISPR/Cas9 genome editing technique (Itakura et al., unpublished). Here we
87	focus on the ZP protein encoded by trynity (tyn), which was previously
88	implicated in denticle morphogenesis [13]. While this work was in its final stage,
89	it was reported that tyn mutants show abnormal feeding behavior and
90	incomplete respiratory-system maturation [19]. The authors suggested that
91	these phenotypes could be explained, in part, by defects of the valve structure
92	of the posterior spiracle. However, previous studies of this gene must be
93	interpreted with caution, because the tyn mutant allele were an intronic P-
94	element insertion [tyn ^{PG38} in [20] and [19]] or imprecise excisions of the same P

Itakura et al. 2018-11-21

95	element [<i>tyn</i> ^{ex35} in [13]]. Thus, it was possible that the phenotypes described in
96	these studies did not represent the loss of Tyn function. Here we used
97	molecularly defined tyn null mutations, and demonstrated new roles of tyn in the
98	epidermal barrier function and maturation of tracheae that would explain the
99	abnormal feeding behavior, growth retardation, and larval lethality of these
100	mutants. We demonstrated by transmission electron microscopic analyses that
101	tyn is required for the formation of the outermost envelope layer of the
102	epidermal cuticle and of pore-like structures in the tracheal cuticle. These
103	results revealed novel functions of tyn in constructing nano-level apical
104	extracellular matrix (aECM) ultrastructures.
105	
106	Materials and Methods
107	Fly strains
108	Flies were maintained at 25 $^\circ$ C. For experiments, adult flies were kept in a vial
109	containing yeast paste on an agar plate overnight. To test viability, 50 L1 larvae
110	on the plate were transferred to a new vial with food, and the number of pupae

Itakura et al. 2018-11-21

111	was counted 7 days later. This process was repeated twice for each genotype.
112	To use embryos or newly hatched larvae for experiments, eggs on the plate
113	were collected, dechorionated in bleach, washed, and kept on a plate with filter
114	paper soaked in water to prevent drying. The dechorionated embryos and
115	hatched larvae at later stages were used. The strains were: y^2 , cho ² , v^1 ;
116	attP40{nos-Cas9}/ CyO (NIG: CAS-0001), y ¹ ,w ^{67c23} /P{w+mC=Act-
117	<i>GFP},Dp(1;y)y</i> + (DGRC:109661), <i>y</i> ¹ , <i>w</i> *, <i>baz</i> ⁴ , <i>P</i> {w[+mW.hs]=FRT(w ^{hs})}9-
118	2/FM7c, P{Dfd-GMR-nvYFP}1, sn ⁺ (BDSC:23229), w*; P{w[+mC]=His2Av-
119	mRFP1}II.2 (BDSC:23651), <i>y, w, baz⁴,FRT/FM7c, Dfd-GMR-YFP; btl-</i>
120	Gal4,UAS-Serp-CBD-GFP, UAS-p120-tagRFP/CyO, Dfd-YFP [21,22] and
121	Oregon R (laboratory Stock).
122	

123 CRISPR/Cas9 mutant generation

- 124 To obtain *tyn* frameshift mutants, we designed a gRNA using a web resource,
- 125 CRISPR Optimal Target Finder

Itakura et al. 2018-11-21

126 (http://tools.flycrispr.molbio.wisc.edu/targetFinder/) [23] and picked a	a sequence
--	------------

- 127 with a "GG" followed by "NGG" protospacer adjacent motif (PAM) sequence [24]
- and no off-target matches. The 20-bp target sequence and complementary
- 129 oligonucleotides with 4-bp overhangs on each end, 5'-
- 130 CTTCGCGCTCATGGTTCAAATAGG-3' and 5'-
- 131 AAACCCTATTTGAACCATGAGCGC-3', were annealed and cloned into a Bbsl-
- 132 digested gRNA expression vector pBFv-U6.2. This vector was injected into
- embryos with a genotype of y^2 , *cho*², v^1 ; *attP40{nos-Cas9}/CyO* using a
- 134 standard microinjection procedure. Each of 10 founder males was crossed with
- 135 *y*¹, *w*^{*}, *baz*⁴, *P*{*w*[+*mW*.*hs*]=*FRT*(*w*^{*hs*})}9-2/*FM7c*, *P*{*Dfd-GMR-nvYFP*}1, *sn*⁺, and
- 136 ~100 independent candidate mutant lines were established. Eleven lines were
- 137 subjected to a heteroduplex mobility assay (HMA) in 15% acrylamide gel [25],
- and three of these lines showed a mobility shift. Sequencing revealed two lines
- 139 with a deletion and consequent stop codon (tyn^1 and tyn^2) and 1 line with a 5-bp
- 140 replacement. The primers used for HMA were: 5'-
- 141 GGATCATAAGACCCTGCCCG-3', 5'-TGGTGATCCAGCTCCCAAAC-3', and

Itakura et al. 2018-11-21

142 for sequencing: 5'-CCGAAGAGAGAGGTTGCCCAA-3', 5'-

143 TGCGGGTTAAGTTGGTCAGG-3'. We also picked one established line with no

144 mutation as a control.

145

146 Histology

147	For cuticle preparations, larvae were placed on a glass slide with Hoyer's
148	medium and lactic acid (Wako) 1:1 and cover glass, and incubated at 60-65 $^\circ\!\text{C}$
149	overnight. Images were obtained with an Axioplan2 (Zeiss) and DP74 camera
150	(Olympus). Eosin staining was performed with a modified protocol of Zuber et
151	al. [26]. Intact L1 larvae were incubated in 0.5% Eosin Y staining solution
152	(Sigma-Aldrich) for 1 hour at 40 °C and washed with water. After heat fixation at
153	70 $^\circ\!\text{C}$ for ~1 min [27], the larvae were observed with a VHX-6000 digital
154	microscope (Keyence). For the DAPI penetration test, DAPI (Sigma) in water (1
155	$\mu g/ml)$ was applied to intact larvae in 50 μl of PBS [10X Phosphate-Buffered
156	Saline (Nacalai Tesque) diluted with water] and washed out 5 min later. To

Itakura et al. 2018-11-21

157	image the DAPI-immersed	larvae or larvae	expressing S	Serp-CBD-GFP a	and
-----	-------------------------	------------------	--------------	----------------	-----

158 p120-tagRFP for the protein clearance test, the samples were mounted in

- 159 glycerol, fixed by heating, and observed with a Fluoview FV1000 confocal
- 160 microscope (Olympus).
- 161

162 Physiological tests

- 163 To examine the effects of low osmotic pressure, dechorionated embryos were
- 164 placed in water overnight. We picked 10 larvae for each genotype and
- 165 calculated the survival rate and relative body lengths of the surviving larvae
- 166 normalized to the median obtained for Oregon R. Since high osmotic pressure
- 167 caused rapid changes, 10 hatched larvae were collected in 5 µl PBS, and 20 µl
- 168 10X PBS was added. Thirty minutes later, images were captured and survival
- 169 rates were calculated.

170

171 In situ hybridization

Itakura et al. 2018-11-21

172	Because the probe used previously [12] (1082-bases long) showed relatively
173	high background signals in our experiments, we designed a new probe that was
174	356-bases long. This new probe detected the tyn mRNA expression in a pattern
175	similar to that reported previously, but the lower background enabled us to
176	detect signals in the tracheal system more clearly. The digoxygenin-labeled
177	RNA probe was synthesized with T7 RNA polymerase and a template amplified
178	with the primers 5'-GGCGGCCTTTAGTTTTGTGG-3' and 5'-
179	TAATACGACTCACTATAGGGGTCCAGAGCTGCGTCTATCC-3' (with T7
180	promotor) followed by gel filtration. Whole-mount in situ hybridization was
181	performed as described previously [28]. Embryos were mounted in 80%
182	glycerol, observed using a BX53 upright microscope with DIC optics, and
183	photographed with a DP74 digital camera (Olympus).

184

185 **Time-lapse Imaging**

Itakura et al. 2018-11-21

186	To observe feeding behavior, 10 larvae were placed in each well of a 96-well
187	plate with agar, and yeast paste was applied to the center of each well. Time-
188	lapse imaging was then performed at 15-sec intervals, for a total of 2 hours.
189	Immobile larvae were excluded. The percentages of larvae inside, peripheral to,
190	and outside the paste were plotted against time after the paste was applied. For
191	live imaging of the gas-filling process, stage-17 embryos with visible malpighian
192	tubules and slightly pigmented mouth cuticle, most of which should enter the
193	stage of tracheal liquid-gas transition within an hour, were picked and placed on
194	a plate with heptane glue (heptane with sticky tape) and covered with water.
195	Images were obtained every 30 sec. for 6 hours. For both imaging experiments,
196	a Digital Microscope VHX-6000 (Keyence) was used.

197

198 Transmission electron microscopy

199 The TEM protocol was modified from a previously described procedure [29].

200 Dechorionated embryos at the same stage as those used for live imaging of the

Itakura et al. 2018-11-21

201	liquid-gas transition were placed on sticky tape attached to a glass slide, poked
202	out from the vitelline membrane in fixation solution (2% paraformaldehyde, 2%
203	glutaraldehyde, 1xPBS, 1 mM CaCl ₂ , 1.5% DMSO, pH=7.4), transferred to fresh
204	fixation solution, and further incubated for 2 hours in total. The embryos were
205	washed with PBS, embedded in 3% agarose, and cut out as agarose cubes
206	containing an embryo to make the following processes easier. After the
207	subsequent fixation (2% OsO4, 1x PBS, 0.2 M sucrose) on ice for 2 hours and
208	dehydration with a graded series of ethanol in water (30% and 50% on ice,
209	70%, 80%, 90%, 95%, 99.5%, 100% 3 times, at room temperature, 15 min for
210	each), the embryos were embedded in resin (propylene oxide for 20 min twice,
211	propylene oxide-resin 1:1 for 1 hour, 1:3 overnight, 100% resin for 3 hours
212	twice, and overnight under vacuum) and incubated at 60 $^\circ\!C$ for polymerization.
213	Ultrathin 80-nm-thick sections were obtained and stained with heavy metal.
214	Images were captured with a JEM-1400 (JEOL). Three embryos each for y^2 ,
215	cho ² , v^1 and tyn ¹ , y^2 , cho ² , v^1 were examined.

216

Itakura et al. 2018-11-21

217 Results

218 *tyn* mutants exhibit growth and behavioral defects.

- 219 Trynity has three PAN/Apple domains followed by a ZP domain and a
- transmembrane domain (Fig. 1A). We mutagenized *tyn* using the CRISPR/Cas9
- technique [30,31] by targeting the guide RNA to the sequence encoding the
- third PAN/Apple domain (Fig. 1A, arrowhead). Two independent mutations with
- small deletions that resulted in a frameshift and a stop codon were isolated (*tyn*¹
- and tyn^2 , Fig.1A). The two mutations were lethal as hemizygous, homozygous,
- and trans-heterozygous conditions, and this lethality was rescued by a
- 226 chromosomal duplication carrying the *tyn* locus (Materials and Methods). In the
- following experiments, we used *tyn* stocks balanced with *FM7-dfd-YFP*, and
- 228 progenies lacking the dfd-YFP signal (*tyn* homozygotes and hemizygotes) were
- used as mutants, while animals with the dfd-YFP signal were used as sibling
- 230 controls. We also used the Oregon R strain, and another control line, y^2 , *cho*², v^1 ,
- which carries a normal *tyn* sequence obtained from the same progeny that
- 232 yielded tyn^1 and tyn^2 , as controls.

Itakura et al. 2018-11-21

233

234	Figure 1. tyn mutants and their gross phenotypes. (A) Tyn protein structure and
235	tyn DNA sequence of the region including the CRISPR/Cas9 target site. Tyn
236	has 3 PAN/Apple domains, a ZP domain, and a transmembrane domain. The
237	target site is indicated by an arrowhead in the diagram, and the sequence is
238	underlined. tyn^1 and tyn^2 contained 23- and 4-base deletions respectively,
239	which resulted in early stop codons (red letters). (B) Larval body size for each
240	genotype. Day 1 means ~24 hours after hatching. On days 2 and 3, the <i>tyn</i>
241	mutants remained small, while control larvae (Oregon R and y^2 , cho ² , v^1) grew
242	larger. (C) On day 3, the <i>tyn</i> ¹ mutant larvae lacked anterior spiracles, while
243	those of Oregon R were obvious (arrowheads). (D) Larval viability of each
244	genotype. n=100 for each. (E) Photographs of larvae with yeast paste.
245	Arrowheads indicate larvae that stayed at the periphery of the yeast paste
246	without entering it. In the left panel, there were 5 larvae within the food. The
247	quantified data are shown in (F). n=15-20 for each. **P<0.01, *P<0.05 by
248	Fisher's exact test with Benjamini & Hochberg correction.

Itakura et al. 2018-11-21

249

250	The <i>tyn</i> mutant first-instar larvae hatched with a normal appearance, but
251	their growth was retarded (Fig.1B). On day 3, the mutant larvae lacked anterior
252	spiracles and their head skeletons were underdeveloped, suggesting molting
253	failure (Fig. 1C). All of the mutants died before pupation (Fig.1D).
254	Both control and tyn mutant L1 larvae placed on agar plates approached
255	distantly placed yeast food (Supplementary Fig. 1) and ingested it, as shown by
256	gut labeling by food containing blue dye (data not shown). However, the tyn
257	mutants tended to stay at the periphery of the food, while control larvae entered
258	it (Fig. 1E, F and Supplementary Fig. 1). These defects in growth and feeding
259	behavior, and additional defects in posterior spiracle valve formation
260	(Supplementary Fig. 2) were similar to phenotypes reported for <i>tyn^{PG38}</i> [19].
261	
262	<i>tyn</i> is essential for the epidermal barrier function
263	We found that the <i>tyn</i> ¹ mutants were sensitive to low osmolality. When first-

264 instar larvae were kept in water overnight, many of the mutant larvae showed

Itakura et al. 2018-11-21

265	dramatic swelling of the body, whereas control larvae did not (Fig. 2A). Although
266	the viability of the mutants was slightly lower in this condition (Fig. 2B), the body
267	length of the surviving tyn^1 mutant larvae was 1.3-times longer than that of
268	controls (Fig. 2C). On the other hand, incubation under high osmolarity (1 M
269	NaCl) for 30 min. caused prominent shrinkage of the mutant larval body, and a
270	significantly higher death rate than in the three control groups (Fig. 2D and E,
271	p<0.05). These observations indicated that the tyn^1 mutant larvae were
272	sensitive to changes in the external salt concentration, suggesting that their
273	epidermis allowed the passage of salt ions and water.
274	
275	Figure 2. Defective barrier function against osmolarity in tyn mutants. First-
276	instar tyn^1 , y^2 , cho^2 , v^1 larvae showed obvious swelling in water (A-C) and
277	shrinkage in hyper-osmotic solution (D, E) compared with control groups, y^2 ,
278	<i>cho</i> ² , v^1 , Oregon R, and <i>tyn</i> ¹ , y^2 , <i>cho</i> ² , $v^1/FM7$. (A) Larvae kept in water
279	overnight. (B) The survival rate was calculated by dividing the number of
280	moving larvae by that of total larvae (10 larvae for each of 2 trials, average

Itakura et al. 2018-11-21

281	values \pm S.E.M are shown.). There was no significant difference (P=0.29 by
282	Kruskal Wallis test). (C) Median body length normalized to that of Oregon R.
283	****P<0.0001, ***P<0.001, *P<0.05 by Dunn's multiple comparisons test after a
284	Kruskal-Wallis test (P<0.0001). (D) Larvae kept in high-salt solution for 30 min.
285	(E) All 10 of the tyn^1 , y^2 , cho^2 , v^1 larvae died, while 6 of the 10 larvae survived in
286	each of the three control groups. *P<0.05 by Fisher's exact test with Benjamini
287	& Hochberg correction. Scale bar: 500 μm .
288	
289	We next tested the permeability of the epidermis to larger molecules.
290	Incubating L1 larvae in Eosin Y (molecular weight 647.89) at 40°C for 60 min.
291	resulted in intense staining of the internal organs of tyn^1 and tyn^2 mutants but
292	
	not of control larvae (Fig. 3A, <i>tyn²</i> : data not shown). In addition, incubation in
292	not of control larvae (Fig. 3A, <i>tyn</i> ² : data not shown). In addition, incubation in DAPI (molecular weight 350.25) caused the labeling of epidermal cells and
293	DAPI (molecular weight 350.25) caused the labeling of epidermal cells and

Itakura et al. 2018-11-21

297	cells, epidermis, or internal tissues [19]. These differences in the <i>tyn</i> ¹ and
298	<i>tyn^{PG38}</i> phenotypes may reflect the different nature of the mutations. Our
299	findings collectively indicated that in the tyn-null larvae, the epidermal barrier
300	function failed and allowed external salt and small molecules to leak into the
301	inner tissues.
302	
303	Figure 3. Leakage of molecules through the <i>tyn</i> mutant body surface. (A) Eosin
304	Y penetrated the body of tyn^1 , y^2 , cho^2 , v^1 larvae but not of y^2 , cho^2 , v^1 . Scale
305	bar: 500 μm (B) DAPI staining was observed in neither the epidermis nor
306	trachea of the control larvae (+/+; Ubi-GAP-43GFP, His2AV-mRFP), while some
307	of the epidermal and tracheal cells were strongly labeled with DAPI in the
308	mutant larvae (<i>tyn¹, y², cho², v/Y;</i> Ubi-GAP-43GFP, His2AV-mRFP). His2AV-
309	mRFP (magenta) was expressed to visualize nuclei in all the cells. Bright-field
310	images show that the trachea was gas-filled in the control but not in the mutant.
311	Scale bar: 10 µm.

312

Itakura et al. 2018-11-21

313	The outermost layer of the epidermis is disorganized in <i>tyn</i> mutants.
314	To determine the cause of the decreased barrier function in <i>tyn</i> mutants, we
315	observed the epidermal structures by transmission electron microscopy (TEM).
316	Moussian et. al. described three major layers of the larval cuticle that are
317	distinguished by TEM: the procuticle, epicuticle, and envelope [32] (Fig. 4A, A').
318	The procuticle, which mainly consists of chitin and protein, borders the apical
319	side of the epidermal cells. The epicuticle is the next outer layer and rich in
320	proteins. The envelope is the outermost of the three layers, and contains lipids,
321	waxes, and proteins. TEM observation of tyn^1 mutants at the late stage 17 of
322	embryogenesis showed a three-layered cuticular organization indistinguishable
323	from that of controls, except for the outer layer of the envelope, which was
324	rough and disorganized compared to the smooth control envelope (Fig. 4B, B',
325	arrows indicate defective structures). Specifically, while the envelope layer of
326	control embryos consisted of five alternating electron-dense and lucid sublayers
327	(Fig. 4C), in the <i>tyn</i> ¹ mutant the surfaces of one or two layers were broken into
328	debris (Fig. 4D).

Itakura et al. 2018-11-21

329

330	Figure 4. Ultrastructure of the epidermis in y^2 , <i>cho</i> ² , <i>v</i> and the <i>tyn</i> ¹ mutant. (A)
331	Three cuticle layers formed on the plasma membrane of epidermal cells (PM,
332	arrowhead): the outermost envelope (Env), intermediate epicuticle (Epi), and
333	innermost procuticle (Pro). (B) The surface of the envelope layer of the tyn^1
334	mutant was disorganized (arrow). (A'), (B'): Enlarged views of the region
335	indicated by a rectangle in (A) and (B), respectively. In control samples, the five
336	sublayers constituting the envelope were observed clearly, as alternating
337	electron-dense and lucid layers in (C). (D) In the tyn^1 mutant, one or two surface
338	sublayers were broken in many regions (arrowheads), causing a rough surface
339	with extensive debris (arrows). Scale bar: 200 nm for (A), (B) and 50 nm for (A'),
340	(B)', (C), (D).
341	

342 tyn mRNA localizes to the epidermis, trachea, and other organs

343 We next performed whole-mount embryonic *in situ* hybridization analysis with a 344 newly designed RNA probe for *tyn* (see Materials and Methods). This analysis

Itakura et al. 2018-11-21

345	confirmed the previously reported expression of tyn in the mouth parts including
346	the pharynx and esophagus, posterior spiracles (PS), denticle belts, and
347	epidermis (Fig. 5A, C, D, E) [12], as well as in the hindgut (Fig. 5A). In addition,
348	we observed strong tyn expression not only in PS but in the whole tracheal
349	system, from stage 14 to stage 17, with a peak at stage 15 (Fig. 5A, B, E, F).
350	The tyn mRNA was localized to the apical cortex of the tracheal cells and
351	fibrous structures in the lumen (arrowheads in Fig. 5B' and F). We speculate
352	that the luminal tyn mRNA was co-secreted during a massive secretion pulse of
353	proteins and polysaccharides that is known to occur during tracheal
354	development [33]. The tyn expression in the mouth parts and epidermis was
355	strong at stage 16 (Fig. 5C, D). The <i>tyn</i> expression in PS and DT lasted until
356	stage 17 (Fig. 5E, F).
357	
358	Figure 5. tyn mRNA expression at late embryonic stages. (A) At stage 14, tyn
359	mRNA was expressed in the posterior spiracles (PS), mouth parts (M), hindgut
360	(HG), and part of the dorsal trunk (DT). (B) The tyn mRNA was expressed in the

Itakura et al. 2018-11-21

361	tracheal system most strongly at stage 15. At stage 16, strong expression was
362	observed in the mouth parts (C) and epidermis (D, dorsal view). tyn mRNA
363	expression lasted until stage 17 in the PS (E, dorsal view) and DT (F), but not in
364	the epidermis. Scale bar: 100 μm for A, B, 20 μm for B', C-F. Black arrowheads
365	in B' and F indicate luminal mRNA.
366	
367	<i>tyn</i> is required for protein clearance and gas filling in the tracheal lumen
368	We next examined the maturation process of the trachea. The tyn^1 and tyn^2
369	mutant larvae lacked fully gas-filled trachea (Fig. 6A), and their posterior
370	spiracles had an abnormal morphology (Supplementary Fig. 2). Based on
371	similar observations in <i>tyn^{PG38}</i> mutants, Wang et al. suggested that the <i>tyn</i>
372	mutation caused a loss of posterior spiracle valve structures and unrestricted
373	liquid flow between the tracheal lumen and outside liquid, resulting in a defect in
374	liquid clearance, or gas filling [19]. However, given the strong <i>tyn</i> mRNA
375	expression in the whole tracheal system, we sought an alternative explanation
376	for the gas-filling defect. Time-lapse imaging with control embryos revealed the

Itakura et al. 2018-11-21

377	normal time course for gas filling (Fig. 6B i-vi). After gas bubbles initially formed
378	in the central metameres, the gas spread into the dorsal trunk (DT) (Fig. 6B, ii),
379	traversed across dorsal branch 10 (DB10, Fig. 6B, iii), spread into the
380	contralateral DT, and finally filled the other small branches and posterior
381	spiracle (Fig. 6B, iv, white and yellow arrowheads, respectively). In the tyn
382	mutants, the gas-filling defect was nearly complete in the posterior spiracle, but
383	was variable in the DT (Fig. 6C). The timing of the first bubble formation in the
384	<i>tyn</i> mutants showing full or partial gas filling was delayed by \sim 3 hours compared
385	to control embryos (Fig. 6D), while the duration of the hatching behavior was
386	normal (Fig. 6E).
387	
388	Figure 6. Delayed and partial gas-filling, and protein clearance failure in tyn
389	mutants. (A) Tracheal tubules in a tyn^1 sibling control embryo were filled with
390	gas and bordered by a thick black line (upper panel, arrows). In the <i>tyn</i> ¹ mutant,
391	the trachea had translucent borders and lacked gas (bottom panel,
392	arrowheads). (B) The normal gas-filling process observed in a tyn^1 sibling

Itakura et al. 2018-11-21

393	control: (i) tracheal tube before liquid-gas transition, (ii) first gas-filling, (iii)
394	extension to the contralateral side through posterior anastomosis (arrowhead),
395	(iv) subsequent propagation to the branches (white arrowheads) and posterior
396	spiracles (yellow arrowheads), (v) extrusion of the head from the vitelline
397	membrane, (vi) hatching. (C) The degree of gas-filling was classified into three
398	levels for each of the two parts, dorsal trunk (DT, upper) and posterior spiracles
399	(PS, bottom), for each of five genotypes: tyn^1 sibling control, tyn^1 mutant, tyn^2
400	sibling control, <i>tyn</i> ² mutant, and no-mutation control (left to right). The YFP
401	signal indicated the presence of the X-chromosome balancer, FM7 with Dfd-
402	YFP. (D, E) The time when the embryo's head emerged from the vitelline
403	membrane (B-v) was set as 0, and the timing of the first gas-filling (D) or
404	hatching (E) is shown as a boxplot with S.E.M. for each of the five genotypes.
405	For the first gas-filling time, a Kruskal-Wallis test followed by Dunn's multiple
406	comparisons test detected significant differences between the three pairs: tyn ¹
407	sibling control vs mutant (**P<0.01), <i>tyn</i> ² sibling control vs mutant
408	(****P<0.0001), and <i>tyn</i> ² mutant vs no-mutation control (*P<0.05). There was no

Itakura et al. 2018-11-21

409	difference in the hatching time. (F, G) First-instar larva expressing Serp-CBD-
410	GFP (green) and p120-TagRFP (magenta) by the btl-gal4 driver with (F) or
411	without (G) a functional tyn gene. (F) The control tracheal tube was filled with
412	gas and Serp-CBD-GFP was completely removed from the lumen. (G) The tyn
413	mutant lumen was filled with Serp-CBD-GFP. Scale bar: 100 $\mu\text{m}.$
414	
415	To explore the reason for the significantly delayed onset of gas bubble
416	formation, we observed the events prior to tracheal tube maturation. The
417	tracheal branching, fusion, tube elongation, and diameter expansion proceeded
418	normally in the <i>tyn</i> mutants, resulting in a DT filled with chitin at stage 16 (data
419	not shown). In normal embryos, a massive absorption of luminal proteins occurs
420	at stage 17, followed by gas-filling or liquid clearance (Fig. 6F;[33]). We found
421	that tyn mutants at stage 17 retained a luminal protein marker [GFP-tagged
422	Serpentine Chitin Binding Domain (Serp-CBD-GFP) [21]], suggesting that the
423	endocytosis of luminal proteins failed (Fig. 6G). These observations indicated

Itakura et al. 2018-11-21

424	that the tyn mutant trachea had a defe	ct in protein clearance, resulting in

425 delayed and incomplete gas-filling.

426

427	Pore-like structures in the tracheal cuticle are defective in <i>tyn</i> mutants
428	Prior to the protein and liquid clearance, cuticle deposition begins at stage 16,
429	and involves the formation of taenidial folds over the apical cell surface of
430	tracheal cells [34]. Since the cuticle layers physically separate the luminal liquid
431	and molecules from the plasma membrane of tracheal cells, how the massive
432	pulse of luminal liquid and molecule absorption occurs is not well understood.
433	To examine this process, we used TEM to observe the ultrastructure of the
434	tracheal cuticle. In control flies, the longitudinal section of the DT exhibited
435	regularly spaced ridges of taenidial folds, which were separated by thin
436	interteanidial cuticle that was enriched with electron-dense materials (Fig. 7A).
437	These materials occasionally appeared as parallel dense lines, indicating a
438	pore connecting the luminal space to the cell surface (Fig. 7A, A', A'',
439	arrowheads). The inner space was lucent and around 20-nm in diameter.

Itakura et al. 2018-11-21

440	Hereafter we will call this pore structure a "taenidial channel" (TC). In the tyn^1
441	mutants, the electron-dense materials of the TC were cloudy, and distinct TCs
442	were not observed (Fig. 7B, B"). In addition, the apical tracheal cell membrane
443	was slightly bulged out at the site of intertaenidial cuticle in the control (Fig. 7A,
444	A'), and this bulging was more prominent in the <i>tyn</i> ¹ mutants (Fig. 7B', arrow).
445	
446	Figure 7. Defective ultrastructures in the <i>tyn</i> ¹ mutant. (A, B) TEM images of the
447	taenidial folds in y^2 , cho^2 , v^1 (A-A") and tyn^1 , y^2 , cho^2 , v^1 (B-B"). A', A", B' B" are
448	enlarged views of the regions indicated by rectangles in A, A', B, B',
449	respectively. Arrowheads in A' indicate a pore-like structure we called the
450	"taenidial channel" (TC). Dotted lines: plasma membrane. Arrow in B': a
451	prominent protrusion of the tracheal cell. Scale bars: 200 nm in A, A', B, B' and
452	50 nm in A" and B".
453	

454 **Discussion**

Itakura et al. 2018-11-21

455	In this study, using newly established <i>tyn</i> -null mutants, we showed that <i>tyn</i> is
456	required for the building of specific substructures in the epidermal and tracheal
457	cuticles. The tyn mutations caused defects in epidermal barrier function and in
458	luminal protein clearance of the tracheal tubule, resulting a variety of
459	physiological and behavioral problems. Based on these results, we were able to
460	elucidate some of the physiological roles of cuticular substructures, which are
461	discussed below.
462	
463	Tyn supports the epidermal barrier function
463 464	Tyn supports the epidermal barrier function The insect cuticle consists of three layers: the lipid-rich envelope, protein-rich
464	The insect cuticle consists of three layers: the lipid-rich envelope, protein-rich
464 465	The insect cuticle consists of three layers: the lipid-rich envelope, protein-rich epicuticle, and Chitin-rich procuticle. These layers are thought to play distinct
464 465 466	The insect cuticle consists of three layers: the lipid-rich envelope, protein-rich epicuticle, and Chitin-rich procuticle. These layers are thought to play distinct roles in the epidermis. For instance, loss of the <i>Chitin Synthase-1</i> (<i>CS-1</i>) gene,
464 465 466 467	The insect cuticle consists of three layers: the lipid-rich envelope, protein-rich epicuticle, and Chitin-rich procuticle. These layers are thought to play distinct roles in the epidermis. For instance, loss of the <i>Chitin Synthase-1</i> (<i>CS-1</i>) gene, also called <i>krotz-kopf verkehrt</i> (<i>kkv</i>), causes an abnormal procuticle, which

Itakura et al. 2018-11-21

471	barrier function. Loss of the ABC transporter <i>snustorr</i> (<i>snu</i>) causes an abnormal
472	envelope structure and a dramatically reduced barrier function [26]. The
473	envelope consists of alternating electron-dense and electron-lucid sublayers [7].
474	In snu mutants, one of the electron-dense sublayers is lost. snu mutant and
475	RNAi-induced knockdown larvae fail to hatch, and when freed from the egg
476	case, they immediately die from dehydration [26]. In contrast, the tyn mutants
477	exhibited a more specific structural anomaly in the envelope, fragmentation of
478	the outermost sublayer. The <i>tyn</i> mutant larvae were able to hatch and survive
479	for a few days, despite exhibiting severe behavioral and growth defects,
480	suggesting that dehydration was not the direct cause of their lethality. The
481	Eosin Y permeability in the tyn mutants was also much lower than that observed
482	in snu mutants [26]. Therefore, some aspects of the barrier function including
483	the internal water retention are maintained in the absence of tyn and the
484	outermost envelope sublayer. Our observations using tyn mutants support the
485	idea that the outermost envelope layer is essential for the barrier function. The
486	phenotypes of tyn and snu uncovered non-redundant, protective functions of

Itakura et al. 2018-11-21

487	the envelope sublayers,	which together form a	robust barrier that protects
107		which together form a	repuer partier that protooto

488 larvae from the external environment.

489

490	Tyn supports protein clearance from the embryonic trachea
491	The deposition, assembly, and chemical modification of fibrous aECM
492	consisting of ZP proteins and chitin in the lumen of tracheal tubules are
493	essential for proper regulation of the tube diameter and length [17,21,36-38] .
494	Once the tracheal tubules reach their final shape, the luminal aECM is
495	degraded and replaced by gas prior to larval hatching. A massive wave of
496	endocytosis then removes aECM components into the tracheal cells [33]. At
497	stage 16, prior to this endocytosis wave, 150-500-nm thick cuticle layers
498	develop on the apical surface of tracheal cells [34]. How the degraded luminal
499	aECM is then absorbed efficiently by the tracheal cells through the physical
500	barrier of the cuticles has not been understood. Here, using TEM we observed
501	pore-like structures, which we called "taenidial channels" (TCs), in the inter-
502	taenidial fold region of the tracheal cuticle. The internal surface of the TC was

Itakura et al. 2018-11-21

503	electron-dense and continuous with the envelope layer of the tracheal cuticles,
504	suggesting that it was part of the cuticular envelope. The TCs were abnormal in
505	the tyn mutants at the time of the endocytosis wave. We hypothesize that the
506	TC is the channel that permits the passage of materials from the luminal space
507	to the plasma membrane for their efficient endocytic uptake, and that the
508	malformation of TCs in the tyn mutants resulted in reduced efficiencies in
509	endocytosis and the clearance of luminal materials.
510	The tyn mutations also delayed and/or inhibited the gas filling of the tracheal
511	system. Although the nature of the gases first appearing in the lumen and the
512	mechanism of gas generation are still not understood, one major hypothesis is
513	that the cavitation forms from gas-saturated luminal liquid on the lipid-covered
514	hydrophobic surface of the cuticle [39,40] . Organic substances remaining in the
515	lumen of tyn mutant trachea would reduce the saturation level of gases due to a
516	salting-out effect [41]. Inefficient closure of the tracheal tubule due to defective
517	posterior spiracle formation would further delay gas saturation in the tracheal

Itakura et al. 2018-11-21

518	lumen [19]. These two mechanisms could collectively inhibit the tracheal gas
519	generation in <i>tyn</i> mutants.
520	In the epidermis of insects including Galleria, Tenebrio, Tribolium, and
521	Drosophila the pore canal (PC) structure runs vertically through the cuticle
522	layers and was proposed to have a role in wax secretion [42-44] . Similar
523	structures are also described in crustaceans [45]. It will be interesting to
524	determine if the PC has any similarity to the tracheal TC described in this work.
525	The evolutionarily conserved tyn gene would be a good starting point for further
526	investigations into the structural and functional characterization of the PC and
527	TC.
528	
529	Author Contributions
530	Y.I. and S.H. conceived the project and designed the experiments. Y.I. and S.I.
531	obtained the experimental data with help from H.W. Y.I. and S.H. analyzed the
532	data and wrote the manuscript.

533

Itakura et al. 2018-11-21

534 Acknowledgements

- 535 We thank the Japan National Institute of Genetics and Bloomington Stock
- 536 Center for providing fly stocks. We also thank Y. Takahashi and S. Yonemura
- 537 (RIKEN) for generously providing their expert advice and reagents and for
- allowing us to use their equipment for EM techniques. We are also grateful to T.
- 539 Nishimura (RIKEN) and members of the Hayashi laboratory for helpful
- 540 comments. This work was supported in part by "Initiative for the
- 541 implementation of the diversity research environment" from MEXT JAPAN.
- 542

543 Competing interests

544 The authors declare no competing or financial interests.

Itakura et al. 2018-11-21

545 References

546 1. Charkoudian N. Skin Blood Flow in Adult Human Thermoregulation: How 547 It Works, When It Does Not, and Why. Mayo Clinic Proceedings. Elsevier; 548 2003;78: 603-612. doi:10.4065/78.5.603 549 2. Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the 550 skin. Nature. Nature Publishing Group; 2007;445: 858-865. 551 doi:10.1038/nature05662 552 3. Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochimica et Biophysica Acta (BBA) - Biomembranes. Elsevier; 553 2006;1758: 2080-2095. doi:10.1016/j.bbamem.2006.06.021 554 555 4. Fluhr JW, Mao-Qiang M, Brown BE, Wertz PW, Crumrine D, Sundberg 556 JP, et al. Glycerol Regulates Stratum Corneum Hydration in Sebaceous 557 Gland Deficient (Asebia) Mice. Journal of Investigative Dermatology. 558 Elsevier; 2003;120: 728-737. doi:10.1046/j.1523-1747.2003.12134.x 559 5. Smith KR, Thiboutot DM. Thematic review series: Skin Lipids. Sebaceous 560 aland lipids: friend or foe? J Lipid Res. American Society for Biochemistry 561 and Molecular Biology; 2008;49: 271-281. doi:10.1194/jlr.R700015-562 JLR200 563 Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic 6. 564 dermatitis. Nat Rev Dis Primers. Nature Publishing Group; 2018;4: 1. 565 doi:10.1038/s41572-018-0001-z 566 Moussian B, Seifarth C, Müller U, Berger J, Schwarz H. Cuticle 7. 567 differentiation during Drosophila embryogenesis. Arthropod Struct Dev. 568 2006;35: 137-152. doi:10.1016/j.asd.2006.05.003 569 8. Bork P, Sander C. A large domain common to sperm receptors (Zp2 and 570 Zp3) and TGF-beta type III receptor. FEBS Lett. 1992;300: 237–240. 571 Jovine L, Darie CC, Litscher ES, Wassarman PM. Zona pellucida domain 9.

Itakura et al. 2018-11-21

572 573		proteins. Annu Rev Biochem. 2005;74: 83–114. doi:10.1146/annurev.biochem.74.082803.133039
574 575 576 577	10.	Jovine L, Qi H, Williams Z, Litscher E, Wassarman PM. The ZP domain is a conserved module for polymerization of extracellular proteins. Nature Cell Biology. Nature Publishing Group; 2002;4: 457–461. doi:10.1038/ncb802
578 579 580	11.	Plaza S, Chanut-Delalande H, Fernandes I, Wassarman PM, Payre F. From A to Z: apical structures and zona pellucida-domain proteins. Trends Cell Biol. 2010;20: 524–532. doi:10.1016/j.tcb.2010.06.002
581 582 583 584	12.	Jaźwińska A, Affolter M. A family of genes encoding zona pellucida (ZP) domain proteins is expressed in various epithelial tissues during Drosophila embryogenesis. Gene Expression Patterns. 2004;4: 413–421. doi:10.1016/j.modgep.2004.01.003
585 586 587 588	13.	Fernandes I, Chanut-Delalande H, Ferrer P, Latapie Y, Waltzer L, Affolter M, et al. Zona Pellucida Domain Proteins Remodel the Apical Compartment for Localized Cell Shape Changes. Developmental Cell. 2010;18: 64–76. doi:10.1016/j.devcel.2009.11.009
589 590 591 592	14.	Prout M, Damania Z, Soong J, Fristrom D, Fristrom JW. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. Genetics. Genetics Society of America; 1997;146: 275– 285.
593 594 595 596	15.	Wilkin MB, Becker MN, Mulvey D, Phan I, Chao A, Cooper K, et al. Drosophila dumpy is a gigantic extracellular protein required to maintain tension at epidermal-cuticle attachment sites. Curr Biol. 2000;10: 559– 567.
597 598 599	16.	Jaźwińska A, Ribeiro C, Affolter M. Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nature Cell Biology. Nature Publishing Group; 2003;5: 895–901.

Itakura et al. 2018-11-21

600 doi:10.1038/ncb1049

601 17. Dong B, Hannezo E, Hayashi S. Balance between apical membrane 602 growth and luminal matrix resistance determines epithelial tubule shape. 603 Cell Rep. 2014;7: 941-950. doi:10.1016/j.celrep.2014.03.066 604 18. Ray RP, Matamoro-Vidal A, Ribeiro PS, Tapon N, Houle D, Salazar-605 Ciudad I, et al. Patterned Anchorage to the Apical Extracellular Matrix 606 Defines Tissue Shape in the Developing Appendages of Drosophila. Developmental Cell. 2015;34: 310-322. doi:10.1016/j.devcel.2015.06.019 607 608 19. Wang Y, Berger J, Moussian B. Trynity models a tube valve in the 609 Drosophila larval airway system. Dev Biol. 2018;437: 75-83. 610 doi:10.1016/j.ydbio.2018.02.019 611 20. Bourbon H-M, Gonzy-Treboul G, Peronnet F, Alin M-F, Ardourel C, 612 Benassayag C, et al. A P-insertion screen identifying novel X-linked 613 essential genes in Drosophila. Mech Dev. 2002;110: 71-83. 614 Luschnig S, Bätz T, Armbruster K, Krasnow MA. serpentine and 21. 615 vermiform encode matrix proteins with chitin binding and deacetylation 616 domains that limit tracheal tube length in Drosophila. Curr Biol. 2006;16: 617 186-194. doi:10.1016/j.cub.2005.11.072 618 22. Magie CR, Pinto-Santini D, Parkhurst SM. Rho1 interacts with p120ctn 619 and alpha-catenin, and regulates cadherin-based adherens junction 620 components in Drosophila. Development. 2002;129: 3771–3782. 621 23. Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings 622 AM, et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-623 directed repair in Drosophila. Genetics. Genetics; 2014;196: 961-971. 624 doi:10.1534/genetics.113.160713 625 24. Farboud B, Meyer BJ. Dramatic enhancement of genome editing by 626 CRISPR/Cas9 through improved guide RNA design. Genetics. Genetics; 2015;199: 959–971. doi:10.1534/genetics.115.175166 627

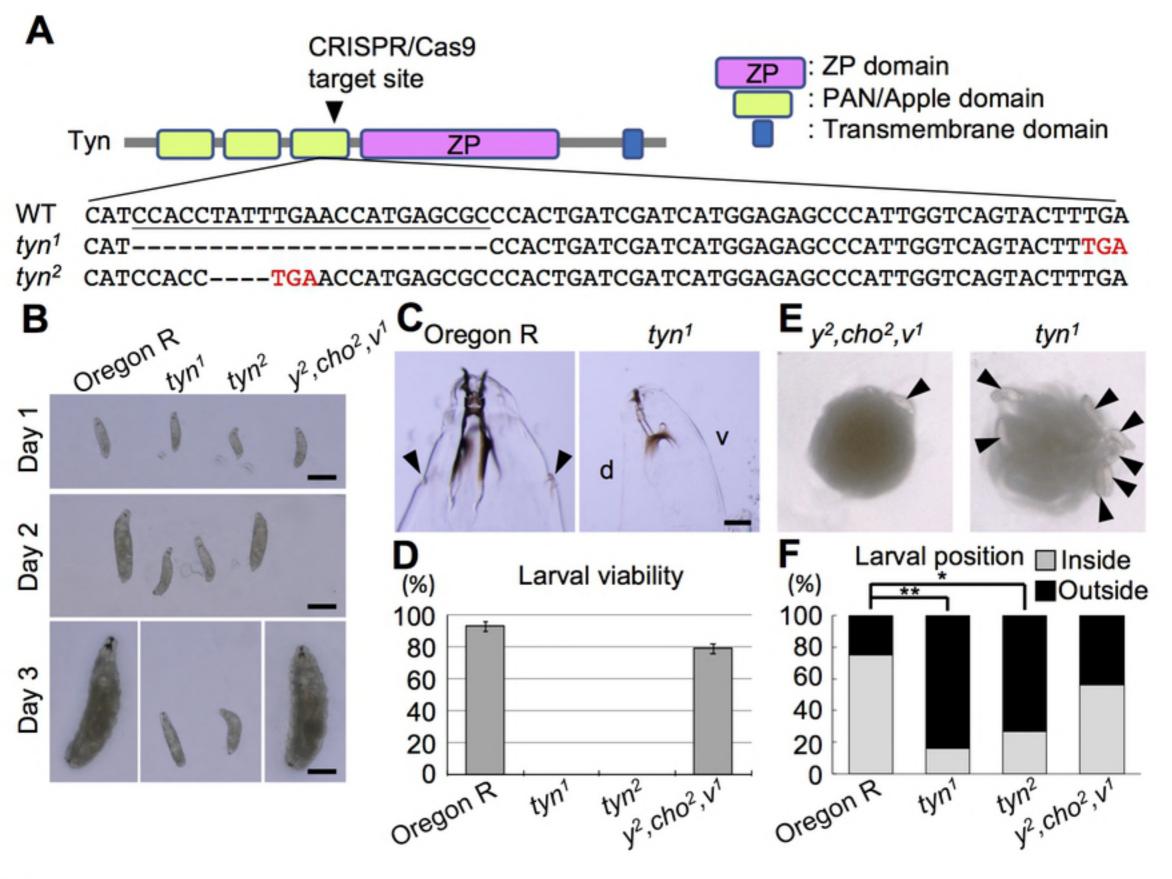
Itakura et al. 2018-11-21

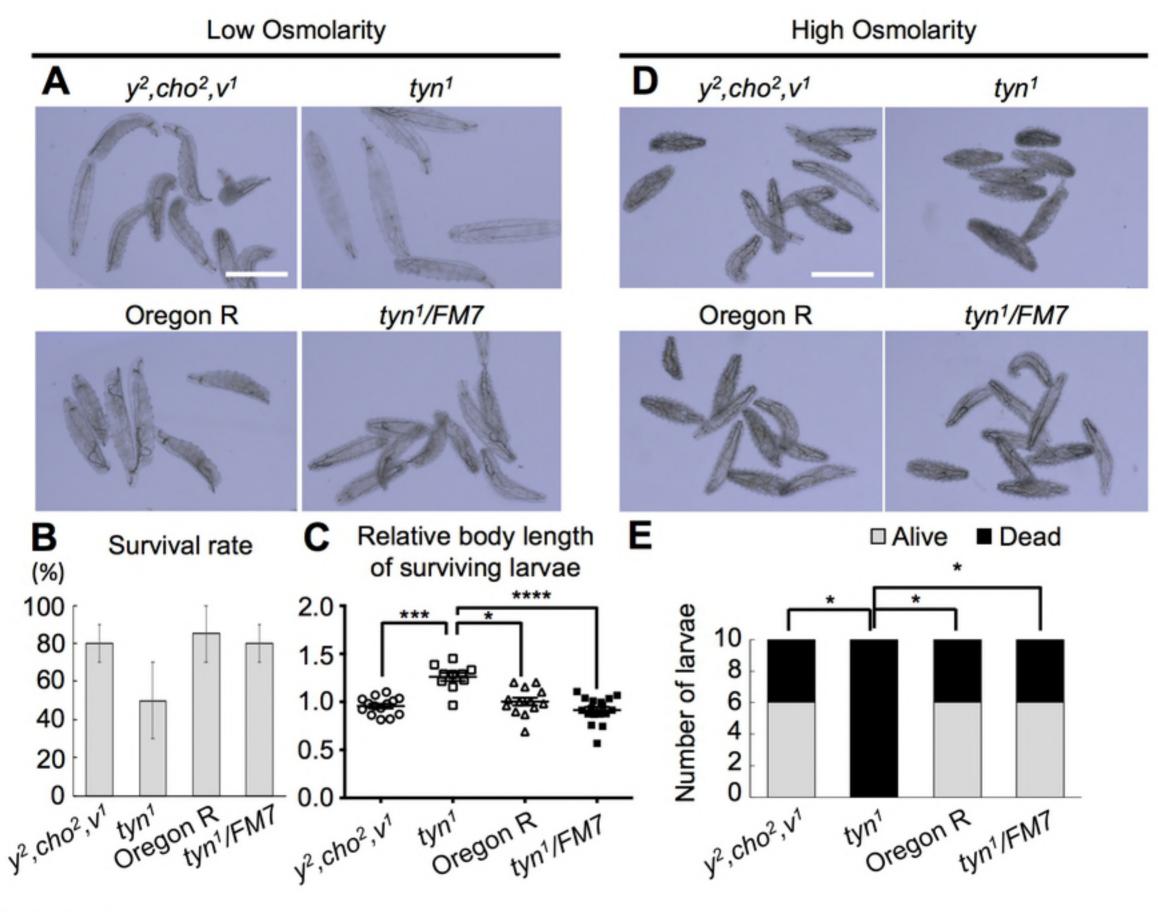
628 629 630 631	25.	Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, Grunwald DJ, et al. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells. Wiley/Blackwell (10.1111); 2013;18: 450–458. doi:10.1111/gtc.12050
632 633 634 635 636	26.	Zuber R, Norum M, Wang Y, Oehl K, Gehring N, Accardi D, et al. The ABC transporter Snu and the extracellular protein Snsl cooperate in the formation of the lipid-based inward and outward barrier in the skin of Drosophila. Eur J Cell Biol. 2018;97: 90–101. doi:10.1016/j.ejcb.2017.12.003
637 638 639	27.	Jones TA, Metzstein MM. Examination of Drosophila larval tracheal terminal cells by light microscopy. J Vis Exp. 2013;: e50496–e50496. doi:10.3791/50496
640 641 642 643	28.	Tautz D, Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989;98: 81–85.
644 645 646 647	29.	McDonald KL, Sharp DJ, Rickoll W. Transmission electron microscopy of thin sections of Drosophila: conventional chemical fixation of embryos using trialdehyde. Cold Spring Harb Protoc. Cold Spring Harbor Laboratory Press; 2012;2012: 516–520. doi:10.1101/pdb.prot068411
648 649 650 651	30.	Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. American Association for the Advancement of Science; 2012;337: 816–821. doi:10.1126/science.1225829
652 653 654	31.	Kondo S, Ueda R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics. Genetics; 2013;195: 715–721. doi:10.1534/genetics.113.156737
655	32.	Moussian B, Schwarz H. Preservation of plasma membrane ultrastructure

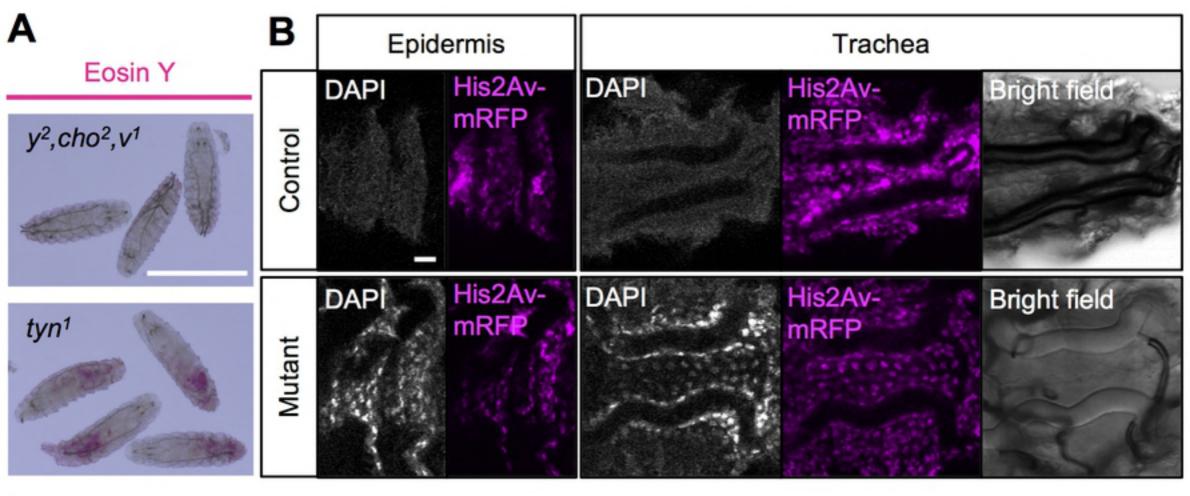
37

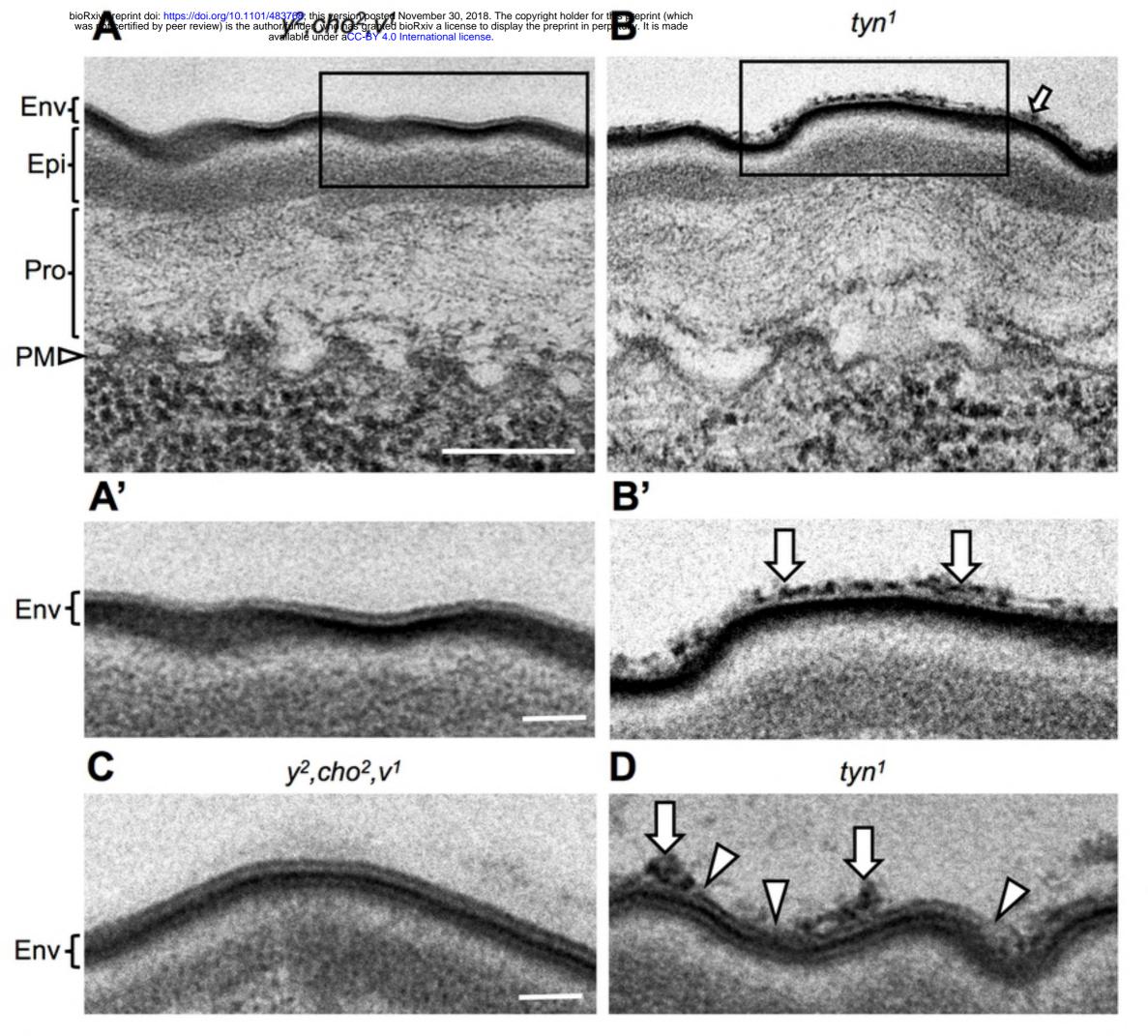
Itakura et al. 2018-11-21

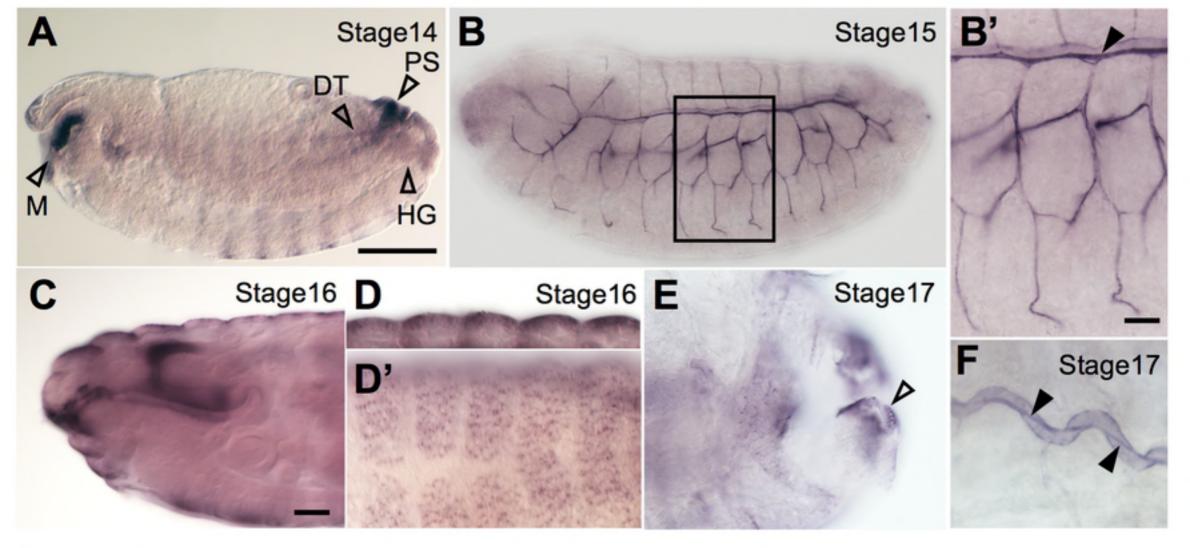
656		in Drosophila embryos and larvae prepared by high-pressure freezing and
657		freeze-substitution. Dros. Inf. Serv. 2010; 93, 215-219.
658	33.	Tsarouhas V, Senti K-A, Jayaram SA, Tiklová K, Hemphälä J, Adler J, et
659		al. Sequential pulses of apical epithelial secretion and endocytosis drive
660		airway maturation in Drosophila. Developmental Cell. 2007;13: 214–225.
661		doi:10.1016/j.devcel.2007.06.008
662	34.	Öztürk-Çolak A, Moussian B, Araújo SJ, Casanova J. A feedback
663		mechanism converts individual cell features into a supracellular ECM
664		structure in Drosophila trachea. eLife. eLife Sciences Publications
665		Limited; 2016;5: 179. doi:10.7554/eLife.09373
666	35.	Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C.
667		Involvement of chitin in exoskeleton morphogenesis in Drosophila
668		melanogaster. J Morphol. Wiley-Blackwell; 2005;264: 117–130.
669		doi:10.1002/jmor.10324
670	36.	Wang S, Jayaram SA, Hemphälä J, Senti K-A, Tsarouhas V, Jin H, et al.
671		Septate-junction-dependent luminal deposition of chitin deacetylases
672		restricts tube elongation in the Drosophila trachea. Curr Biol. 2006;16:
673		180–185. doi:10.1016/j.cub.2005.11.074
674	37.	Tonning A, Hemphälä J, Tång E, Nannmark U, Samakovlis C, Uv A. A
675		transient luminal chitinous matrix is required to model epithelial tube
676		diameter in the Drosophila trachea. Developmental Cell. 2005;9: 423–
677		430. doi:10.1016/j.devcel.2005.07.012
678	38.	Dong B, Hayashi S. Shaping of biological tubes by mechanical interaction
679		of cell and extracellular matrix. Curr Opin Genet Dev. 2015;32: 129–134.
680		doi:10.1016/j.gde.2015.02.009
681	39.	Jaspers MHJ, Pflanz R, Riedel D, Kawelke S, Feussner I, Schuh R. The
682		fatty acyl-CoA reductase Waterproof mediates airway clearance in
683		Drosophila. Dev Biol. 2014;385: 23-31. doi:10.1016/j.ydbio.2013.10.022


Itakura et al. 2018-11-21


684 685	40.	Wigglesworth VB. Surface Forces in the Tracheal System of Insects. J Cell Sci. 1953;s3: 507–522.
686	41.	Onda K, Sada E, Kobayashi T, Kito S, Ito K. Salting-out parameters of
687		gas solubility in aqueous salt solutions. J. Chem. Eng. Jpn. The Society of
688		Chemical Engineers, Japan; 1970;3: 18–24. doi:10.1252/jcej.3.18
689	42.	Locke M. Pore canals and related structures in insect cuticle. J Biophys
690		Biochem Cytol. The Rockefeller University Press; 1961;10: 589–618.
691	43.	Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. Tribolium castaneum
692		RR-1 cuticular protein TcCPR4 is required for formation of pore canals in
693		rigid cuticle. Riddiford LM, editor. PLoS Genet. Public Library of Science;
694		2015;11: e1004963. doi:10.1371/journal.pgen.1004963
695	44.	Pesch Y-Y, Riedel D, Patil KR, Loch G, Behr M. Chitinases and Imaginal
696		disc growth factors organize the extracellular matrix formation at barrier
697		tissues in insects. Sci Rep. Nature Publishing Group; 2016;6: 18340.
698		doi:10.1038/srep18340
699	45.	Seidl B, Huemer K, Neues F, Hild S, Epple M, Ziegler A. Ultrastructure
700		and mineral distribution in the tergite cuticle of the beach isopod Tylos
701		europaeus Arcangeli, 1938. J Struct Biol. 2011;174: 512–526.
702		doi:10.1016/j.jsb.2011.03.005
703		
704	Sup	plementary Figure 1. Abnormal larval behavior in response to food supply.
705	Yeas	st paste was placed at the center of the well at time 0. (Upper) The numbers
706	of y ²	, cho^2 , v^1 larvae inside and outside the paste increased and decreased,
707	resp	ectively, meaning that they gradually moved into the yeast paste.


39


Itakura et al. 2018-11-21


708	Approximately 20% of the larvae were peripheral to the yeast paste at any time
709	point. (Lower) tyn^1 larvae outside the paste decreased similarly to y^2 , cho^2 , v^1 ,
710	indicating that the <i>tyn¹</i> larvae could sense and move toward the food. However,
711	more larvae tended to stay at the periphery of the food rather than entering it,
712	compared to the control.
713	
714	Supplementary Figure 2. Loss of posterior spiracle valve structures. Posterior
715	spiracles with enlarged views of the posterior tip (dotted-lined region) in the
716	lower right corner are shown for various genotypes (y^2 , cho^2 , v^1 , Oregon R, tyn^1 ,
717	<i>tyn</i> ² and their sibling controls). The yellow arrows indicate valve structures,

