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Abstract

Hematopoiesis is a dynamic process involving the up- and down-regulation of genes, as well as feed-
back loops that stimulate or suppress circulating cytokine concentrations. More complete pictures of the
gene regulatory networks that control the production of the blood system have emerged with the advent
of single-cell sequencing techniques and refinements to the capabilities of immunoassays. However, in-
formation about the regulatory networks of cytokines is still lacking. A novel mathematical technique
(convergent cross-mapping, or CCM) allows for the extraction of causal relationships from data, which is
of crucial importance for understanding these networks. To reconstruct the cytokine networks within the
hematopoietic system we measured the concentrations of 62 cytokines, platelets, and thrombopoietin from
an individual with cyclic thrombocytopenia (regular oscillations in the megakaryocytes and platelets) over
84 days. Using CCM, we identified 61 previously unreported cytokine relationships. Our approach is the
first broad-scale investigation into causal relationships between cytokines in the blood and suggests a new
paradigm for understanding how dynamic regulation occurs during hematopoiesis.

Introduction

The task of producing all of the body’s blood cells is a monumental one, given that some 10! blood cells
are derived from the hematopoietic stem cells (HSCs) every day through proliferation, differentiation, and
maturation events. These processes are mediated by a cascade of cytokines responsible for amplifying
or suppressing the various mechanisms that maintain basal blood cell numbers. Cytokines are a broad
class of proteins that interact with blood cells at the receptor level and include stimulating and growth
factors, chemoattractant chemokines, interleukins (ILs), and interferons (IFNs) that are crucial for elic-
iting functional hematological responses (immune-mediation, clotting, oxygen transport etc.).! Different
cytokines have overlapping functions to provide a measure of flexibility to the hematopoietic system to
mitigate potentially dangerous cases of deficiency or receptor interference.? To better understand how the
hematopoietic system is maintained and responds to environmental or intrinsic stressors and/or patholog-
ical perturbations, the characterization of the relationships between these signalling proteins is necessary.
Given recent advances in sequencing and computing power, the reconstruction of hematopoietic gene reg-
ulatory networks has been of increasing interest.”® The identification of the regulatory organization of
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the blood has enabled a better elucidation of transcriptional hematological networks,* and has led to the
characterization of so-called ‘hubs’ (central nodes within the network graph that have many connections).*
However, despite these advances, obtaining a complete picture of the cytokine regulation cascades that
manage blood cell counts and functions remains difficult.

Generally speaking, the feedback interactions of the cytokine/hematopoietic system paradigm function
without fail throughout life. However a number of hematological pathologies are known to result from bro-
ken cytokine networks and dysfunctional blood cell production mechanisms, including the rare oscillatory
diseases like cyclic neutropenia,’ and cyclic thrombocytopenia (CTP).” Recently, a 53-year-old male pa-
tient with CTP (cycle period of 40 days with platelet oscillations between 1 x 10°/L and > 400 x 10?/L)
was found to have a heterozygous germline mutation resulting in a loss of of c-mpl function.'’ Previous
spectral analysis identified statistically significant oscillations in platelet and neutrophil count and in and
cytokine concentrations over time.'' Using sampling data from this patient, we endeavored to uncover
the many relationships between more than 60 cytokines and platelets using standard and state-of-the-art
statistical and mathematical techniques.

CTP produces oscillations of fixed periods in the megakaryocytes and platelet lines, and of TPO
concentrations.” ' As we recently reported, during the manifestation of CTP, a variety of other cytokines
exhibit oscillations with periods of varying length.!! Ordinarily, entities that co-cycle with identical
periods are likely to be found to be strongly correlated. Furthermore, standard measures of correlation
are symmetric in the sense that if A is strongly correlated with B, it follows that B is strongly correlated
with A. However, it is often the case that A and B are strongly coupled because the dynamics of B
are strongly dependent on A (or vice versa), meaning that one variable inherits the period of the other
through a one-way dynamical hierarchy. This cannot be uncovered by simply measuring the correlation
of the two time series. To construct a dynamical hierarchy that contains more comprehensive information
than standard statistical correlation, we sought an advanced approach able to uncover one-way dynamical
relationships between different cytokines. We therefore turned to convergent cross-mapping (CCM), a
methodology combining dynamical systems theory and causative analysis, pioneered by Sugihara et al.'3 10

Beyond simply identifying cytokine relationships, CCM also allows us to arrange cytokines in a hierar-
chical regulatory network. Studying properties of the network itself reveals much about how information
about hematopoietic functions is communicated within the blood. Periodogram analysis then suggests the
timescales of these transmissions, a further piece of information that is hard to extract with CCM alone.
Our approach combining correlation analysis, periodograms, and CCM is validated by the identification
of hundreds of relationships corroborated in the literature. Fascinatingly, we further uncovered a fraction
of unreported relationships, substantiating our approach and suggesting worthwhile subjects for future
investigation.

Abbreviations: BDNF: brain-derived neurotrophic factor; CD40L: cluster of differentiation 40;
EGF: epidermal growth factor; ENAT78: C-X-C motif chemokine 5; FASL: Fas ligand; FGFB: fibrob-
last growth factor-basic; GCSF: granulocyte colony-stimulating factor; GMCSF: granulocyte-macrophage
colony-stimulating factor; GROA: C-X-C motif chemokine 1; HGF: human growth factor; ICAMI1: in-
tercellular adhesion molecule 1; IFNA: interferon-alpha; IL: interleukin; IL12P40: interleukin-12 subunit
p40; IL12P70: interleukin-12 subunit p70; IFNB: interferon-beta; IFNG: interferon-gamma; LIF: leukemia
inhibitory factor; M1P1B: macrophage inflammatory protein 1 beta; MIG: monokine induced by gamma
interferon (C-X-C motif chemokine 5); MCP: monocyte chemoattractant protein; MCSF: macrophage
colony-stimulating factor; NGF: nerve growth factor; PAIl: cytokine modulation of plasminogen activa-
tor inhibitor-1; PDGFBB: platelet-derived growth factor-BB; PLTs: platelets; RANTES: regulated on
activation, normal T cell expressed and secreted; SCF: stem cell factor; SDF1A: stromal cell-derived
factor 1; TGFA: transforming growth factor alpha; TNF: tumour necrosis factor; TPO: thrombopoi-
etin; TRAIL: TNF-related apoptosis-inducing ligand; VCAM1: vascular cell adhesion protein 1. VEGF:
vascular endothelial growth factor;
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Results

Convergent cross-mapping reveals a robust network of interacting cytokines

The output of CCM analysis is a set of cross-maps (positive indicators that cytokine A has a causative
effect on cytokine B) and a measure of the strength of this relationship (a real number between 0 and
1). Note that a cross-map is not a symmetric relationship; it is possible that A has a causative effect on
B but that B does not have such an effect on A. Self cross-maps are considered redundant — therefore
the data, which consisted of 63 objects (62 cytokines plus platelets), could yield a potential 63 x 62 =
3906 cross-maps. Our data consisted not only of cytokine levels but also measurements of the genes’
RNA transcription levels. Therefore, we further divided cross-maps into those that occur at the level of
transcription (meaning A has a causative influence on both B and its RNA precursor) and those that do
not. Of these 3906 possibilities, we uncovered roughly 1200 that met the standard of successfully cross-
mapping two cytokines with Spearman rank-correlation on cross-mapping skill of p < 0.05. We further
filtered these results by requiring that the maximum cross-mapping skill S of at least one edge between
the two cytokines exceeded the threshold Sy, (24) > 0.8, where 24 is the total number of observations
in the time series dataset. This left the 305 cross-maps pictured in Fig. 1. For a lengthier discussion of
CCM and why the threshold of Sy (24) > 0.8 was used, see the Supplementary Information.

Analyzing the graph structure of the cytokine-cytokine interaction networks reinforces our under-
standing of the robustness of the immune system, even during the perturbed hematopoiesis present in
this individual. At minimum, 4 cytokines (e.g. IL12P40, IL17A,CD40L and TRAIL) must be completely
removed from the system before the regulatory network is meaningfully disrupted, meaning informa-
tion cannot flow from one given cytokine to any other cytokine (see Supplementary Information for
extensive analysis of the network structure provided by CCM).

While a great number of cross-maps were found at the transcriptional level, the majority are not. The
absence of a transcriptional cross-map can be caused for one of three reasons: 1) because noise in the data
has lowered the CCM signal of interaction at the transcriptional level below our self-imposed confidence
threshold, 2) because the cytokine being cross-mapped-to (target of an edge in Fig. 1) is not produced
by blood cells (such as TPO, which is produced in the liver), or 3) because the interaction between the
two cytokines is genuinely at an “environmental” (rather than transcriptional) level. Examples of these
latter interactions involve the competition for limited resources, such as inactivation via heparan sulfate
in the case of IL8 and FGFB,'”!'® or an interaction between a cytokine and a cell type that produces the
cross-mapped cytokine — for instance, apoptosis-inducing cytokines tend to cross-map other cytokines
at this environmental level, likely because they are simply removing cytokine-producing cells from the
blood.

Elucidating the presence and timescales of between-cytokine communication

As a comparative measure, we also investigated how RNA transcription and cytokine concentrations
were statistically correlated (Fig. 2). When detected, RNA expression was generally weakly correlated
with cytokine concentrations in the blood, with some exception (cell surface integrins VCAM1/ICAM1
concentrations and PDGFBB gene expression, and HGF concentrations and TNFB gene expressions, for
example). The general lack of information about how cytokines interact with gene expression when viewed
through this lens stands in stark contrast to Fig. 1, where CCM analysis revealed a much greater amount
of interaction between plasma cytokine levels and gene expression.

To compare the cross-mapping results with the pairwise Pearson correlation results, we reinterpreted
the network structure of Fig. 1 as a table similar to a more usual correlation matrix, as seen in Fig.
3. Surprising differences between cytokine interactions are revealed: while certain clusters of correlated
cytokines are found via convergent cross mapping to also have a causative effect on one another, other
correlated clusters are almost entirely absent in the CCM picture. This could either be because these
cytokines indeed have no direct causative effect on one another, and co-cycle due to forcing by some other
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Figure 1. Causal relations between cytokines is revealed by convergent cross-mapping
(CCM). Because positive convergent cross-mapping is not a symmetric relationship (A cross-maps B
does not imply B cross-maps A), a hierarchical, directed graph can be drawn of all cytokine interactions.
Here, an edge is red if the interaction is at a transcriptional level (meaning the source cytokine cross-
maps the RNA levels of the target cytokine) and blue otherwise. Blue interactions could mean that the
CCM signal at the transcriptional is not sufficiently strong, or that the interaction between the cytokines
happens at an environmental level, for instance being inactivated by identical chemical compounds, such
as inactivation by heparan sulfate in FGFB and ILS.

cue, or because noise in the data has reduced the cross-mapping strength of these relationships between
our imposed threshold. We found that many uncorrelated cytokines are actually seen to cross-map. Given
that these relationships are virtually invisible under the standard umbrella of statistical techniques, this
finding further emphasizes the advantages gained by the application of the CCM method.
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Cytokine clusters emerge according to both correlation similarity and the period of
oscillations

We have previously identified eight distinct cycling periods within the data (hereafter called “period
classes”).!! Restricting our analyses to those cytokines (and platelets) that exhibited these statistically
significant oscillations, and grouping them according to period class (denoted by the red squares in Fig-
ure 3a), we looked for strong positive (in phase) or negative (out of phase) correlations within each period
class. The distinction of in or out of phase can be made by combining the spectral Lomb-Scargle analysis'!
and the correlation results of Figure 3b. We observed that the vast majority of correlations within each
period class are positive, indicating that most cytokines within the same class are oscillating in phase,
with the exception of the associations between BDNF /IL12P40, ICAM1/IL7, and ICAM1/RANTES, and
all molecules within the 38.9565-day period class and TPO.

The strength of the calculated correlation coefficients between any two entities is denoted by both the
intensity of the colour (green or purple) and the size of the circle in Figure 3b.!Y Unsurprisingly, platelets
and TPO are perfectly negatively correlated (i.e. TPO concentrations fall as platelet numbers increase
and vice versa). The cell surface integrins ICAM1 and VCAMI1, and RESISTIN display strong negative
correlation with the RANTES/IL7/IL2 /platelet/PDGFBB subgroup only while most other cytokines are
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Figure 3. Statistical and causal relationships revealed through Pearson correlation and
convergent cross-mapping. a) Pairwise correlation results for cycling cytokines and platelets, ordered
according to period class. From top to bottom (and equivalently, from left to right), each row(column)
is ordered according to the length of their cycling period. Red squares classify individual period classes
(entities cycling with the same periods). Deep purple indicates a perfectly negative correlation, deep
green indicated perfectly positive correlation. b) Pairwise Pearson correlations were calculated between
each cytokine (and platelets). Gradient scale as in a. ¢) Alternative formulation for Figure 1. Since the
structure is not symmetric (A crossmaps B does not imply B crossmaps A), a mark indicates that the
cytokine along the vertical axis (horizontal cytokine names) has a causative influence on the cytokine
along the horizontal axis (vertical cytokine names). If this influence has a strong CCM signature at the
transcriptional level, the mark is green. If the CCM signature is seen at the population/environmental
level but not at the transcriptional level, the mark is purple.

positively pairwise correlated. However when a statistically significant relationship exists, leptin, IP10,
TPO and IL12P40 are almost entirely negatively correlated with every other cytokine. While the full
analysis revealed correlations between RANTES and IL7 in the second cluster, the period class cross-
mapping identified causal relationships between RANTES, IL7, and VCAM1/ICAM1, which were found
to cluster in the fourth correlation group.

Exploiting period classes to expose novel causal relationship structures

Using our previous Lomb-Scargle results,'! we explored the cross-maps between cytokines within period
classes, displayed in Fig. 4. Given the degree of pairwise correlations within each class, we anticipated
the causal networks to be complete graphs (each node connected to every other by a unique edge). The
29.22 and 31.87 day classes almost achieve completeness, save for one or two edges (in the 29.22 class,
for example, IFNG and IL31/MCSF do not cross-map, nor do MCSF and IL31, whereas SCF does not
cross-map to IL13 in the 31.87 class), however interesting structures emerge in the 35.06, 38.96 (the period
of oscillations in the platelets and TPO), and 43.86 classes where graphs were not complete. In the 38.96
day class, IL1B only sends and receives information from IL5 and functions as a controller outside of the
complete subgraph formed by IL5, IL2, TPO, PDGFB, and circulating platelet concentrations. Similarly,
in the 43.83 class, VCAMI sits atop the complete subgraph comprised of ICAM1, IL7, and RANTES,
and interacts solely with VCAMI1. Most curiously, there are no edges between the members of the 35.06
class (IL18, IL12P40, BDNF), despite them being statistically correlated (see Fig. 3a).
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PO®

Figure 4. Causal relationships amongst period class pairs and cycling cytokines. a) Combining
the periodogram analysis and convergent cross-mapping analyses reveals a causal network among elements
of cytokine classes that have identical periods. Cytokines are represented in the network as nodes,
with node colour assigned according to period (legend bottom-left). Nodes with black text labels cycle
with their assigned period with o = 0.05. Nodes with red text labels cycle with their assigned period
with @ = 0.5. Directed edges indicate convergent cross-mapping: an edge directed from node A to
node B indicates that, at optimal embedding dimension and library size, the cross-mapping skill S (see
Supplementary Information) indicating the information contained about the state of cytokine A in the
state of cytokine B is greater than 0.8. In this panel, information about causality is restricted to elements of
the same periodogram class. b) Convergent cross-mapping analysis also uncovers links between cytokines
that belong to different period classes. Here edges are coloured with the same colour as their source
node. When this information is included, a hierarchical network is created between cytokines that cycle
at different rates. Red arrows indicate that RNA expression is also cross-mapped between nodes.

Establishing novel cytokine relationships through CCM analysis

Of the 305 cross-maps identified using the S4_,,(24) > 0.8 as a minimal threshold, we identified 60
previously unknown relationships between cytokines (see Supplemental Data for a complete list of cross-
maps and identification methodology, as well as citations from the literature for the known relationships
uncovered by CCM). Thus 19.6% of the cross-maps identified through convergent cross-mapping with
truncation at Sy (24) > 0.8 have not previously been reported in the literature. These novel interactions

7
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are listed in Table 1 and include a variety of interleukins, and growth and necrosis factors. Although CCM
analysis easily differentiates between scenarios in which a given cytokine A governs B and C without B
and C interacting and those in which B directly interact with C, it is unable to differentiate the causal
chain A - B — C from A — C with surety (see Supporting Information). We therefore include the
minimum number of relationships that are already known (in the literature) to distinguish the proposed
novelty. As the number of intervening known edges becomes larger, it becomes less plausible that this
edge is a false positive, and therefore these are the relationships that merit future exploration the most.

Viewed through a different lens, we may say that CCM is 80% accurate — that is, it indicates causal
interactions which have been independently corroborated by previous research 80% of the time. To gauge
whether CCM is really an effective method to untangle interactions from time-series data, we compared
this measure of accuracy to direct Pearson correlations (interpreting pairs with p > 0.8 to represent true
interactions, just as we require the CCM predictive strength at maximum library to be larger than 0.8),
and also to the null constructed by drawing pairs of cytokines uniformly-at-random and then checking
against the literature. In the null case, we selected 100 cytokine-cytokine pairs at random and compared
them to the previous reports, finding that 37% percent of them were accurate, i.e., were corroborated by
at least one experimental paper. The number of pairs with Pearson correlation p > 0.8 was 278, similar
to the 305 found by CCM with the same cutoff criterion; however, only 58% of these were corroborated by
the literature. By this metric, then, CCM does seem to offer a substantial increase in interaction-inference
accuracy over traditional methods. Further, CCM offers information as to the directionality of reported
interactions, as opposed to Pearson correlation, which is undirected by definition. Most of the novelties
suggested by CCM occur twice, with one arrow in each direction. If the results of CCM are instead
treated as an undirected graph, then 19 duplicates are removed, leaving 41 unconfirmed connections, and
the accuracy increases to 87%.

Discussion

Buoyed by improvements to sequencing techniques and computational power, we are now beginning to
understand how an intricate regulatory network of interacting cytokines and gene transcription in vari-
ous cell lineages controls hematopoiesis. At present, a great deal of attention in this regard is paid to
genetic regulation at the intracellular level. However a multitude of cytokines also transmit information
as they coordinate both the production and function of the body’s blood cells. Cytokine and blood cell
concentrations fluctuate daily, but additional information about the dynamic nature of the hematopoi-
etic system is fully revealed during pathological conditions. By leveraging information obtained during
dynamical disease, we sought to establish the structure of the causal cytokine relationships that present
in this patient with perturbed platelet homeostasis.

Our approach uncovered many previously corroborated cytokines relationships, which validates the
methodology we employed. Most causal connections were found to be environmental rather than tran-
scriptional, a conclusion mirrored in the standard Pearson correlation measurements that are much sparser
than the full pairwise correlation matrix between cytokines. In a previous analysis, we identified 12 period
classes of cytokines cycling with the same duration. Combining these classes with our correlation results
allowed us to identify cytokines cycling in- and out-of-phase in a given class. However, the causal commu-
nication between cytokines only comes into focus when we constructed the cross-maps within each class.
We established that the networks of each class were not complete, and identified “master” transmitters
of information within most classes. Most notably, we revealed ~1200 total successful cross-maps in the
full dataset, with 305 cross-maps remaining after truncation at the Sy_,,(24) > 0.8 level of significance.
Of these, we identified 61 previously unreported relationships that are strong candidates for future inves-
tigation. However, it would be unfair to say that the CCM analysis is somehow superior to the analysis
based on statistical correlations. For example, when we plot the results of Fig. 1 in a table side-by-side
with the correlation tables in Fig. 3, it is clear that the output of CCM analysis is much sparser. Further,
on its own, CCM contains no information about the period of cycling of a given cytokine or co-cycling


https://doi.org/10.1101/484170
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/484170; this version posted December 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
Krieger et al. under aCC-BY-NC 4.0 International license. Novel cytokine interaction networks

Cytokine 1 | Cytokine 2 | # intervening || Cytokine 1 | Cytokine 2 | # intervening
BDNF PDGFB 1 1L27 TNFB 1
FASL FGFB 1 1IL31 FGFB 1
FASL 1L9 ! IL31
FASL SCF 1 MCSF 1L9 1
FGFB FASL 1 MIP1A SCF 1
FGFB IFNG 1 MIP1A TRAIL 1
FGFB IL13 1 MIP1B SDF1A 1
FGFB IL27 1 MIP1B TGFA 1
FGFB 119 1 ICAM1 2
GROA IFNG 1 IL12P40 2
ICAM1 PDGFB 1
IFNA TGFA 1 2
IFNG FGFB 1 PLTs PDGFB 1
IFNG GROA 1 SCF FASL 1
IFNG 1L.9 1 SCF TNFB 1

1LY FASL 2 SDF1A IL15 1
1.9 FGFB 1 TGFA IFNA 1
1L.9 IFNG 1 TGFA IL17A 1
1.9 MCSF 1 TGFA IL1A 1
119 TNFB 1 TGFA MIP1B 1
1L12P40 PDGFB 1 TGFA TNFA 1
TGEA | VECF :
1L12P40 TPO 1 TNFB 1127 2
IL13 FGFB 1 TNFB IL31 1
IL15 SDF1A 1 TNFB 119 1
IL17A TGFA 1 TNFB SCF 2
IL17A IL1A 1 TPO IL12P40 1
IL18 FGFB 1 TRAIL MIP1A 1
IL18 TNFB 1 2
1L27 FGFB 1 2
VEGF TGFA 1

Table 1. Previously unreported relationships revealed through convergent cross-mapping.
Of the ~1200 causal relationships identified through convergent cross-mapping (see Supplementary
Information for details), we identified 305 relationships by truncating the maximal cross-mapping skill
with the minimal threshold of S¢_,(24) > 0.8. In addition, we have indicated the number of intervening
cytokines along known pathways: as this number increases, the likelihood that the novel relation is an
artifact of CCM analysis decreases. Pairs highlighted in light grey were identified by both CCM and direct
Pearson correlation (with p > 0.8, see Supplementary Information). Of the 305 causal associations
found by CCM, 60 are previously unreported (19.6%). The best candidates for future investigation are
highlighted in dark grey/white text. Highlighted in medium grey are those identified by both methods
that are also strong candidates for further study. A more thorough exploration of these novelties is
provided in the Supplementary Material.

between cytokines, nor does it indicate whether a cross-mapping from A to B indicates up-regulation or
down-regulation of B due to A.

Notwithstanding these limitations, we were able to broadly assess causal cytokine relationships in the
hematopoietic system, despite studying only a single person, given the rich sampling and highly dynamical
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nature of this individual’s disease. Future work should incorporate both healthy individuals and a wider
sample of people with similar dynamic pathologies, including cyclic neutropenia and chronic myeloid
leukemia. This study nonetheless presents a new and powerful way to study the cytokinetic (and genetic)
connections within the blood, and suggests that there is much more to discover than can be found using
standard statistical means.

Methods

Cell counts and cytokine assays

Blood samples were drawn every 3-4 days for 84 days total (24 samples total over two cycles) from a
53-year old individual with a previously-described presentation of cyclic thrombocytopenia related to a
heterozygous germline mutation resulting in the loss of c-mpl function. Blood transcriptome profiles were
performed on whole blood using 3SEQ (3’-end RNA sequencing for expression quantification). Platelet
poor plasma was isolated to measure thrombopoietin concentration via ELISA and a panel of 62 cytokines
using a Luminex immunoassay.

Determining causal relationships using convergent cross-mapping

For each of the measured 62 cytokines and their gene expression data, as well as platelets and throm-
bopoietin, we computed the cross-mapping to all other platelets/cytokines applied Sugihara et al.’s'?
convergent cross-mapping (CCM) approach. CCM was developed to determine causal relationships in
time series without reference to the usual statistical correlation.'® A detailed description of the mathe-
matical foundations of convergent cross-mapping and a description of the algorithm are provided in the
Supplementary Information. For each of the 63 x 62 = 3906 (self-maps are redundant) total possible
cross-maps, we calculated the cross-mapping skill as a function of library length L (which cannot exceed
24, the total number of measurements) and embedding dimension E according to the algorithm described
in the Supplementary Information. We then performed Spearman rank-correlation on cross-mapping
skill and L for each cross-mapping to isolate those that showed convergent cross-mapping (by keeping
only those with p < 0.05). This subset of cross-maps was then examined by eye to remove cases where the
Spearman correlation assigned a p-value less than 0.05, but the cross-mapping skill was not sufficiently
monotonic in L to ensure accurate forecasting at differing library lengths.

Correlations between measures

To understand the statistical associations between platelets, thrombopoietin, and the 62 cytokines and
their genes, we quantified their pairwise Pearson correlations using the cor function in R?° and plotted
the results with corrplot.!” Hierarchical clustering according to dissimilarity was applied to group
statistically similar cytokines.
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