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The formation of self-organized patterns is key to the

morphogenesis of multicellular organisms, although a

comprehensive theory of biological pattern formation

is still lacking. Here, we propose a minimal model

combining tissue mechanics to morphogen turnover

and transport in order to explore new routes to

patterning. Our active description couples morphogen

reaction-diffusion, which impact on cell differentiation

and tissue mechanics, to a two-phase poroelastic

rheology, where one tissue phase consists of a

poroelastic cell network and the other of a permeating

extracellular fluid, which provides a feedback by

actively transporting morphogens. While this model

encompasses previous theories approximating tissues

to inert monophasic media, such as Turing’s reaction-

diffusion model, it overcomes some of their key

limitations permitting pattern formation via any two-

species biochemical kinetics thanks to mechanically

induced cross-diffusion flows. Moreover, we describe

a qualitatively different advection-driven Keller-Segel

instability which allows for the formation of patterns

with a single morphogen, and whose fundamental

mode pattern robustly scales with tissue size. We

discuss the potential relevance of these findings for

tissue morphogenesis.

How symmetry is broken in the early embryo to give
rise to a complex organism, is a central question in
developmental biology. To address this question, Alan
Turing proposed an elegant mathematical model where
two reactants can spontaneously form periodic spatial
patterns through an instability driven by their difference
in diffusivity [1]. Molecular evidence of such a reaction-
diffusion scheme in vivo remained long elusive, until pairs
of activator-inhibitor morphogens were proposed to be
responsible of pattern formation in various embryonic
tissues [2–9]. Interestingly, these studies also highlight
some theoretical and practical limitations of existing
reaction-diffusion models, including the fact that Turing
patterns require the inhibitor to diffuse at least one order
of magnitude faster than the activator (DI/DA > 10)
[3], although most morphogens are small proteins of
similar molecular weights, implying that DI/DA ≈ 1.
As a consequence, the formation of Turing patterns in
vivo should result from other properties of the system
such as selective morphogen immobilisation [10–12] or
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active transport [13] as demonstrated in synthetic sytems.
Moreover, reaction-diffusion models of pattern formation
entail a number of restrictions regarding the number
and interactions of morphogens, and pattern scaling
with respect to the tissue size, which have been all
limiting their quantitative applicability in vivo. While the
genetic and biochemical aspects of developmental pattern
formation have been the focus of most investigations, the
interplay between mechanics and biochemical processes in
morphogenesis started to unfold following some pioneering
contributions [14]. The crucial role played by multiphasic
tissue organisation and active cell behaviours in biological
pattern formation is now an active field of research [15–18].

In this article, we derive a general mathematical
formulation of tissues as active biphasic media coupled
with reaction-diffusion processes, where morphogen
turnover inside cells, import/export at the cell membrane
and active mechanical transport in the extracellular fluid
are coupled together through tissue mechanics. While
encompassing classical reaction-diffusion results [1–4],
for instance allowing import-export mechanisms to
rescale diffusion coefficients and to form patterns with
equally diffusing morphogens [11], this theory provides
multiple new routes to robust pattern formation.
In particular, assuming a generic coupling between
intracellular morphogen concentration and poroelastic
tissue mechanics, we demonstrate the existence of
two fundamentally different non-Turing patterning
instabilities, respectively assisted and driven by advective
extracellular fluid flows, explaining pattern formation
with only a single morphogen with robust scaling
properties, and how patterning can be independent of
underlying morphogen reaction schemes. Finally, we
discuss the biological relevance of such a model, and in
particular its detailed predictions that could be verified
in vivo.

Derivation of the model

As sketched in Fig. 1(a), we model multicellular tissues
as continuum biphasic porous media of typical length l,
with a first phase consisting of a poroelastic network made
of adhesive cells of arbitrary shape and typical size lc
(with local volume fraction φ), and a second phase of
aqueous extracellular fluid permeating in-between cells in
gaps of a characteristic size li. These two internal length
scales disappear in the coarse-graning averaging over a
representative volume element of typical lengthscale lr
satisfying li,c � lr � l. Both phases are separated by cell
membranes, actively regulating the interfacial exchange of
water and other molecules thanks to genetically controlled
transport mechanisms [19, 20]. At the boundary of the
domain, no-flux boundary conditions are imposed such
that the system is considered in isolation. We present
below the main steps of the model derivation, which are
detailed in SI Appendix.

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 21, 2019. ; https://doi.org/10.1101/484345doi: bioRxiv preprint 

https://doi.org/10.1101/484345


Time

Dfick

D

li
2/Dfick

li

1/γA,I

DKA,I

Molecular
diffusion

Effective
diffusion
(active

transport)

Hindered diffusion 
(tissue structure) 

lc l

D
iff

us
io

n 
co

effi
ci

en
t

ba

Biphasic tissue

l

Extracellular fluidCell lilc

RVE

Adherens 
junction

Morphogens 
import
export 

Gap 
junction

Aquaporins

Ion pumps
AI

Figure 1: Model for pattern formation in active biphasic tissues. (a) Schematic of the model: (Left) Cells form a
poroelastic network, permeated by extracellular fluid, where three natural length scales can be defined: the interstitial space
size (li), the characteristic cell size (lc) and the tissue size (l). (Right) Biochemical interactions between morphogens, A and I,
take place inside the cell and are described by their respective turnover rate functions f(A, I) and g(A, I). A and I are exported
across the cell membrane at rates λA,I and imported at rates γA,I , respectively. In the extracellular space, both A and I spread
freely by diffusion at the same rate D, or can be advected by the fluid at velocity ve. (b) Evolution of the effective diffusion
coefficient as a function of time and space scales. At shorter distances and times, diffusive behaviour of morphogens is described
by a molecular diffusion coefficient, DFick. At intermediate scales, the diffusive motion of morphogens starts to be hindered by
cells and the global diffusion coefficient, D, depends of the tissue spatial organisation through φ∗. At larger scales, morphogen
diffusion is controlled by dynamic interactions with cells (import/export, adsorption/desorption,) and an effective coefficient
DKA,I [9].

Intracellular morphogen dynamics

Morphogens enable cell-cell communication across the
tissue and determine cell fate decisions. Importantly,
most known morphogens cannot directly react together
and as such, have to interact “through” cells (or cell
membranes) where they are produced and degraded [20].
Concentration fields of two morphogens, Ai,e(~r, t) and
Ii,e(~r, t), are thus defined separately in each phase of
the system, indices (i, e) denoting intra- and extra-
cellular phases, respectively. The conservation laws of the
intracellular phase, which cannot be transported, read:

∂t(φAi) = f(Ai, Ii) + γAAe − λAAi
∂t(φIi) = g(Ai, Ii) + γIIe − λIIi

(1)

where ∂t denotes the partial derivative with respect to
time and γA,I (resp. λA,I) the import (resp. export) rates
of morphogens (which can also describe immobilization
rates at the cell membrane). We also introduce f and g,
the non-linear morphogen turnover rates describing their
production and degradation by cells, with a single stable
equilibrium solution f(A∗

i , I
∗
i ) = g(A∗

i , I
∗
i ) = 0. Finally,

we introduce the transmembrane transport equilibrium
constants by KA = λA/γA and KI = λI/γI . Although the
import/export coefficients KA,I could in principle depend
on morphogen concentrations, this constitutes a non-linear
effect that we ignore in our linear theory.

Extracellular fluid dynamics

Next, we write a mass conservation equation for the
incompressible fluid contained in the tissue interstitial
space between cells:

∂tφ−∇.((1− φ)ve) = φh(Ai,Ii)−φ
τ

(2)

where ve is the velocity of the extracellular fluid. The
right-hand side of this equation describes the fact that
cells actively regulate their relative volume fraction to an
homeostatic value φh(Ai, Ii) at a timescale τ [21]. Note
that, (2) with ve 6= 0 implies a recirculation of internal
fluid, via gap junctions [22] (SI Appendix, Sec. 1.A.3).

As detailed below, we assume that local cellular
morphogen concentrations have an influence on the
volume fraction φ which couples tissue mechanics to local
morphogens concentration in our theory. At linear order,
this coupling generically reads φh(Ai, Ii) = φ∗ + χA(Ai −
A∗
i )/A

∗
i +χI(Ii−I∗i )/I∗i where we denote φ∗ = φh(A∗

i , I
∗
i ),

the equilibrium cell volume fraction, and the χA,I terms
account for the sensitivity of cell volume to intracellular
morphogen concentrations. Such a mechano-chemical
effect on the tissue packing fraction, φ, can occur either via
the active control of individual cell volume [21] or through
the active balance between cell proliferation and loss (SI
Appendix, Sec. 1.A.4), with χA,I > 0 for morphogens
acting as growth factors and χA,I < 0 for morphogens
working as growth inhibitors. This is a reasonable
assumption, as a number of morphogens involved in cell
fate decisions can act as growth factor/inhibitors [23, 24],
and in vitro experiments have shown that cells, upon
exposure to factors such as FGF or EGF, elicit a series
of signaling mediated responses involving an increase in
transmembrane ion flux, cell volume changes [21] and
subsequent cell growth/division [25]. Moreover, during
digits pattern formation in the limb bud, which has been
proposed to rely on a Turing instability, morphogens such
as BMP participate in both the reaction-diffusion scheme
[8] and in morphogenetic events such as cell condensation
[26], with skeletal formation being associated with large
cell volume fraction changes [27]. The cell volume fraction
is thus highly modulated in space and time, concomitantly
with morphogen pattern formation [26], advocating for
the need of a global mechano-chemical theory taking into
account both effects.

Extracellular morphogen dynamics

Morphogens, once secreted by cells, are transported by
diffusion and advection in the extracellular fluid:

∂t((1− φ)Ae) +∇. ((1− φ)Aeve −D∇Ae) = −γAAe + λAAi

∂t((1− φ)Ie) +∇. ((1− φ)Ieve −D∇Ie) = −γIIe + λIIi
(3)
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where D is the global Fickian diffusion coefficient of both
morphogens depending on tissue packing and tortuosity
[9, 28, 29]. As we are interested in a linear theory, we
consider here D = D(φ∗) as a constant. We neglect here,
for the sake of simplicity, phenomena such as extracellular
morphogen degradation or the influence of extracellular
morphogen concentrations on reaction terms, as they
do not modify qualitatively the dynamics (SI Appendix,
Sec. 1.C). Note that one could also take into account, at
the mesoscopic level, some effective non-local interactions
such as cell-cell communication via long-ranged cellular
protrusions [30]. This may require to consider spatial
terms in (1) to introduce an additional characteristic
lengthscale from non-local cell-cell transport.

Mechanical behaviour of the cellular phase

To complete our description, we need to specify a
relation linking cell volume fraction to interstitial fluid
velocity. For this, we use a poroelastic framework,
whose applicability to describe the mechanical response
of biological tissues has been thoroughly investigated in
various contexts [31, 32]. Taking an homogeneous tissue
as reference state, poroelastic properties imply that a
local change of the cell volume fraction creates elastic
stresses in the cellular phase which translate to gradients
of extracellular fluid pressure p. Such gradients of pressure
in turn drive extracellular fluid flows, which can advect
morphogens, and we show (SI Appendix, Sec. 1.A.7) that
this effects results in a simple Darcy’s law between cell
volume fraction and fluid flow [29]:

(1− φ)ve = −κη∇p = Dm∇φ. (4)

This relation introduces the hydrodynamic diffusion
coefficient of the extracellular fluid, Dm = Kκ/η, a key
mechanical parameter of the model which feeds back on
the reaction diffusion dynamics (3), with κ the tissue
permeability, K the elastic drained bulk modulus and η
the fluid viscosity. The hydrodynamic length scale lm =√
Dmτ is associated to such fluid movement. Importantly,

we only explore here the simplest tissue rheology for the
sake of simplicity and concision. Nevertheless, we also
investigate (SI Appendix, Sec. 1.H) the role of growth
and plastic cell rearrangements and show that they can
be readily incorporated in our model, leading to different
types of patterning instabilities. However, we would like
to highlight here that the results presented thereafter
are all robust to small to intermediate levels of tissue
rearrangements.

Model of an active biphasic tissue

Eqs.(1-4) define a full set of equations describing
the chemo-mechanical behaviour of an active biphasic
multicellular tissue (SI Appendix, Sec. 1.B). To provide
clear insights on the biophysical behaviour of the system,
we focus on a limit case where γA,I � λA,I � f, g
such that KA,I � 1. This corresponds to an ubiquitous
biological situation where rates of membrane transport are
order of magnitudes faster than transcriptionaly controled
morphogen turnover rates, and where endocytosis occurs

at a much faster rate than exocytosis. In that case, the
relations Ae ' KAAi and Ie ' KIIi always hold and
even if a significant fraction of morphogens is immobilized
inside the cells [9], the import/export terms cannot
be neglected as γA,I are very large, so that γA(Ae −
KAAi) and γI(Ie − KIIi) are indeterminate quantities
(SI Appendix, Sec. 1.C). Summing both internal (1) and
external (3) conservation laws, we obtain a simplified
description of the system (SI Appendix, Sec. 1.C):

∂t(φAi) +∇. (AiKADm∇φ−KAD∇Ai) = f(Ai, Ii)
∂t(φIi) +∇. (IiKIDm∇φ−KID∇Ii) = g(Ai, Ii)

−l2m∆φ+ φ = φh(Ai, Ii).
(5)

Non-dimensionalizing times with τA associated with the
degradation of Ai in the morphogen turnover functions
f and g and lengths with lA =

√
KADτA we find that

(5) is controlled by a few non-dimensional parameters:
KI/KA describes the mismatch of morphogen membrane
transport, Dm/D compares the global hydrodynamic and
Fickian diffusion of the morphogens, τ/(KAτA) compares
the response time of cell volume fraction to the effective
morphogen turnover rate, and χA and χI account for
the sensitivity of φ to morphogen levels. Using this
restricted set of parameters encapsulating the behaviour of
the model, we investigate several of its biologically relevant
limits, demonstrating that they provide independent
routes towards tissue patterning.

Orders of magnitude on morphogen
transport

In the simplest limit of the model, the cell fraction
remains constant, φ = φ∗, which is valid if the effect
of the morphogens on φ is very small compared to
the restoring mechanical forces (i.e. χA,I = 0). The
model then reduces to Turing’s original system, with
diffusion coefficients being renormalised by morphogens
transmembrane transport equilibrium constants, KA,ID,
similar to results obtained in [9, 11]. This implies that
even species with similar D, can exhibit effective diffusion
coefficients widely differing from each other on longer
timescales and produce Turing patterns when KI � KA

(SI Appendix, Sec. 1.F).
In Fig. 1(b), we depict scaling arguments for the

changes in effective diffusion coefficient at various
time/length scales, associated both with tissue structure
and import/export kinetics [11]. At small timescales,
diffusion is characterised by a local Fickian diffusion
coefficient, theoretically expected to be of the order of
DFick ≈ 10−11m2s−1, in line with fluorescence correlation
spectroscopy (FCS) measurements [7, 9, 20]. This occurs
across a typical cell-to-cell distance of li ≈ 10−7 − 10−9m
[33], so that this regime is valid for time scales below
l2i /DFick ≈ 10−2 − 10−6s, which is much faster than the
typical import/export kinetics of 1/γA,I ≈ 101 − 102s
[34]. At intermediate timescales, the diffusion coefficient
needs to be corrected for volume exclusion effects due to
the porous nature of the tissue, an effect which can be
very large for cell volume fraction close to one [35]. An
upper bound (Hashin-Shtrikman) for global diffusion can
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Figure 2: Linear stability analysis and numerical simulations of pattern formation in active biphasic tissues. (a)
Phase diagram of (5) in the (KI/KA, Dm/D) parameter space for τ/(KAτA) = 0.01 and τ/(KAτA) = 0.1 (inset). The red
and blue dashed lines correspond to analytical thresholds of instability (given in the text) for Turing and Keller-Segel patterns
respectively. The black dashed line is the analytical phase boundary between both regimes in the limit KI � KA given by
χA = D/Dm + τ/(τAKA). This limit is shifted up when the ratio τ/τAKA is increased, while a pronounced notch appears in
the “Keller-Segel patterns” domain (see inset). Other parameters are set to χA = 0.25, χI = 0, τI/(KAτA) = 0.2, KAτAρ = 1,
φ∗ = 0.85 and large tissue size (lA/l� 1). (b) 1D numerical simulations of (5) with random initial conditions for several choices
of parameters identified by letters A, B, C & D. lA/l = 0.1.

be computed, irrespective of the microscopic details of
tissue geometry, as D(φ∗) ≤ DFick(1−φ∗)/(1+φ∗/2) [28],
which would suggest, in the case of φ∗ ≈ 0.8 − 0.9, that
it should be around an order of magnitude smaller than
local diffusion, D(φ∗) ≈ 10−12m2s−1. Finally, at the
time scales larger than 1/γA,I described by the present
model, the diffusion is decreased further by a factor
KA,I , i.e. by the relative concentrations of morphogens
“trapped” cellularly (i.e. a 1 − 10 ratio) such that
D(φ∗)KA,I ≈ 10−12 − 10−13 m2s−1. This is consistent
with effective diffusion coefficients measured from tissue-
wide fluorescence recovery after photobleaching (FRAP)
over minutes to hours time scales [7, 9, 20, 35]. Note
here, that the respective contributions of volume exclusion
and import/export effects on FRAP measured diffusion
coefficients are non-trivial and are detailed in SI Appendix,
Sec. 1.H. Overall, although our model in its simplest
limit (φ = φ∗) relaxes the classical Turing condition
DI � DA, it still implies quite stringent conditions on
the ratio of intracellular and extracellular morphogens
(Ie/Ii � Ae/Ai). Exploring further the effect of a variable
cell volume fraction φ, we demonstrate that coupling
morphogen dynamics and tissue mechanics suppresses this
limitation via active transport of morphogens.

Turing-Keller-Segel instabilities

To assess the regions in parameter space where stable
patterns can form in our mechano-chemical framework,
we perform a linear stability analysis on (5). Here, we
consider a classical Gierer-Meinhardt activator-inhibitor
scheme [2]: f(A, I) = ρA2/I − A/τA and g(A, I) =
ρA2−I/τI , where ρ is the rate of activation and inhibition
and τA,I the timescales of degradation of A and I [2]
and the particular case of a single morphogen capable of
increasing φh (χA > 0, χI = 0).

In the phase diagram in Fig. 2 (a), we show that two
distincts instabilities can be captured by this simplified
theory. The first instability, identified here as “Turing
patterns”, corresponds to a classical Turing instability,

where diffusive transport of morphogens dominates over
their advection by interstitial fluid (Dm � D) and
with instability threshold given by KIτI − KAτA >
2
√
τAτIKAKI for lA/l � 1(dashed red line on Fig. 2 (a))

which, as expected, is always true regardless of the
value of τA,I if KI � KA. However, another generic
pattern forming instability driven by active transport
phenomena is present in the phase diagram, labelled
“Keller-Segel patterns” [36]. The physical origin of the
resulting pattern is here similar to active fluid instabilities
[15, 17, 37–40]: if stochastic local changes in morphogen
concentration result in an increase in cell volume fraction,
fluid must be pumped inside cells. This causes local
elastic deformations in the tissue which generate large-
scale extracellular fluid flows from regions of low to high
morphogen concentration, resulting in a positive feedback
loop of morphogens enrichement (Fig. 3 (a)), and steady-
state patterns. Interestingly, such an instability can even
occur for a single morphogen. In this limit, patterning
occurs if

√
χA >

√
D/Dm+

√
τ/(τAKA) when lA/l� 1 so

that the volume fraction sensitivity χA is above a critical
value (dashed blue line in Fig. 2 (a), which captures well
the phase boundary in the limit KA � KI , although
the instability occurs generically for any value of KA,I).
The number of patterns displayed by the profiles shown
on Fig. 2 (b) can be predicted by linear analysis (See
Appendix, Sec. 1.D) because they are chosen close to the
onset of instability.

Thus, coupling tissue mechanical behaviour to
morphogen reaction-diffusion provides, via the generation
of advective fluid flows, a new route to stable pattern
formation with a single morphogen. Moreover, this
instability has two remarkable features. First, it
only requires the presence of a single morphogen (SI
Appendix, Sec. 1.G) which could correspond to many
practical situations where a pair of activator/inhibitor has
not been clearly identified, for instance the role of Wnt in
the antero-posterior pattern of planarians [41]. Second,
it possesses spatial scaling properties regarding to its
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Figure 3: Scaling properties of the Keller-Segel
instability with one morphogen.(a) Schematic of the
Keller-Segel instability in a 1D tissue. Morphogens gradients
generate cell volume fraction gradients (via local fluid
exchanges, blue arrows in inset), which in return cause
mechanically-induced self-amplifying extracellular flows that
advect morphogens from morphogen-poor to morphogen-rich
regions (green arrow). (b) Normalized pattern size as a
function of system size in the single morphogen case with
f = 0. (c) Morphogen concentration and cell packing fraction
(inset) profiles remain quasi-stationary as system size increases.
Parameters are χA = 0.25, Dm/D = 10 and φ∗ = 0.85

fundamental mode, as compared to a Turing instability.
Indeed, when morphogen turnover rate is small compared
to its effective hydrodynamic and Fickian diffusion
(f → 0), the fundamental mode, i.e. a single two-zones
pattern, is the most unstable in a robust manner, given
that morphogen turnover f stabilises specifically this
mode (SI Appendix, Sec. 1.G.2), whereas in the case
of a Turing instability, this would require fine-tuning
and marginally stable reaction kinetics. We illustrate
such a scaling property in Fig. 3. This mechanism could
potentially apply to situations where a binary spatial
pattern is independent of system size such as dorso-ventral
or left-right patterns in early vertebrate embryos [7,9], or
planarian antero-posterior pattern [41, 42]. If so, it could
provide a simpler alternative to previously proposed
mechanisms involving additional species or complex
biochemical signaling pathways [7, 42].

Importantly, simple estimates can be used to
demonstrate the biological plausibility of such mechanical
effects during morphogenetic patterning. A key parameter
driving Keller-Segel instabilities is the hydrodynamic
diffusion coefficient Dm, which can be estimated from
values of the drained bulk modulus K ≈ 104 Pa [31]
and the tissue permeability upper bound [28] κ ≈
l2i (1 − φ∗)/(1 + φ∗/2) with li ≈ 10−7 − 10−9m and
φ∗ ≈ 0.85 as above. Using η ≈ 10−3 Pa.s (water
viscosity), we obtain Dm ≈ 10−12 − 10−8 m2s−1, showing
that the hydrodynamic diffusion can be similar or even
much larger than Fickian diffusion. In agreement with
typical timescales involved in regulatory volume increase
or decrease of cells following an osmotic perturbation [21],
we estimate that τ ≈ 102 s, while morphogen turnover

time scale has been measured as τA ≈ 104 − 105 s [9].
With KA ≈ 0.1 as above, we obtain τ/(KAτA) ≈ 0.01 −
0.1, which is used in Fig. 2, and displays broad regions
of instability, although parameters like sensitivities χA,I
would need to be better assessed in vivo in future works.

Cross-diffusion Turing instabilities

Finally, we investigate the behaviour of our model ((5)),
when cell fraction sensitivity to morphogen concentration
is negative (χA,I < 0), eliminating the possibility of
up-hill morphogen diffusion at the origin of the Keller-
Segel instability. We also consider that f and g do
not necessarily follow an activator-inhibitor kinetics, but
any possible interaction scheme between two morphogens.
For mathematical clarity on the physical nature of
the instability studied here, we make the simplifying
assumptions that τ = 0 and χA,I � 1, with D ∼ DmχA,I
in (5). This relates to a realistic biological situation, where
cell volume fraction relaxes rapidly after perturbation and
depends weakly on morphogen levels, yielding:

φ∗∂tAi +∇. (AiKADm∇φh −KAD∇Ai) = f(Ai, Ii)
φ∗∂tIi +∇. (IiKIDm∇φh −KID∇Ii) = g(Ai, Ii).

(6)
In this limit, the conditions for linear stability of

the homogeneous solution are exactly the ones of a
classical Turing system but with cross-diffusion terms
(SI Appendix, Sec. 1.E). Such a scenario has been
studied in the framework of monophasic reaction-diffusion
systems with ad hoc cross-diffusion terms [43], which
arise generically in various chemical and biological systems
[44]. Our work thus provides a particular biophysical
interpretation of these terms in multicellular tissues,
which we show to originate from intrinsically mechano-
chemical feedbacks between morphogen dynamics and
tissue mechanics.
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Figure 4: Pattern formation for cross-diffusion Turing
instabilities. (a) Phase diagram of (5) in the (χA, χI) space
obtained by numerical linear stability analysis. Parameters are
τ/(KAτA) = 0.01, Dm/D = 10, KI/KA = 10, τI/(KAτA) =
0.9, φ∗ = 0.85 and lA/l � 1. (b) 1D numerical simulation
of (5) using a simple inhibitor-inhibitor reaction scheme (SI
Appendix, Sec. 1.B).

As shown in [43], such cross diffusion terms result in
a dramatic broadening of the phase space for patterns.
In particular, any two-morphogen reaction scheme can
now generate spatial patterns and not just the classical
activator-inhibitor schemes. For instance, it becomes
possible to obtain patterns with activator-activator or
inhibitor-inhibitor kinetics similar to those observed in
numerous gene regulatory networks or signaling pathways
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involved in cell fate decisions [45]. We illustrate this
result by considering an inhibitor-inhibitor kinetic scheme,
which cannot yield patterns in the classical Turing
framework, wandemonstrate analytically and numerically
the existence of a region of stable patterns (from (5)),
where a cross-diffusion driven Turing instability can
develop (Fig. 4).

Discussion

In this paper, we have introduced a generalisation
of Turing’s work on pattern formation in biological
tissues by coupling equations describing the structure
and mechanical properties of multicellular tissues with
a classical reaction-diffusion scheme. In particular, our
work highlights two important features of multicellular
tissues, as of yet largely unexplored in this context:
their biphasic nature, i.e. the fact that morphogen
production/degradation is controlled by cells while
transport takes place extracellularly requiring active
membrane exchanges (effectively rescaling diffusion [9,
11]), and the possibility for active large scale flows
to develop within the tissue interstitial space. We
demonstrate that coupling tissue cell volume fraction
to local morphogen levels (based on the dual role
of morphogens in patterning and cell growth/volume
regulation [23,24]) provides a biophysically realistic route
towards two qualitatively different modes of patterning
instability. Extracellular fluid flows can have two
important consequences on patterning. Firstly, as the
Turing instability is rooted in the cross-effects between
a stable chemical reaction of two morphogens and their
diffusion, the conditions of such instability are deeply
affected by active hydrodynamic transport which can
create cross terms into the effective diffusion matrix.
This causes a drastic widening of the phase space of
Turing patterning, rendering it robust and only weakly
dependent on morphogens reaction scheme. Secondly,
extracellular fluid flows can also create an instability
of a different nature (Keller-Segel), when these flows
have an anti-diffusive structure, spontaneously creating
morphogens gradients. Here, chemical reactions between
morphogens are only setting the number of patterns, and
if such reactions are sufficiently slow, the spatial pattern
of morphogen always coarsens to the fundamental mode of
instability, and has robust scaling properties compared to
conventional Turing models. This could have interesting
implications concerning recent experimental evidences for
robust scaling of the Nodal/Lefty pattern in the early
zebrafish embryo [46].

In this respect, our approach, which has the advantage
of parsimony, taking into account the manifest biphasic
nature of multicellular tissues, is complementary to
others which have been proposed to solve limitations
of Turing’s model by introducing additional morphogen
regulators [42, 47], and also displays connections with
recent development in the mechano-chemical descriptions
of active fluids such as the cell cytoskeleton [15, 16].
Nevertheless, although our hypothesis of cell volume
fraction gradients driving large-scale flows is generic

to biphasic tissues, further quantitative experiments
would be needed to test the relationship between
morphogen concentration and cell volume fraction, as
well as probe the role of transmembrane import/export
kinetics or similar phenomena such as transmembrane
signaling [11], morphogen adsorption/desorption on cell
surface [9] and long-distance cellular protrusions [30],
on effective morphogen diffusion rates. Systems such
as digits patterning, where cell volume fraction spatial
pattern appears concomitant to morphogen patterns [26],
or planarian antero-posterior patterning, where pairs
of activator/inhibitor have not been clearly identified
[41], provide possible testing grounds for our model.
Interestingly, large-scale extracellular fluid flows have
been increasingly observed during embryo development,
not only in the classical case of cilia driven flows [48],
but also due to mechanical forces arising from cellular
contractions as well as osmotic and poro-viscous effects
[49, 50], calling for a more systematic understanding of
passive vs. active transport mechanisms during embryonic
pattern formation. Whether biological examples of Turing
patterning instabilities, such as left-right or dorso-ventral
patterning, digits pattern formation or skin appendages
patterns are causally associated with concomitant changes
in cell volume and/or cell packing remains a result to be
experimentally investigated.

Methods

Linear stability analysis was performed numerically using
Mathematica, while numerical integrations of the model
equations were performed using a custom-made Matlab
code.
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