Abstract
Alignment of sequence families described by profiles provides a sensitive means for establishing homology between proteins and is important in protein evolutionary, structural, and functional studies. In the context of a steadily growing amount of sequence data, estimating the statistical significance of alignments, including profile-profile alignments, plays a key role in alignment-based homology search algorithms. Still, it is an open question as to what and whether one type of distribution governs profile-profile alignment score, especially when profile-profile substitution scores involve such terms as secondary structure predictions. This study presents a methodology for estimating the statistical significance of this type of alignments. The methodology rests on a new algorithm developed for generating random profiles such that their alignment scores are distributed similarly to those obtained for real unrelated profiles. We show that improvements in statistical accuracy and sensitivity and high-quality alignment rate result from statistically characterizing alignments by establishing the dependence of statistical parameters on various measures associated with both individual and pairwise profile characteristics. Implemented in the COMER software, the proposed methodology yielded an increase of up to 34.2% in the number of true positives and up to 61.8% in the number of high-quality alignments with respect to the previous version of the COMER method. A new version (v1.5.1) of the COMER software is available at https://sourceforge.net/projects/comer. The COMER software is also available on Github at https://github.com/minmarg/comer and as a Docker image (https://hub.docker.com/r/minmar/comer).