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Abstract 

Cross frequency coupling is used intensively to study the cross talk between brain 

oscillations. In this paper we focus on a special type of frequency coupling between brain 

and body oscillations, which is reflected by the numerical ratio (r) between two frequencies 

(m and n; n > m). This approach is motivated by theoretical considerations indicating that an 

integer relationship (r = n/m = integer number) reflects coupling, whereas an irrational 

relationship (r = n/m = irrational number) reflects decoupling. We analyzed alpha frequency, 

heart rate, breathing frequency and spindle frequency from data collected by the SIESTA 

research group. Our results show a 1:4 frequency relationship between heart rate and 

breathing frequency both during wakefulness and sleep. During wakefulness we expected 

but did not find an integer relationship between alpha frequency and heart rate or alpha 

frequency and breathing frequency. During sleep, we observed an irrational relationship 

between spindle frequency and heart rate as well as spindle frequency and breathing 

frequency –suggesting decoupling.   
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1. Introduction 

Cross frequency coupling is well documented in numerous publications about brain 

oscillations (for reviews see e.g., Jensen & Colgin, 2007, Canolty & Knight, 2010; Palva & 

Palva, 2017), body oscillations (specifically heart rate variability; Acharya et al. 2007) as well 

as brain and body oscillations (see e.g. the ‘network physiology approach’, Bashan et al. 

2012, or studies focusing on specific oscillations, such as e.g., gastric waves and alpha, 

Richter et al. 2017). Physiologically, there are two well described coupling principles that 

govern brain and body oscillations. Amplitude (envelope) coupling between any frequencies 

m and n, where the phase of the slower frequency m modulates the envelope of the faster 

frequency n, and phase coupling between m and n. Amplitude and phase coupling differ with 

respect to at least the following two properties. 

 (i) Phase coupling requires a harmonic (integer) relationship, but amplitude coupling works 

for any m:n frequency ratio. This is a simple but interesting fact, showing that cross 

frequency phase coupling can be considered a ‘two step’ process: Two oscillations shift their 

frequencies (m, n) in a way that their ratio is an integer (r = m/n = integer number), which 

then, in a second step, invites phase coupling. On the other hand, if the ratio produces an 

irrational number (r = m/n = irrational number), stable phase coupling is disabled (Pletzer et 

al. 2010; Roopun et al. 2008). As an illustration, let us assume three sine oscillations, one 

with 10 Hz, another with 20 Hz, and a third with g*10 = 16.18… Hz, where g is an irrational 

number, termed golden mean (g = 1.618….). Let us further assume that the positive peaks of 

the three oscillations are exactly aligned to each other at time t(0). Then, the positive peaks 

of the 10 Hz and 20 Hz oscillations will meet regularly, at any second peak of the faster and 

at each peak of the slower oscillation. This means that the two harmonically related 

oscillations are strictly phase coupled (in this example with zero phase lag). In contrast, the 

positive peaks of the 10 Hz and the g-related 16.18… Hz oscillations will never meet at any 

time point t(i) in the future (for a mathematical proof and analysis see Pletzer et al., 2010). 

The g-related oscillations are de-coupled in a way that their positive peaks vary together in 

an irregular pattern over time. Pletzer et al. (2010) have also shown that this pattern is most 

irregular for g, meaning that in this sense g is the ‘most irrational’ number.  

(ii) Phase coupling operates at the temporal precision of the faster oscillation, but amplitude 

coupling operates at the temporal precision of the slower oscillation. The reason is that the 
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excitatory time window of the faster oscillation – which can be driven by the phase of the 

slower oscillation - is smaller than that of the slower oscillation. This property makes cross 

frequency phase coupling an interesting candidate for cognitive top down control, which is 

closely associated with widespread and long range brain synchronization (for an empirical 

analysis see e.g., Siebenhühner et al. 2016). The hypothesis is that slow oscillations (in the 

delta, theta, alpha and beta frequency range) play an important role for the downstream 

control of neuronal synchronization in anatomically distributed neural circuits (Fries, 2015; 

Palva & Palva, 2017) in a way that the phase of a slow oscillation drives the phase of a fast 

oscillation (particularly in the gamma frequency range).  

Based on the specific properties (and assumed functions) of cross frequency phase coupling, 

Klimesch (2013; 2018) has suggested that the center frequencies of traditional EEG 

frequency bands are harmonically related and form a binary hierarchy of frequencies (delta = 

2.5 Hz, theta = 5 Hz, alpha = 10 Hz, beta = 20 Hz, gamma1 = 40 Hz), in which the neighboring 

higher frequency always is twice as fast than its slower neighbor. It is also assumed that this 

harmonic frequency architecture allows optimal brain communication that typically appears 

during cognitive processing demands (see e.g., Palva & Palva, 2017). Most importantly, 

Klimesch (2018) has reviewed evidence showing that this binary hierarchy extends ‘down’ to 

and allows to predict the frequencies of body oscillations. If we go down this binary 

hierarchy from e.g., delta with 2.5 Hz, we obtain the following slower frequencies: 1.25 Hz, 

0.625 Hz, 0.3125 Hz etc. These frequencies can be associated with heart rate (1.25 Hz), the 

frequency of muscle contraction supporting inhaling and exhaling (0.625 Hz), and breathing 

frequency (0.3125 Hz).  

In this paper we test predictions of the binary hierarchy brain body oscillation theory as 

suggested by Klimesch (2013; 2018). We ask whether the frequency ratios between brain 

and body oscillations, such as alpha frequency (AF), heart rate (HR) and breathing frequency 

(BF) vary arbitrarily between subjects or are numerically related to each other, reflecting a 

binary hierarchy of frequencies. An additional question we ask is whether the expected 

frequency architecture between brain and body oscillations changes during sleep. To 

investigate this latter question, we relate sleep spindle frequency (SF), to HR and BF. 

The following hypotheses can be derived from the binary hierarchy theory: For AF : HR, AF : 

BF and HR : BF, we expect frequency ratios of r = 8, 32, and 4 respectively. Or in other words, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 30, 2018. ; https://doi.org/10.1101/484097doi: bioRxiv preprint 

https://doi.org/10.1101/484097
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

Brain-Body Oscillations 

AF is three binary steps (i.e., 23 = 8) faster than HR and 5 binary steps (25 = 32) faster than BF, 

whereas HR is two binary steps faster (i.e., 22 = 4) than BF. Studies on mean HR in adults 

(during wakefulness) are in line with the predicted r = 8, because AF (with a mean value 

around 10 Hz) is about 8 times faster than HR with a mean value around 1.25 Hz (i.e., 75 

beats per minute ; e.g. Shaffer et al. 2014). BF shows multiple peaks, with a prominent peak 

at about 0.30 Hz (e.g., Perlitz et al. 2004), which is close to the predicted frequency of about 

0.31. Thus, the expected ratio between AF and BF equals 32 and the expected ratio between 

HR and BF equals 4.  

For sleep, we can generate further hypotheses that refer to decoupling between brain and 

body oscillations. The general reason for this assumption is that during sleep, no task related 

coordination between body actions (such as movements) and brain actions (comprising a 

variety of different cognitive tasks) is required. We further assume that this situation is 

characterized by a lack of body awareness. Research on the heartbeat evoked potential 

(HEP; an evoked potential, calculated time locked to the R peak; first reported in Schandry et 

al., 1986), which reflects an interesting aspect of body-brain communication, provides 

empirical backing for this assumption. During alert wakefulness, the magnitude of the HEP 

response appears to be associated with interoceptive and sensory awareness (Pollatos & 

Schandry, 2004; Montoya et al., 1993; Schandry & Weitkunat, 1990; Park et al. 2014; Park & 

Tallon-Baudry, 2014). These findings have led Lechinger et al. (2015) to hypothesize that the 

magnitude of the HEP response will decrease in sleep. Indeed, the results showed that HEP 

amplitudes decreased with sleep depth. This study also showed that during wakefulness HR 

was significantly correlated with AF, but with SF during sleep. The correlation was strongest 

during wakefulness and declined with increasing sleep depth, suggesting decoupling of brain 

oscillations from HR. Based on these findings, we expect an irrational number to be 

produced by the ratios (r = m/n = irrational number) between SF on the one hand and HR 

and BF on the other hand. Mean SF has a frequency of about 13 Hz (for a review see e.g., De 

Gennaro & Ferrara, 2003) and a decoupling with HR can be described by SF = g* HR * x. 

Solving for x shows a value around 8, if we assume that HR drops to around 1 Hz during 

sleep. Most interestingly, x = 8, represents a binary multiple (23), which according to the 

binary hierarchy theory, represents a decoupled frequency that is 3 binary steps faster than 

HR. Thus, in a situation requiring decoupling instead of coupling, the predicted dominant 

brain frequency shifts from alpha to the spindle frequency range. For body oscillations, there 
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is no reason to assume decoupling during sleep, because body functions must be 

coordinated during wakefulness and sleep as well. Thus, for sleep, we still expect a 1:4 ratio 

for HR : BF. If the ratio between HR and BF remains constant and does not change during 

sleep while SF shifts towards the predicted irrational ratio (of g*HR*8 = 12.94) this also 

means that the ratio between SF : BF becomes irrational with a predicted value of  g*HR*32 

= 51.78. 

In the present study, we have analyzed AF, HR, BF and SF from data which were collected by 

the SIESTA project (Klösch et al. 2001). In summarizing our hypotheses, we expect binary 

multiple frequency ratios for AF : HR, AF : BF and HR : BF during wakefulness, irrational ratios 

for SF : HR and SF : BF during sleep, but a constant binary multiple ratio for HR : BF. 

2. Methods 

 

Subjects 

We used recordings and demographic data from the SIESTA project (Klösch et al. 2001), 

which was established to provide a data base for sleep studies. Our sample consisted of 174 

healthy participants (94 females) aged 20 to 95 years (M = 51.2, SD = 19.6), all of whom 

provided written informed consent to the respective institute in which their data was 

collected. 

 

Recordings  

Electroencephalogram (EEG), electrocardiogram (ECG), and airflow (from a respiratory belt) 

were simultaneously recorded over 2 sessions (2 nights), each around 8 hours long. During 

recordings, participants were in a supine position with their eyes closed, intending to sleep. 

For the current study, we extracted data from 3 time periods based on R&K consensus sleep 

scoring of the EEG data (Anderer et al., 2005). These periods were wakefulness periods 

immediately prior to sleep, sleep stage 2, and sleep stage 4. We extracted the longest 

consecutive recording within each period from either night and took the middle 4 minutes of 

recording within the continuous recording from wakefulness and sleep stage 4, and the 

middle 10 minutes from sleep stage 2. We excluded participants with less than 2 minutes of 

maximum consecutive recording in a period, from further analyses in the respective period. 

In the wakefulness period, we were left with 140 participants (75 females; Mage = 52, SD = 
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19.9, range = [2 90]). In sleep stage 2, we were left with 172 participants (94 females; Mage = 

50.9, SD = 19.6, range = [20 95]). In sleep stage 4, we were left with 100 participants (59 

females; Mage = 43.5, SD = 18.9, range = [20 95]). 

 

Alpha and sleep spindle frequency analysis 

We analyzed the EEG data with Matlab code and the Fieldtrip toolbox (Oostenveld et al., 

2011). We averaged data from 2 posterior EEG electrodes (O1 and O2). We then computed 

the derivative of the time-domain signal which results in removing the 1/f component of the 

frequency-domain signal and enables to better detect peaks nested on the 1/f background. 

We calculated power spectra based on 1 s segments of data, multiplied with a Hann taper of 

1s length, and zero-padded to 10 s. Zero-padding to 10s results in our desired frequency 

resolution of 0.1 Hz. This approach has been used in studies aiming to detect relatively small 

differences in peak frequencies (e.g. Haegens et al., 2014). We then applied a Fast-Fourier 

Transform (FFT) to calculate power between 7 and 14 Hz (AF range) for the wakefulness 

period and between 11 and 15 Hz for the sleep periods (SF range).  

Finally we detected the peak with the highest power using the Matlab function “findpeaks”. 

We excluded the cases where there were no peaks. 

 

Heart rate analysis 

We used the maximal overlap discrete wavelet transform (MODWT) to enhance the R peaks 

in the ECG waveform. First, we decomposed the ECG waveform down to level 5 using the 

Matlab default 'sym4' wavelet. Then, we reconstructed a frequency-localized version of the 

ECG waveform using only the wavelet coefficients at scales 4 and 5, which correspond to the 

frequency pass-bands known to maximize QRS energy ([11.25  22.5] and [5.625 11.25], 

respectively; Elgendi et al., 2010). Next we took the squared absolute values of the signal 

approximation built from the wavelet coefficients and used Matlab’s “findpeaks” to detect 

the R peaks. This wavelet transform-based method has been shown to efficiently distinguish 

the QRS complex from high P or T waves, noise, baseline drift, and artifacts (Li et al., 1995).  

Finally, we counted the number of R peaks in 30s segments of data, averaged the count 

across segments, and divided by 30 to obtain a value in Hz.  

 

Breathing frequency analysis 
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We analyzed the airflow data with Matlab code and the Fieldtrip toolbox. We used the 

derivative of the time-domain signal to calculate power spectra based on 30 s segments of 

data, multiplied with a Hann taper of 30s length, and zero-padded to 300 s to achieve a 

0.0033 Hz frequency resolution. We then applied a FFT to compute power between a range 

of 0.05 and 0.5 Hz. 

Due to the appearance of multiple breathing rhythms for each participant in the wakefulness 

data, we narrowed down the frequency range in which to detect peaks in the breathing 

power spectra. Based on the individual’s heart rate (HRi), we calculated a frequency range 

with a lower limit of ((HRi/2)*g)/r and an upper limit of ((HRi*2)/g)/r where g is the golden 

mean (1.618…) and r is the hypothesized HR : BF frequency ratio of 4. For example, for an 

individual with HRi = 1 Hz, the range would be 0.202 to 0.309 Hz. According to the binary 

hierarchy brain body oscillation theory (Klimesch, 2018), decoupling between HR and BF 

would occur at the range’s limits. To include the possibility of obtaining a ratio that would 

indicate decoupling, we further widened our search-space range by 0.02 Hz at each end. So 

for an individual with HRi = 1 Hz, we looked for BF peaks within the range of 0.182 to 0.329 

Hz.  

Finally, we used Matlab’s “findpeaks” to detect the BF peak with the highest power within 

that range. The sleep data did not exhibit multiple breathing frequencies (“findpeaks” always 

returned either 0 or 1 peak per participant), so we simply used “findpeaks” to detect the BF 

peaks within the 0.05 to 0.5 range during sleep stages 2 and 4. We excluded the cases where 

there were no peaks. 

 

Statistical analyses 

After excluding participants based on the aforementioned criteria, we were left with 109 

participants (59 females; Mage = 52.5, SD = 20.6, range = [20 95]) during wakefulness. During 

sleep stage 2, we were left with 124 participants (63 females; Mage = 52, SD = 19.7, range = 

[20 95]). During sleep stage 4, we were left with 73 participants (42 females; Mage = 45.2, SD 

= 19.7, range = [20 95]). We used these data for all statistical analyses. 

 We had three recording periods (wakefulness, sleep stage 2, and sleep stage 4) and three 

dependent measures in each (HR, BF, AF/SF) which resulted in 9 sets of frequency ratios to 

test our 9 hypotheses (see Introduction). To test the empirically obtained ratios against the 
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hypothesized ones, we first used two-sided t-tests, expecting not to reject the null 

hypotheses (ie to obtain p-values greater than .025). Next, we used the ‘two one-sided tests’ 

(TOST), an equivalence test whose null hypothesis is defined as an effect large enough to be 

deemed interesting, specified by an equivalence bound. We set these equivalence bounds 

for each hypothesized ratio (r) as (r/2)*g for the lower bound, and (r*2)/g for the upper 

bound. The rationale is that at these limits, a coupling (binary multiple) ratio would become 

a decoupling (g-related) ratio and vice versa. We expected to reject the null hypotheses of 

the TOST (both p less than 0.025). Finally, we calculated 95% confidence intervals around the 

means of each of the 9 distributions using bootstrap sampling from the empirical ratios with 

10,000 iterations. We expected that our hypothesized ratios lie within these confidence 

intervals. We plotted the data using a modified ‘raincloud’ script (Allen et al., 2018). 

Results 

In this study, we aimed to test the hypotheses generated by the binary hierarchy brain body 

oscillation theory (Klimesch 2013, 2018). These hypotheses relate to the ratios (r) obtained 

from dividing the peak frequencies of brain and body oscillations. We extracted 1 peak 

frequency value per participant, from each of the EEG, ECG, and airflow (breathing) signals, 

during periods of wakefulness, sleep stage 2, and sleep stage 4. This totaled 9 frequency 

ratios, for which we had a hypothesized mean value each.  During wakefulness, the expected 

frequency ratio for AF : HR is r=8, that of AF : BF is r=32, and that of HR : BF is r=4. During 

both sleep stages, the expected frequency ratio of SF : HR is r=8*g=12.94, that of SF : BF is 

r=32*g=51.78, and that of HR : BF is r=4. Figures 1-3 summarize the obtained results.  

For the AF : HR and SF : HR ratios (Figure 1),  we did not find the predicted ratio of 8 during 

wakefulness (M=9.61, SD=1.85, CI = [9.26 - 9.99], t(108) = 6.46, p<.001, pTOST=.78), but we did 

find the predicted ratio of 12.94 during both sleep stage 2 (M=13.06, SD=1.93, CI = [12.72 – 

13.37],  t(123)=0.5, p=.97, pTOST<.001) and sleep stage 4 (M=12.8, SD=1.69, CI = [12.43 – 

13.24], t(72)=-0.52, p=.97, pTOST<.001).  

For the AF : BF and SF : BF ratios (Figure 2), we did not find the predicted ratio of 32 during 

wakefulness (M=38.07, SD=7.85, CI = [36.63 – 39.64], t(108)=5.72, p<.001, pTOST=.64), but we 

did find the predicted ratio of 51.78 during both sleep stage 2 (M=52.31, SD=7.72, CI = [50.96 
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– 53.59],  t(123)=0.59, p=.98, pTOST<.001) and sleep stage 4 (M=51.28, SD=7.47, CI = [49.45 – 

53.38], t(72)=-0.4, p=.99, pTOST<.001). 

For the HR : BF ratios (Figure 3), we found the predicted ratio of 4 during all stages of 

wakefulness (M=3.98, SD=0.46, CI = [3.89 -  4.06], t(108)=-0.34, p=.99, pTOST<.001), sleep 

stage 2 (M=4.03, SD=0.45, CI = [3.94 – 4.12],  t(123)=0.53, p=.98, pTOST<.001), and sleep stage 

4 (M=4.02, SD=0.45, CI = [3.91– 4.14], t(72)=-0.48, p=.98, pTOST<.001). 

In sum, we found supportive evidence for 7 out of our 9 hypotheses.   
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Figure 1. Distribution of peak frequency ratios of individual Alpha Frequency (AF) to Heart Rate (HR) 

during wakefulness (top panel, red), and Spindle Frequency (SF) to HR during sleep stage 2 (middle 

panel, purple) and sleep stage 4 (bottom panel, blue). Plots represent individual ratios (jittered dots), 

probability distribution, and box-plots (median and quartiles). Top: During wakefulness, mean AF : HR 

was 9.61, significantly different than the predicted coupling ratio of 8. Middle and Bottom: During 

sleep stage 2, mean SF : HR was 13.06, not significantly different than the predicted decoupling ratio 

of 12.94. Bottom: During sleep stage 4, mean SF : HR was 12.8, not significantly different than the 

predicted decoupling ratio of 12.94.  
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Figure 2. Distribution of peak frequency ratios of individual Alpha Frequency (AF) to Breathing 

Frequency (BF) during wakefulness (top panel, red), and Spindle Frequency (SF) to BF during sleep 

stage 2 (middle panel, purple) and sleep stage 4 (bottom panel, blue). Plots represent individual 

ratios (jittered dots), their probability distribution, and box-plots (median and quartiles). Top: During 

wakefulness, mean AF : BF was 38.1, significantly different than the predicted coupling ratio of 32. 

Middle and Bottom: During sleep stage 2, mean SF : BF was 52.3, not significantly different than the 

predicted decoupling ratio of 51.78. Bottom: During sleep stage 4, mean SF : BF was 51.3, not 

significantly different than the predicted decoupling ratio of 51.78.  
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Figure 3. Distribution of peak frequency ratios of individual Heart Rate (HR) to Breathing Frequency 

(BF) during wakefulness (top panel, red), sleep stage 2 (middle panel, purple) and sleep stage 4 

(bottom panel, blue). Plots represent individual ratios (jittered dots), their probability distribution, 

and box-plots (median and quartiles). Top: During wakefulness, mean HR : BF was 3.98, not 

significantly different than the predicted coupling ratio of 4. Middle and Bottom: During sleep stage 

2, mean HR : BF was 4.03, not significantly different than the predicted coupling ratio of 4. Bottom: 

During sleep stage 4, mean HR : BF was 4.02, not significantly different than the predicted coupling 

ratio of 4.  
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Discussion 

The binary hierarchy brain body oscillation theory (Klimesch, 2013, 2018) refers to two 

groups of predictions. (i) During alert wakefulness binary multiple frequency ratios are 

expected between brain and body oscillations (AF: HR, AF : BF) and body oscillations (HR : 

BF). (ii) During sleep, irrational ratios are expected between brain and body oscillations (SF: 

HR, SF : BF), but a binary multiple ratio for body oscillations (HR : BF). The findings of our 

study support all predictions for sleep but only one prediction (regarding the expected ratio 

of 1: 4 for HR : BF) for wakefulness. The observed ratios between AF : HR and AF : BF (of 9.61 

and 38.07) deviated significantly from the  predicted ratios (of 8 and 32).  We suspect that 

this negative finding is due to the nature of the sleep study from which the data were taken. 

Subjects were recorded while they were awake but with their eyes closed, intending to fall 

asleep. The wakefulness epochs of data were extracted from the period immediately 

preceding falling asleep. While people were physiologically awake, it is very likely that there 

was no active cognitive processing or movement during these periods, and that HR and BF 

had already dropped below the average values one would expect during active wakefulness. 

Inspection of mean HR (see Figures, right side) supports this interpretation. During 

wakefulness, HR (equaling 1.13 Hz) is only slightly faster than in stage 2 and stage 4 sleep, 

where HR drops to 1.04 Hz. Textbooks (e.g. Asharaya et al., 2007) and studies measuring 

mean HR in large samples (e.g. Shaffer et al. 2014) show higher values around 1.25 Hz during 

rest. It is possible that the observed ratios of 9.61 and 38.07 (for AF : HR and AF : BF) already 

reflect a shift towards the predicted irrational ratios of 12.94 and 51. 

We found that sleep spindle frequency is irrationally related to body oscillations (HR and BF), 

whereas the harmonic ratio between the two body oscillations remained constant 

throughout wakefulness and sleep. We argue that this finding reflects a situation where 

coupling between brain and body oscillations is suppressed, possibly reflecting decreased 

body awareness.                           

With respect to BF it is important to note that we observed multiple peaks in the spectra of 

the breathing data during wakefulness and selected only those peaks which fell within the 

frequency range predicted by HR. This means that during rest, multiple breathing 

frequencies were present, from which one frequency exhibits the predicted ratio of 4. During 
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sleep, however, all spectra exhibited one peak only. This suggests that coupling between HR 

and BF is stronger during sleep as compared to wakefulness.  

Multiple breathing frequencies were also reported in research carried out by Perlitz, 

Lambertz and colleagues. These authors report evidence for a ‘0.15 Hz’ rhythm (e.g., Perlitz 

et al., 2004, Lambertz & Langhorst, 1998; Lambertz et al., 2000) which can be observed 

primarily during periods of relaxation. Most importantly, Perlitz et al., (2004) have found that 

BF entrains to this 0.15 Hz rhythm at integer frequency ratios of 1:1, 2:1 or 1:2. Accordingly, 

BF exhibits a 1:1 or doubling/halving relationship relative to the 0.15 Hz rhythm with 

dominant frequencies at around 0.15 Hz, 0.30 Hz and 0.075 Hz (cf. Tab.1 in Perlitz et al. 

2004). These frequencies reflect binary ratios relative to HR (HR/4 = 0.313; HR/8 = 0.156; 

HR/16 = 0.078), and thus provide additional evidence for a binary hierarchy of oscillations, as 

suggested by Klimesch (2018). 

Taken together, the findings suggest that frequency ratios are sensitive measures, reflecting 

different frequency architectures that enhance or suppress coupling. For an empirical 

evaluation it is critical to define situations where one can predict coupling or de-coupling. 

For the active brain and body, coupling and de-coupling may occur transiently, for short time 

periods, and for selected oscillations only. Thus, it is methodologically difficult to detect 

frequency coupling or de-coupling of brain-body oscillations during active task performance.  

However, sleep - and deep sleep in particular – provides an almost ideal situation for the 

investigation of our hypotheses, because of the complete lack of external task demands and 

because brain and body oscillations are modulated endogenously over longer time periods. 

We conclude that the observed frequency ratios between SF and HR, and SF and BF, provide 

good evidence for decoupling between brain and body oscillations during sleep. 
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