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Abstract

Estimating and clustering cancer cell fractions of genomic alterations are central tasks

for studying intratumour heterogeneity. We present Ccube, a probabilistic framework for

inferring the cancer cell fraction of somatic point mutations and the subclonal composi-

tion from whole-genome sequencing data. We develop a variational inference method for

model fitting, which allows us to handle samples with large number of the variants (more

than 2 million) while quantifying uncertainty in a Bayesian fashion. Ccube is available at

https://github.com/keyuan/ccube.

Keywords: intratumour heterogeneity, cancer cell fraction, variant allele frequency,

variational inference

1. Introduction

A fundamental problem when studying intratumour heterogeneity is to estimate the

cancer cell fraction (CCF) of a single nucleotide variants (SNVs). The key difficulty is

that CCF is proportional to the number of mutated chromosomal copies, known as the

multiplicity of a mutation, which is also unknown. For any given mutation, the observed

variant allele frequency can be modelled by CCF times multiplicity. As a result, it is
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impossible to estimate CCF without making strong assumptions about what multiplicity

is. Several methods choose to prefix multiplicities, for example, DPClust [1] and PyClone

[2]. PhyloSub [3] and PhyloWGS [4] use phylogenetic trees to estimate the multiplicities.

This approach significantly increase the complexity of the model making model inference

difficult to scale.

We develop Ccube, a method using clustering (i.e. assuming multiple mutations share

the same CCF) to determine what the appropriate multiplicities are. The method takes

sequencing reads profiles of SNVs, corrects them for copy number alterations and purity,

and produces CCF estimates for all mutations within the sample.

2. Results

2.1. Mapping between variant allele frequency and cancer cell fraction

Given the purity of the sample and copy number profile at the locus of a SNV of interest,

there is a mapping between VAF and the CCF. Following [2], we formulate relationship

between VAF and CCF from a probability stand point. Generally speaking, we are dealing

with two questions here: first, are we observing a variant allele on the a sequencing read

covering the locus of the mutation i.e. read variable. Second, where is the read comes from

i.e. population variable. The key for the probabilistic view point is to consider VAF as the

marginal probability of observing a variant read, where the population variable is integrated

out:

p(read = variant allele) =
∑
s

p(read = variant allele, population = s) (1)

Following the definition in [2], the population variable has three possible states: normal

cell population, cancer cells that don’t bear the SNV, defined as the reference population

and cancer cells that carry the mutation, defined as the variant population. Based these

three possible populations. For each population, we have the probability of observing a read

coming from the population, and the conditional probability of the population contributing
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a variant read. The marginalisation can be written as,∑
s

p(read = variant allele, population = s) (2)

= p(population = normal)p(read = variant allele|population = normal)

+ p(population = reference)p(read = variant allele|population = reference)

+ p(population = variant)p(read = variant allele|population = variant)

The probability of observing a read coming from a population is proportional to the

prevalence of the population in the sample times its total copy number. Specifically, the

prevalence the variant population is CCF, φ. Therefore, we have

p(population = normal) =
(1− t)ntotn

C
(3)

p(population = reference) =
t(1− φ)ntotref

C
(4)

p(population = variant) =
tφntotvar

C
(5)

where ntotref , ntotvar , ntotn are the total copy numbers of cells in the reference, variant,

and normal populations, respectively. The normalising constant, C = (1 − t)ntotn + t(1 −

φ)ntotref + tφntotvar , make sure the probabilities add up to one.

We further assume the reference shares the same total copy number with the variant

population, ntotref = ntotvar . This corresponds to assuming all the cancer cells in the sample

share the same total copy number at the site of SNV, i.e. the copy number is clonal [1].

Using ntott to represent the clonal total copy number. We have:

p(population = normal) =
(1− t)ntotn

C
(6)

p(population = reference) =
t(1− φ)ntott

C
(7)

p(population = variant) =
tφntott
C

(8)

C = tntott + (1− t)ntotn (9)
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The conditional probabilities for populations to produce a variant read are:

p(read = variant allele|population = normal) = ε (10)

p(read = variant allele|population = reference) = ε (11)

p(read = variant allele|population = variant) =
m

ntott
(1− ε) (12)

where ε is a uniform sequencing error. m is the number of mutated chromosomal copy, the

multiplicity of the mutations.

Taken together, we obtain a linear mapping between the probability of observing a variant

read at a mutated locus, f , and the CCF of the mutation φ:

f = wφ+ ε (13)

w =
t(m(1− ε)− ntottε)
(1− t)ntotn + tntott

(14)

Assuming the number of read carrying the variant allele follows a binomial distribution,

the VAF is an unbiased estimator of f .

2.2. The Ccube model for estimating and clustering cancer cell fractions

Let i ∈ {1, ..., N} denotes the index for each variant considered, and k ∈ 1, ..., K denote

the index for the number of CCF cluster identified in the mixture. For the ith variant, bi and

di denote the number of reads reporting variant allele and the total number of reads. The

copy number profile at the ith mutation includes the total copy number of the tumour ni,tott ,

the total copy number of the normal population ni,totn , the copy number of the major allele

ni,majt , the copy number of the minor allele ni,mint . The number of mutated chromosomal

copies is denoted by mi.

The basis of Ccube is a Binomial mixture model. We assume the ith variant allele read

count bi follows a Binomial Distribution with total read count di and expected VAF fi as

its parameter

bi ∼ Binomial(bi|di, fi,k) (15)
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where

fi,k = wiφk + ε (16)

. where wi =
t(mi(1−ε)−ni,tottε)

(1−t)ni,totn+ρni,tott
.

The Ccube model can be shown as the following:

bi|zi,k ∼ Binomial(bi|di, fi,k)zi,k (17)

fi,k = wiφk + ε (18)

zi,k ∼ π
zi,k
k (19)

π1, ...πk ∼ Dir(α, ..., α) (20)

φk ∼ N (φk|µ0, σ
2
0) (21)

2.3. Variational inference for Ccube

The variational inference maximises the evidence lower bound (ELBO) of the marginal

likelihood of the model:

log p(b|d,m) = log

∫
p(b|d,Z,φ,m)p(Z|π)p(φ)p(π)dZdφdπ (22)

= log

∫
p(b,Z,φ,π|d,m)dZdφdπ (23)

≥ Eq(Z,φ,π) [log p(b,Z,φ,π|d,m)]− Eq(Z,φ,π) [log q(Z,φ,π)] (24)

where b = {bi}, d = {di}, Z = {zi,k}, φ = {φk}, π = {πk}, m = {mi}.

We adopt the common fixed-form mean field approximation, in which Z,φ,π are inde-

pendent:

q(Z,φ,π) = q(Z)q(φ)q(π) (25)

Maximising the ELBO with respect to the above q(Z,φ,π) yields the following forms:

q(Z) ∝ exp(Eq(φ,π) [log p(b,Z,φ,π|d,m)]) (26)

q(φ) ∝ exp(Eq(Z,π) [log p(b,Z,φ,π|d,m)]) (27)

q(π) ∝ exp(Eq(Z,φ) [log p(b,Z,φ,π|d,m)]) (28)
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These distributions are fitted to the data with a variational E-step and variational M-

step. In the E-step, we update the approximate posterior of the assignment.

log q(zi,k = 1) ∝ Eq(φ)[log p(bi|di, zi,k = 1, φk,mi)] + Eq(π)[log p(zi,k = 1|πk)] (29)

= log γi,k (30)

q(zi,k = 1) =
γi,k∑
j γi,j

(31)

In the variational M-step, we update the approximate posteriors on parameters φ and

π.

q(φk) = N (µk, σ
2
k) (32)

where,

µk = argmax
φk

g(b,d,m, zk, φk) (33)

σ2
k = −

(
∂2g(b,d,m, zk, φk)

∂φ2
k

)−1
(34)

g(b,d,m, zk, φk) = log p(φk|µ0, σ
2
0) +

N∑
i=1

Eq(zi,k)[log p(bi|di, fi,k, zi,k = 1)] (35)

The multiplicities are estimated as the following

m̂i = argmax
mi∈Mclonal

K∑
k

Eq(zi,k,φk)[log p(bi|di, fi,k, zi,k = 1)] (36)

where Mclonal = {1, ...ni,majt}.

Finally, q(π) is obtained as standard variational approximation for mixing weight in

mixture models [5].

3. Ccube pipeline

Preprocessing: The Ccube pipeline uses the clonal copy number, consensus purity and

variant and reference allele read counts from somatic point mutation calls.

Postprocessing steps: The core variational inference is ran with a range of possible

number of clusters. The solution with the best ELBO is selected. The solution is consisted
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of 1) posterior distributions of in terms of means and variances; 2) posterior probabilities

of each mutation to be assigned to all clusters and final assignments; 3) multiplicities and

observed CCFs based multiplicities. Clusters with less than 1% of mutation assigned are

removed. The mutations are re-assigned with variational expectation step. Clusters with

mean CCF closer than 10% are merged by re-running the inference with merged cluster

configuration. A typical graphical summary can be found in figure 1.

3.1. Estimating purity

Ccube pipeline also produces an independent purity estimate using mutations from bal-

anced copy number regions. For samples without whole-genome duplication, only mutations

in normal copy number regions are included. For samples with whole-genome duplication,

all mutations in balanced copy number regions are included. We then convert the allele

frequencies to cellular prevalence using the following equation:

fi =
ηini,tott

2((1− ηi)ni,totn + ηini,tott)
(37)

Where is the VAF of the ith mutation obtained as the ratio between variant and wild-type

allele counts, η is the cellular prevalence of the th mutation, are the total copy number of

normal and tumour populations respectively. We then cluster the using students-t mixture

model. The model is fitted with the variational Bayes approach described in [6]. The purity

corresponds to the component with the largest mean, in additional the eligible component

must have at least more than 1.5% of mutation assigned to it.
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Figure 1: An example of Ccube sample results summary. A: Scatter plot of VAF and CCF. Each point in

the figure is a mutation color coded by its cluster membership. The gray dashed line are all possible linear

mappings (eq. 1) determined by copy number and multiplicity configurations in the sample. B: Histogram

of observed CCFs. The red solid line shows the approximated posterior distribution of CCF cluster centers.

The peak at CCF=1 corresponds to the clonal cluster. C: The number of variants assigned each CCF cluster.

Each CCF cluster is labelled by it cluster center.
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