
 

1 

PolyCRACKER, a robust method for the unsupervised partitioning of 

polyploid subgenomes by signatures of repetitive DNA evolution 

Sean P. Gordon1*†, Joshua J. Levy†1,2, John P. Vogel1,2* 

1DOE Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, CA 94598 

2University of California Berkeley, Berkeley, CA 

†contributed equally to this work 

*To whom correspondence should be addressed. Contact: brachypodium@gmail.com 

Abstract 

Existing methods for assigning sequences to individual species from pooled DNA 
samples rely on differences in genome properties like GC content or sequences from 
related species. These approaches do not work for closely related species where gross 
features are indistinguishable and related genomes are lacking. We describe a method and 
associated software package that uses rapidly evolving repetitive DNA to circumvent 
these limitations.  By using short, repetitive, DNA sequences as species-specific signals 
we separated closely related genomes without any prior knowledge. This approach is 
ideal for separating the subgenomes of polyploid species with unsequenced or unknown 
progenitor genomes.  

 

Keywords: allopolyploid, k-mer, transposon, binning, evolution, repetitive DNA, subgenome, 
wheat, tobacco, metagenome 
 

Introduction 

Researchers studying two traditionally distinct areas of biology, metagenomics and 
polyploid genome evolution, face a similar technical challenge: How do you separate closely 
related genomes or subgenomes from a single sample? Current approaches consist of either 
supervised binning, requiring a database of known genomes, or unsupervised binning using 
general genome characteristics as a ‘genome signature’ to identify and separate DNA sequences 
from different species/subgenomes [1, 2]. Genome signatures can be any kind of bias (e.g. 
similarity to known sequences, short nucleic acid sequences, GC content, sequence depth) that 
differs between species or subgenomes. In particular, di- and tetra-nucleotide frequencies along 
with contig co-abundance (a given species may have a distinct abundance relative to others in a 
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metagenome sample) can be used to successfully bin sequences within metagenomes [3]. These 
coarse approaches work best with highly divergent taxa and there is much room for improvement 
in sensitivity and accuracy when grouping sequences appropriately at the species level. 
Furthermore, subgenomes within allopolyploids have the same sequence depth profile and 
similar di- and tetra-nucleotide frequencies, making these features uninformative. In fact, 
orthologous gene sequences between the subgenomes in an allopolyploid (homeologous 
sequences) are far more similar to each other than they are to other sequences within the same 
subgenome. 

Polyploidization has played a large role in the evolution of all flowering plants and many 
extant species are recent polyploids [4]. In addition, polyploidization has played a role in the 
evolution of many fungal, fish and amphibian species [5, 6]. A large fraction of polyploid species 
are derived from the hybridization of different species and are termed allopolyploids. 
Understanding the evolution and regulation of polyploid genomes requires the creation of 
accurate assemblies for each subgenome. The high level of sequence similarity between 
subgenomes makes this particularly challenging and even state-of-the-art genome assembly 
algorithms often collapse and/or incorrectly interweave chunks of homeologous chromosomes. 
Significantly, without high resolution genetic maps or related data these errors remain 
undetected. These errors are not necessarily resolved by long-read technologies, since such 
assemblies are still fragmented in many thousands of pieces [7]. Lack of subgenome resolution 
for allopolyploid genomes is a major obstacle to studying the origin, evolution, and functional 
analysis of allopolyploid species [8]. 

For some allopolyploid species, extant diploid species similar to the true progenitors can 
be used to disentangle subgenomes [7]. However, for many allopolyploids [9, 10], the diploid 
parents are unknown or extinct. Even when extant progenitor-like species exist, they may not 
well reflect the genomes of the individuals that gave rise to the allopolyploid. Thus, unguided 
methods for identification and extraction of subgenomes within allopolyploids would be 
extremely useful. Recently a phasing method was developed for the highly heterozygous sweet 
potato genome [11]. However, this method is limited to highly polymorphic genomes and is 
restricted to single-copy sequence present in each subgenome that can be accurately genotyped.  

 Deliberate integration of synthetic transposons with molecular barcodes is a common 
experimental approach to label subpopulations of DNA or cells to allow subsequent retrieval 
from complex mixtures [12]. Nature’s equivalents of synthetic molecular barcodes include 
transposons, viruses, and other classes of repetitive DNA. These elements rapidly proliferate and 
evolve in natural populations, thus labeling the recent evolutionary history of an organism’s 
genome (Fig. 1) [13]. Transposon families may dramatically expand and contract over short 
periods of evolutionary time, during which they may also significantly change in sequence 
identity. For example, the size of the Oryza australiensis genome doubled in just a few million 
years due to the amplification of a few LTR retrotransposon families [14]. Removal of LTR 
retrotransposons by illegitimate recombination can eliminate megabases of sequence over similar 
timescales [13, 15]. Thus, two recently diverged species may quantitatively differ in the 
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frequency of transposon families they harbor and the sequence identity of those families.   
   In the context of allopolyploids, repeats in the parental species change and proliferate 
independently after those species diverge creating species-specific genomic signatures. Once 
reunited within a single cell of an allopolyploid, these repeats are free to proliferate between the 
subgenomes and these additional copies are specific to the allopolyploid but not the progenitor 
species. If additional subgenomes are added via subsequent additional hybridizations, then the 
initial allopolyploid-specific repeat signatures may distinguish initial subgenomes from 
subgenomes added during later rounds of inter-specific hybridization. Fortuitously, the process 
of interspecific hybridization may in fact trigger virus and transposon proliferation [16]. Thus, 
naturally occurring repetitive DNA can be used as molecular barcodes to distinguish genomes 
and subgenomes.  

Here we describe an algorithm that identifies natural molecular barcodes that act as 
species of origin labels for the DNA sequences in which they reside. Our method creates and 
partitions a graph in which sequences are connected by edges, corresponding to specific 
signatures of repetitive DNA inferred from 11-131 nucleotide sequences (k-mers). Our method 
allows accurate separation of the subgenomes of polyploid species without prior knowledge of 
the genomes or a database of known sequences. We further built a toolkit of functions, 
implemented as a python package called polyCRACKER (polyploid Cluster Repeats by 
Ancestral Common K-mer Estimation and Retrieval), for the automatic binning of sequence 
scaffolds from polyploid genomes. Our method draws its inspiration from other unsupervised 
algorithms for binning sequences commonly applied to metagenome datasets, but by focusing on 
repetitive k-mers with faster rates of divergence between two species, rather than all k-mers or a 
random sampling of k-mers, our method is not confounded by the overall high sequence 
similarity between homeologous sequences in allopolyploids or sequencing datasets containing 
genomes from multiple closely related species. 
 

Results 

 We designed an efficient unsupervised learning algorithm to automatically identify and 
extract DNA sequences within complex mixtures based on the shared presence of short repeated 
DNA sequences (k-mers) that act as naturally occurring molecular barcodes (Fig. 1).  A sample 
containing a mixture of species is sequenced and assembled to scaffolds that are unordered with 
respect to their species of origin. Most scaffolds contain multiple k-mers derived from repetitive 
DNA elements. We construct a graph where sequences are nodes and their profile of shared 
repeat-k-mers are edges. By connecting all instances of a given repetitive k-mer, we are able to 
connect and subsequently group sequences derived from a common species (Fig. 1). It is notable 
that while both high and low copy k-mers may be specific to one species versus another, only 
high copy k-mers provide the multiple edges between multiple different sequence nodes 
necessary to group sequences together by species of origin.  
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Figure 1. Overview of the strategy for determining species of origin for sequences based on their 
profile of repetitive k-mers. The algorithm takes sequences from a sample containing one or more 
species. Each species has both common and divergent repetitive k-mers scattered throughout its 
genome. Each k-mer is indicated by a different color (for clarity, only divergent k-mers are shown). 
We construct a graph where sequences are nodes and shared instances of repetitive k-mers are edges. 
By connecting all instances of a given repetitive k-mer we are able to connect and subsequently 
group sequences derived from a common species.  
 

polyCRACKER method for unsupervised partitioning of sequence into species bins.  

Unsupervised partitioning of sequences proceeds in two phases: 1) initial partitioning of 
sequences into species bins via a nearest neighbor’s graph of repeat-k-mers and 2) signal 
amplification from groups identified in the first phase.  

 
Initial partitioning of sequences into species bins can be broken down into three main steps. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484832doi: bioRxiv preprint 

https://doi.org/10.1101/484832
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

a. Repeat-k-mers are selected based on the number of times they appear throughout the 
genome. Typically, fixing the genome size, as the k-mer size is increased, the 
threshold for the lowest allowable k-mer frequency should be reduced. As the genome 
size is increased, these thresholds can be relaxed.  This balance is based on the 
requirement that any given subsequence (contig or scaffold) in the genome must have 
one or more repeat-k-mers associated with it in order for it to be portioned into a 
subgenome bin. 

b. Sequences from a sparse count matrix of genome sequences versus k-mers are 
projected into a lower dimensional space, where the distance between points/scaffolds 
is indicative of the degree of shared repetitive k-mer content.  

c. A nearest neighbors graph is constructed from these projected data points. Each node 
represents a sequence, while each edge demonstrates that two sequences share a 
highly similar distribution of repetitive k-mers. In this sense, an edge is a proxy for 
connecting the instances of shared repeat-k-mers. The scaffolds are partitioned into 
bins by cutting this graph at regions with a low density of connections. 

 
The signal amplification phase consists of two iterative steps that recruit previously unclassified 
scaffolds to the appropriate subgenome/species bins.  
 

d. Differential repeat-k-mers are identified between the initially extracted 
subgenomes/species bins. The frequencies of those differential repeat-k-mers within 
all genome sequences is used to recruit additional sequences into respective 
species/subgenome bins.  

e. A new set of differential repeat-k-mers pertaining to the new subgenomes/species bins 
are identified, and are once again used assign sequences to a species/subgenome. 
These steps are iterated until the new species/subgenome bins converge towards a 
fixed size.  

 
Polyploid genome analysis 

The creation of polyCRACKER was motivated by prior sequence binning applications, 
particularly in the unsupervised metagenomics binning field.  However, tools designed for 
unsupervised binning of metagenomes either require input that is not relevant for allopolyploid 
analysis, such as multiple samples from different microbial environments, or rely too heavily on 
large overall differences in k-mer frequency that are typically not found between highly similar 
allopolyploid subgenomes. However, as discussed above, it has been shown that the profile of 
repetitive k-mers may vary considerably between allopolyploid subgenomes.  We therefore 
investigated whether a method specifically focusing on the tracking of repeat-k-mers in 
allopolyploid genomes would enable database-free species-level binning. Initial results on 
simulated datasets representing mixtures of closely related microbial genomes showed promise, 
even when these genomes had relatively low levels of repetitive DNA (Supplementary Data, Fig. 
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1, Tables 1,2). These results encouraged us to turn our attention to the unsupervised separation of 
subgenomes from larger, more complex allopolyploid genomes. 
 
Subgenome analysis of the allotetraploid plant, Nicotiana tabacum 

Nicotiana tabacum is thought to have formed less than 200,000 years ago by the 
hybridization of two diploid species similar or identical to Nicotiana sylvestris (source of the S-
subgenome) and N. tomentosiformis (source of the T-subgenome). The genome of N. tabacum is 
slightly smaller than the combined sizes of its diploid progenitors due to the preferential loss of 
repetitive sequence from the T-subgenome [17]. Initial studies comparing the N. tabacum 
genome to the genomes of N. sylvestris and N. tomentosiformis assigned about 80% of the 
assembly to the S- or T-subgenomes [7, 18]. A recent study used optical and genetic maps to 
assign 64% of the assembled N. tabacum sequence to pseudomolecules [7]. A significant 
complicating factor in the separation of the S- and T-subgenomes is the large number of 
translocations that have occurred between the S- and T-progenitor chromosomes [4]. Thus, 
identifying and separating the ancestral S- and T-subgenomes from the modern allopolyploid 
requires classification of alternating stretches of contiguous DNA within chromosomes and not 
simply labeling of whole chromosomes.  

We created an initial dataset for testing and verification of polyCRACKER for polypoid 
analysis by splitting the sequences within the pseudomolecule-anchored portion of the N. 
tabacum genome into non-overlapping 250 kb segments. This later allowed us to visualize 
subgenome classification with respect to position within pseudomolecules. This was particularly 
important for N. tabacum due to the numerous translocations that have occurred between 
subgenomes and the uncertainty of whether polyCRACKER could accurately assign progenitor 
of origin to pseudomolecules containing sequences from different progenitors. We validated the 
assignment of progenitor of origin by polyCRACKER by using, in this case, the known (and also 
assembled) progenitors of the allopolyploid, N. sylvestris and N. tomentosiformis.  We quantified 
agreement between polyCRACKER subgenome assignments and the subgenome  assignments 
determined by comparison to the progenitor genome sequences. Relationships between N. 
tabacum sequences are depicted in PCA plots (Fig. 2a,b) and a spectrally embedded graph (Fig. 
2c). Each data point in the PCA plot corresponds to a 250 kb subsequence and the proximity of 
the points indicates the degree of shared repetitive k-mers. Points were colored by their inferred 
progenitor of origin via polyCRACKER (Fig. 2a) or by comparison to the diploid progenitor 
genomes (Fig. 2b). Subsequences were linked to their 20 nearest neighbors to create a network 
graph. The energy minimization of a non-repulsive force-directed graph of the 20 nearest 
neighbors yields spectrally embedded data (spectral embedding/laplacian eigenmaps); 
polyCRACKER groups subsequences by clustering the spectral embedding of the dimensionality 
reduced data. This is depicted in Fig. 2c, in which nodes (sequences) are colored according to 
their species of origin assignment based on comparison to the diploid progenitor genomes. 
Spectral clustering performs k-means clustering on the spectrally embedded data in Fig. 2c, 
analogous to making cuts in the weakest links in the graph. 
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Figure 2. Unsupervised grouping of 250 kb fragments derived from the pseudomolecule-anchored 
portion of the N. tabacum genome by polyCRACKER using repetitive k-mers and intact repeats. (a 
and b) PCA of repetitive k-mer count matrix of k-mers versus 250 kb genome segments for N. 
tabacum. S and T genomes are colored green and blue respectively, ambiguous segments are labeled 
red. (a) Sequences labeled by similarity to the known progenitor-like species. (b) Sequences labeled 
by polyCRACKER’s k-mer analysis. Note that a and b are nearly identical. (c) Spectral embedding 
of N. tabacum dimensionality reduced information, in which edges (grey lines) represent shared 
repetitive k-mer profiles) that connect sequences. Sequences labeled by similarity to the known 
progenitor-like species. (d-f) Analogous unsupervised grouping as above, but using informative and 
differential repeats rather than k-mers. Color labels as described above. (d) Sequences labeled by 
similarity to the known progenitor-like species. (e) Sequences labeled by polyCRACKER’s repeat 
analysis. Note that a,b,d and e are nearly identical. (f) Spectral embedding of N. tabacum 
dimensionality reduced information, in which edges (grey lines) represent shared repeat element 
profiles that connect sequences. Sequences labeled by similarity to the known progenitor-like 
species.  Note the increased number of ambiguous subsequences in f as compared to c is due to the 
fact that there are fewer repeats than k-mers in any given scaffold. This is analogous to the effect of 
increasing k-mer size substantially. 
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  PolyCRACKER correctly classified 99.3 percent of sequence estimated to belong to the 
ancestral S-subgenome and 99.7 percent of sequence belong to the ancestral T-subgenome, based 
on comparison to the subgenome assignments made using the diploid progenitor genomes. The 
intersection of polyCRACKER classification and classification based on the diploid progenitor 
genomes constituted 86.5 percent of the total N. tabacum assembly, with the remaining sequence 
almost entirely unclassified by either method (very short scaffolds). We graphically show the 
high similarity between polyCRACKER and reference-genome based subgenome classification 
in Fig. 3b,c. 
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Figure 3. Comparison of N. tabacum subgenome classification via polyCRACKER versus 
progenitor-dependent species binning method. Circos plot showing the 24 pseudomolecules (Nt1–
Nt24) in the N. tabacum reference genome. With tracks for (a) chromosome, (b) progenitor-based 
subgenome classification (c) polyCRACKER subgenome classification (d) coverage of 
polyCRACKER-identified differential k-mers belonging to N. sylvestris, (e) coverage of N. 
tomentosiformis differential k-mers, (f) TE density, and (g) gene density.  Synteny between 
pseudomolecules is represented by colored lines within the circle. Tracks b, c, f, and g represent 
classification labels and densities spanning 250 kb bins, while tracks d and e represent coverage over 
75 kb bins. 
 

We explored k-mer length as a parameter for polyCRACKER performance and found k-
mers as short as 15 nucleotides were sufficient to confidently distinguish the tobacco 
subgenomes (Fig. 4, Table 1). Increasing k-mer length (specificity) can decrease sensitivity by 
decreasing the frequency of repeat-k-mers spread across the genome sequences, but this can in 
part be compensated for reducing threshold for defining a k-mer as repetitive or by reducing the 
k-mer length (Fig. 4, Table 1). Sensible recommendations for selecting this k-mer length, 
amongst other hyperparameters, can be ascertained by observing the number of repetitive k-mers 
per fragment of the fragmented N. Tabacum assembly (Fig. 5). If the number of repetitive k-mers 
is extremely skewed left, as in the two fragmented algae assemblies (Supplemental Figure 1), 
then the k-mer length should be decreased, at the expense of introducing more noisy degenerate 
k-mers.  

 

Figure 4. Increasing k-mer length decreases the frequency of repetitive-k-mers spread across the 
genome. A range of k-mer lengths were tested for N. tabacum. 
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Table 1  Increasing k-mer length decreases the ability of polyCRACKER to assign N. tabacum 
genome sequences to a subgenome. The threshold for minimum counts for k-mers scales 
inversely to the k-mer length.  
 

Kmer 
length 

Minimum k-mer 
count threshold 

Cohen’s Kappa: 
unambiguous; all 

sequences 

Amount Sequence 
Agreement / Total 

Genome 

Number of k-
mers used 

15 150 0.998, 0.991 0.868 929,119 

23 150 0.998, 0.989 0.867 296,059 

26 150 0.998, 0.985 0.865 195,362 

33 120 0.998, 0.986 0.866 108,370 

43 100 0.997, 0.975 0.859 35,058 

53 80 0.993, 0.996 0.826 13,061 

 
 

The N. tabacum analysis described above was based on the subset of sequences anchored 
into pseudomolecules [7] in order to show the classification agreement distributed across the 
chromosomes. However, only 64% of the assembled N. tabacum sequence is assigned to 
pseudomolecules. In order to both provide a comprehensive analysis of N. tabacum subgenomes 
and to show that polyCRACKER work efficiently and accurately on fragmented draft 
assemblies, we repeated our analysis on the Illumina/454 draft genome assembly from the same 
study.  This draft assembly was produced prior to long-range scaffolding with optical mapping 
and has a contig L50 of only 8.9 kb (scaffold L50 of 278 kb). Although this assembly was 
already composed primarily of many small subsequences, we still split larger scaffolds of this 
assembly into non-overlapping 100 kb segments in order to partially normalize subsequence 
lengths. polyCRACKER works best with datasets that do not have wide dispersion in length. 
Subsequences are later easily tracked back to their origin. We then combined subsequences with 
all scaffolds greater than 2.5 kb. Scaffolds less than 2.5 kb were excluded because they do not 
contain enough repetitive k-mers for confident classification. After removing the smallest 
sequences, this dataset contained 94 percent of the N. tabacum genome assembly, and 
PolyCRACKER was able to assign 99.5 percent of sequence estimated to belong to the S 
subgenome (2.1 Gb, 990 Mb more sequence than that anchored to psuedomolecules) and 99.1 
percent of sequence estimated to belong to the T subgenome (1.7 Gb, 262 Mb more sequence 
than that anchored to psuedomolecules). Sequence assigned to the same subgenome by both 
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polyCRACKER and comparison to the progenitor species constituted 99.2 percent of the genome 
(Table 2). 

 

Figure 5. Distribution of the number of repeat-mers for all of the chunked genome fragments of N. 
Tabacum’s psueodomolecule-anchored assembly. 
 

Subgenome classification in the complex allohexaploid, Triticum aestivum 
To show the scalability of our method, we applied polyCRACKER to group sequences by 

species of origin for wheat, Triticum aestivum [9]. The enormous allohexaploid wheat genome is 
approximately five times larger than the human genome and its three subgenomes are designated 
A, B, D. Diploid species similar to the progenitors of two of the subgenomes have been 
identified: Aegilops tauschii for the D subgenome and Triticum urartu for the A subgenome. A 
chromosome-scale genome assembly of Aegilops tauschii, the D-genome progenitor of wheat, 
was recently published [19] and assembled scaffolds are available for T. urartu [20]. We used an 
alignment-based method to assign progenitor of origin to 250 kb non-overlapping segments of 
the 15 Gb T. aestivum assembly [9]. We used this draft genome of T. aestivum, rather than the 
more recent chromosome-scale assembly, as the draft genome is still a relatively fragmented 
genome (N50 contig size of 232,659 bases), which is reflective of more typical of assemblies for 
large, complex, allopolyploid genomes. We used 250kb subsequences for initial clustering and 
included all possible smaller sequences later via signal amplification. PolyCRACKER grouped 
12.5 Gb of sequence into one of three sequence bins. Overall agreement between 
polyCRACKER groups and classification based on alignment to Aegilops tauschii and Triticum 
urartu was 0.997 (Cohen’s Kappa) (Table 2).  
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Table 2 Unsupervised separation of subgenomes from polyploid plants using 
PolyCRACKER’s differential k-mer analysis. 

 

Species 
Sub 

sequence 
length 

k-mer 
length 

Genome 
Size 

Cohen’s 
Kappa (only 

unambiguous) 

Cohen’s Kappa 
(including 

ambiguous) 

Sequence in 
agreement / 

total sequence 

N. tabacum 
(including 
unanchored 
sequences) 

100 kb 26 3.8 Gb 0.999 0.984 0.992 

N. tabacum 
(only 
anchored 
sequences) 

250 kb 26 2.9 Gb 0.998 0.985 0.865 

N. tabacum 
(only 
anchored 
sequences), 
repeat 
elements 

250 kb n/a 2.9 Gb 0.995 0.87 0.795 

Triticum 
aestivum 

250 kb 26 15.3 
Gb 

0.993 0.993 0.997 

 

 

In Fig. 6c, the PCA plot of scaffolds versus repeat-k-mers (Fig. 6a) were subset and 
colored by scaffolds belonging to the polyCRACKER-identified A and D genomes. There is a 
high correspondence between this plot and a PCA plot with the same set of scaffolds colored by 
their reference-based classification (Fig. 6d). 
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Figure 6. Unsupervised grouping of Triticum aestivum subsequences by progenitor of origin using 
repeat-k-mers. (a) PCA labeled by database-free grouping of 250 kb genome segments by 
polyCRACKER (Subgenomes A, D and B are colored green, blue, and red respectively). (b) Spectral 
embedding of Triticum aestivum dimensionality reduced information (reduction to 4-dimensions, 
visualized in 3-dimensions), in which edges (grey lines) represent shared repeat-mer profiles that 
connect genome sequences. (c) Database-free grouping of A and D subgenomes by polyCRACKER, 
and (d) sequences colored by their similarity to T. urartu (green) and A. tauschii (blue). 
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Repeat annotation and analysis in N. tabacum. 
In addition to using k-mers to separate subgenomes, PolyCRACKER can use repetitive 

elements, such as LTRs and other transposons, found via common repeat finding programs such 
as RepeatModeler and RepeatScout, to separate subgenomes by identifying differential repetitive 
elements.  

Using the pseudomolecule-anchored scaffold set, chosen because of a lower dispersion in 
subsequence length as compared to the unanchored scaffolds, 300 differential repeats were 
identified, then used to separate the subgenomes of N. tabacum following the same approach 
used for k-mers (Fig. 2d-f). A total of 2.3 Gb out of 2.9 Gb, 79.5% of the total pseudomolecule-
anchored genome sequence, was successfully assigned to the S and T subgenomes that were also 
in agreement to progenitor-mapped labels. The subgenome assignments from the repeat analysis 
demonstrated 0.87 agreement with the progenitor mapped labels (Cohen’s Kappa) (Fig. 2 d-f).  

In addition, polyCRACKER identified enriched subclasses of repeat elements that 
contributed significantly to the subgenome assignments by comparing the categorical distribution 
of the informative differential consensus repeats to the null distribution, and assigning a high chi-
squared value to repeat subclasses that are over or under represented in the group of informative 
differential repeats. The top subclass, Unknown, with a highest chi-squared value of 780.74, was 
found. The same analysis was done for top subclass two, Simple Repeats, and top subclass three, 
LTR/Gypsy (Supplemental Table 3). 

 

Table 3 Dimensionality reduction and clustering techniques used in polyCRACKER for this 
study. 

Species Dimensionality reduction technique Clustering technique 

N. tabacum (including 
unanchored sequences) 

KPCA with cosine kernel Bayesian Gaussian Mixture 
Models 

N. tabacum (only anchored 
sequences) 

KPCA with cosine kernel Spectral Clustering 

Triticum aestivum KPCA with cosine kernel Spectral Clustering 

 

Discussion 
 

The ability to accurately separate closely related genomes or subgenomes without prior 
knowledge of their composition, relationship or a database of known species is a significant 
advancement for the study of polyploid genomes. We analyzed test datasets comprised of 
multiple closely related species and real polyploid genomes to demonstrate the ability of 
polyCRACKER to separate genomes ranging from small fungal genomes with little repetitive 
DNA (Supplemental Table 1) to enormous repeat-rich polyploid plant genomes (Table 2). By 
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enabling subgenome-specific analysis polyCRACKER can accelerate rapid advancements in our 
understanding of polyploid genome evolution and regulation. In particular, it will enable 
functional studies of genes according to subgenome, promote a deeper understanding of genome 
dominance and enable comparative studies of diverse polyploids to discern any rules governing 
polyploid genome evolution.  

PolyCRACKER will be particularly useful for the latter by allowing analysis of polyploid 
species that do not have advanced genetic resources like genetic maps. It should be noted that 
our overall primary goal for developing polyCRACKER is beyond simply assigning sequences 
to their subgenome within the modern allopolyploid.  Assignment of sequences to their location 
within the modern allopolyploid can be accomplished by ever-improving technologies including 
optical maps, genetic maps, Hi-C data, and various long-read sequencing technologies.  Rather, 
the goal of polyCRACKER is to assign sequences to their ancestral progenitor subgenome and 
clarify what sequences were donated by which ancestral progenitor (even a possibly extinct 
progenitor).  PolyCRACKER is not limited to the analysis of only genomes with long-range 
contiguity or scaffolding, as demonstrated by our use of fragmented draft genome assemblies.  
However, if the analyzed genome does have sufficient long-range information, additional insight 
can be gleaned in the form of identification of translocations between the original progenitor 
genomes.  As shown in Figure 3, modern chromosomes of tobacco are a mosaic of the original 
progenitor genomes. While this is known for tobacco, due to the availability and prior 
identification of its progenitor species, for many allopolyploid species the progenitors of origin 
are unknown or extinct.  Therefore, polyCRACKER may be particularly useful in identifying 
historical or ongoing genetic exchanges between homeologous chromosomes when applied to 
genomes with long-range information. In such cases, polyCRACKER can uncover the frequency 
and location of chromosomal translocations between ancestral progenitor genomes.  Nonetheless, 
biological translocations within the evolutionary history of a species is not the only means by 
which chromosomal mosaics of ancestral progenitors is observed.  Indeed, errors in genome 
assembly of allopolyploids in which a subsequence of one homeologous chromosome is inserted 
in place of the true sequence often produces the same observation. This occurs frequently in 
allopolyploid genome assemblies as many sequences within homeologous chromosomes are 
virtually identical (with the exception of transponsons, viral DNA and other repetitive 
sequences). Thus polyCRACKER may be useful check for evaluating assembly accuracy and 
identifying potential mis-assemblies in allopolyploid genomes. 

Repetitive DNA is a major component of eukaryotic genomes. While polyCRACKER 
exploits the rapid turnover and evolution of repetitive elements to separate closely related 
genomes, it can also be used as tool to study the origin, evolution, and impact of repetitive DNA 
on the entire genome. We used the differential k-mers identified by polyCRACKER to assign 
assembled repeats to subgenomes. This also placed the k-mers into the context of intact 
repetitive elements. We also demonstrated that subgenome-specific repetitive elements could be 
used to bin subsequences by subgenomes. 

Existing unsupervised methods used to separate subgenomes were developed to bin 
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genomes from metagenome samples and are ill-suited for classifying allopolyploids because the 
homeologous chromosomes often have more similar overall k-mer profiles than the profiles of 
chromosomes within their respective subgenomes. In contrast to previous algorithms and 
approaches for grouping sequences by species of origin, we focus on the fact that even closely 
related species often differ in the frequency of repeat sequences present throughout their genome. 
This is particularly useful for polyploid genomes because such genomes are usually so closely 
related that they do not differ in coarse genome features like tetranucleotide frequency, GC 
content, or codon usage. Such repeats may correspond to sequences associated with transposons, 
viruses, and other parasitic sequences that have proliferated in one species relative to another. By 
1) counting the number of instances of short and/or long repeat k-mer sequences, 2) creating a 
sparse matrix of number of instances of k-mers by the subsequences on which they occur, 3) 
reducing the dimensionality of the sparse matrix by one of several known (Table 3), and 4) 
applying a clustering method (Table 3) we can group scaffolds into bins that correspond to 
distinct species. We can then further increase signal by taking the resulting binned sequences and 
1) counting k-mer frequency, 2) identifying k-mers that are enriched in one bin versus other bins, 
and 3) use the presence of enriched  k-mers on previously ambiguous sequences to group them 
into the appropriate species bin. 

Biased loss of repetitive sequence is often observed in allopolyploids and in the case of 
N. tabacum, repetitive sequence appears to have been preferentially lost from the T-subgenome 
[17]. Indeed, both polyCRACKER and database-dependent classification of N. tabacum confirm 
that the S-subgenome is substantially larger than the T-subgenome as suggested by others 
previously, and consistent with biased repetitive sequence loss from the T subgenome. We also 
identify several classes of repeats that are enriched in each subgenome. Our observation of 
significant enrichment of simple repeats in the T-subgenome is consistent with the previous 
observation that some classes of satellite repeats are several-fold more prevalent in N. 
tomentosiformis than in N. sylvestris [17, 21]. Our observation of significant enrichment of 
tranLTR/Gypsy and unknown elements in the S-subgenome of N. tabacum is consistent with the 
prior suggestion that N. sylvestris, but not N. tomentosiformis, had recent bursts of repeat element 
proliferation, likely involving Gypsy transposable elements [17]. In conclusion, polyCRACKER 
is a robust method for classifying sequences according to species of origin that will be important 
in future studies of allopolyploids. 

 

Methods 
We describe a method to group sequences belonging to the same subgenome that consists 

of connecting sequences within a graph in which edges are shared profiles of repetitive k-mers. 
The network graph is established by considering a user-supplied number of regions with closest 
repeat distributions (number of nearest neighbors). The distance between sequence nodes in the 
graph is indicative of the level of shared k-mers. Thus, polyCRACKER groups sequences by 
species of origin by connecting nodes, representing sequences, by edges that represent the 
common occurrence of repetitive DNA sequences unique to that species or subgenome. This 
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technique was applied to highly fragmented draft genome assemblies or simulated assemblies. 
Scaffold lengths were normalized by splitting larger sequences into shorter subsequences. 
PolyCRACKER identifies potentially informative k-mers that occur above a minimum 
frequency. This greatly reduces the number of k-mers that are subsequently mapped to the 
scaffolds to determine their per scaffold frequency. 

PolyCRACKER creates a sparse matrix, in which rows correspond to fragments and 
columns are unique k-mers, and each intersection contains the frequency of each unique k-mer 
on each scaffold subsequence. Then, it performs dimensionality reduction on the sparse matrix, 
projecting the high-dimensional data into a lower-dimensional space, where each subsequence is 
represented by a point in the lower dimensional space. At this point we can visualize the data in 
three-dimensional graphical plots (Figs. 2c,f and 6b). In order to assign sequences to species or 
subgenomes, polyCRACKER performs unsupervised clustering on the low-dimensional data via 
clustering. Any ambiguous sequences are removed, but may be used later through a signal 
amplification method described below.  

To assign additional subsequences to species bins, polyCRACKER identifies highly 
differential k-mers between the initially grouped scaffolds and uses these k-mers to recruit the 
remaining, ambiguous subsequences. Similar to above, we identify unique k-mers for each 
preliminary group of scaffolds, and then identify k-mers that differentiate those already grouped 
sequences by comparing the number of occurrences of a particular k-mer in one group versus the 
others. K-mers that occur frequently in one group, but not in at least one of the others, past a 
certain threshold, are output to a FASTA file as differential k-mers for that group. 
PolyCRACKER maps each set of the differential k-mers against the entire set of scaffolds in the 
assembly. We then find the total counts for the sum of all differential k-mers of a particular 
group for each subsequence. The results of the aforementioned step may be plotted across entire 
chromosomes (Fig. 3) as a cross-check for the test case, which was done using shinyCircos [22] 
(polyCRACKER formats the input data for shinyCircos). When the total counts of an inferred 
subgenome’s differential k-mers in a region are substantially larger than that of the differential k-
mers of another inferred subgenome in that region, polyCRACKER extracts the binned 
sequences and stores them in FASTA format. The now larger set of grouped subsequences can 
be used as the new input for another round of differential k-mer analysis to recruit more 
subsequences. The previous steps (recruiting differential k-mers and binning sequences) are 
repeated until the number of iterations reaches a user-defined cutoff, and the user can select the 
species bins from any iteration of the binning process. The final results and spectral graph can be 
visualized in several ways, including force-directed physics simulations of the K-nearest-
neighbors graph to visualize changes in the data’s structure over time. An analogous approach 
can be taken for binning sequences by repeat elements, although the k-mer analysis results must 
be used as an input for that algorithm to identify the initial differential repeat elements. 

 
Itemized below is a high-level flow summary for the aforementioned methodology: 

1. Break the assembly into chunks of a fixed size, keeping track of the scaffolds 
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 from which these chunks came from. 
2. Bin the chunks by subgenome. 
3. Optionally, merge the binned chunks back together based on their scaffold of 

 origin (or bin the entire original scaffold based on the total counts of differential 
 repetitive sequence). In addition, there is an option available to assign remaining 
 unassigned fragments/scaffolds to a subgenome bin based on the consensus 
 assignment of all its neighboring/associated fragments. 

 

Recommendations for Selection of PolyCRACKER Hyperparameters 
 While the search space of polyCRACKER’s hyperparameters remains fairly unexplored, 
the algorithm provides a few functions that can make recommendations on how to set the 
hyperparameters to achieve reasonable performance. Of vital importance is making sure that the 
parameters do not result in too few or too many repeat-kmers in the analysis. If there are too few 
repeat-kmers included in the genome fragments, then they will be hard to bin. The function 
number_repeatmers_per_subsequence plots a histogram of the number of repeat-mers present in 
each chunked genome fragment. If this histogram is skewed to lower k-mer counts in each 
fragment, then reducing the k-mer size, increasing the length of the chunks, decreasing the 
minimum genome-wide k-mer frequency for k-mer inclusion, amongst other changes can help 
increase the repetitive content of each fragment, thereby improving the initial binning of these 
fragments into subgenomes. There exists help documentation in the polyCRACKER source code 
repository that can help inform about sensible binning practices. 
 
Propagating PolyCRACKER Labels via the Relative Position of Subsequences 

Since polyCRACKER performs best when the length of the input scaffolds are similar, 
we split scaffolds into fragments of similar length as we did when we prepared the N. tabacum 
input dataset. However, it is still possible to use prior information about the location of the 
fragments in scaffolds. For example, if one or several fragments belonging to a scaffold are 
classified to a subgenome, it is likely that other subsequences from the same scaffold are also 
associated with that same subgenome. PolyCRACKER uses this information by passing 
subgenome labels of classified subsequences through a semi-supervised label propagation 
algorithm that takes into account labels as well as relative genomic positions from which 
subsequences are derived to infer the labels of the unclassified subsequences. Conversely, when 
interrogating unvalidated assemblies, discordance between scaffold labels and species 
assignment may indicate assembly errors that can be fixed by breaking scaffolds. 

 
Random sampling of repeat k-mers for datasets too large to include all k-mers. 

PolyCRACKER can randomly subsample repeat k-mers when the data set is too large to 
include all k-mers with available computational resources. For example, there were 550,790,662 
unique k-mers with frequencies between 3 and 100 within the Triticum aestivum genome. A 
matrix 550,790,662 columns by many thousand rows is computationally intensive to construct 
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and subsequently analyze. We therefore randomly sampled 2,420,450 k-mers to generate initial 
partitions of the subgenomes, and further subsampled differential k-mers to obtain 568,637 k-
mers for the final partitioning of Triticum aestivum subgenomes.  

 
Subgenome validation for complex allopolyploid species. 

For validating polyCRACKER subgenome groups in the context of the N. tabacum and 
Triticum aestivum genomes in which subgenomes were not already labeled, we used the 
progenitor species to assign species of origin to respective sequences. The PolyCRACKER 
progenitorMapping function exploits seal.sh function within the bbtools toolkit 
(sourceforge.net/projects/bbmap/) to bin subsequences based on reference progenitors, and 
serves as a tool to compare polyCRACKER to reference-based binning solutions. Progenitor 
mapped labels and binned sequences are output from this analysis and can be visualized on the 
PCA or the spectral embedded data. If polyCRACKER is used to separate species from an input 
genome instead of subgenomes, the original species labels for the subsequences can be 
recovered.  

 
Quantitative analyses on the classification and clustering polyCRACKER results. 

The polyCRACKER function final_stats was used to perform quantitative analyses on 
polyCRACKER’s classification and clustering results, with comparisons to the results achieved 
by the reference-based progenitorMapping and to the ground truth species extraction with known 
species. For a classifier comparison of polyCRACKER’s results to the progenitor mapped 
subgenomes, the lengths of each subgenomes from both analyses were found and compared to 
each other and the original progenitor subgenome sizes, and amongst other measures, Cohen’s 
Kappa and Jaccard Similarity between the amount of unambiguous sequence shared between 
both analyses were calculated as measures of agreement between the reference based and 
unsupervised methods. For accuracy measures of polyCRACKER versus ground truth labeling, 
such as when the subgenomes or species of each region/chunk are already known, the amount of 
sequence correctly classified, precision, recall, and f1 scores were reported for each 
species/subgenome and averaged, amongst others. Confusion matrices for each of the two 
classification test types are output from the analysis. Analyzing the clustering results, total 
sequence lengths for each cluster is found and Silhouette and Calinski Harabaz scores can be 
calculated if supplying the original PCA data along with the final polyCRACKER output labels. 
If either ground truth labels or progenitor mapped labels are supplied, some measure of 
agreement, homogeneity, and completeness between the two results can be found.  

 
Repeat annotation and analysis in N. tabacum. 

PolyCRACKER studies annotated repeats that are identified using RepeatModeler, which 
uses the de-novo repeat finding programs RECON [23] and RepeatScout [24] to employ 
complementary computational methods for identifying repeat element boundaries and family 
relationships. RepeatModeler builds, refines and classifies consensus models of putative 
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interspersed repeats from RECON and RepeatScout output. We further filtered repeat 
annotations using Pfam, and PANTHER annotations of predicted repeats. The final non-
redundant de novo repeat database was then used with RepeatMasker to annotate repeats across 
the genome sequence.  

 
Subgenome classification using genome-wide annotated repeats in N. tabacum. 

Genome-wide RepeatMasker annotation of repeats was used with TE_cluster_analysis to 
generate a sparse matrix of the subsequences by their distribution of repeats belonging to a 
particular family, family member, class, and subclass (had a specific consensus sequence label) 
via repeatGFF2Bed and sam2diffk-mer_clusteringmatrix. Each row of this matrix was labeled by 
polyCRACKER’s k-mer analysis final subgenome labeling, and the highly informative repeats 
were found by calculating the chi-squared statistic of each column of the matrix. PolyCRACKER 
transformed this matrix into a matrix depicting the total counts of a particular repeat for each 
subgenome (the differential repeat subgenome matrix), and labeled a repeat by a subgenome if it 
was differentially present in one subgenome above a user-specified threshold. The consensus 
repeats were assigned a higher chi-square statistic if their assembly frequency was indicative of 
greater dependence between repeat and species label and polyCRACKER denotes these repeats 
as highly informative. The consensus repeats with the highest chi-square statistic were chosen 
from the differential repeats to find the most informative differential repeats, and the same 
number of repeats were selected from each subgenome for subsequent analysis. To cluster and 
extract the subgenomes using a repeat count matrix, this matrix was fed into 
subgenome_extraction_via_repeats, which finds the most highly informative differential repeats, 
feature selects the matrix by these repeats, performs dimensionality reduction using PCA, finds a 
neighborhood community graph and clusters the resulting dataset via Spectral Clustering. Signal 
amplification is employed on these clusters analogous to the k-mer analysis in order to iteratively 
recruit more subsequences to the final bins. PolyCRACKER also employs multiple algorithms to 
discover repeat element subclasses that are important and informative for differentiating the 
subgenomes, as discussed in the Supplementals.  

 
Distinguishing species of origin using de novo repeat annotations. 

PolyCRACKER grouped N. Tabacum’s pseudomolecule-anchored assembly (broken into 
250 kb fragments) by species of origin using de novo repeat annotations in a similar method as 
used for k-mers. A matrix of scaffolds vs repeats was constructed. Differential repeats were 
identified as defined by a five-fold greater presence in one subgenome versus the other. 
Subgenome labels found via polyCRACKER’s k-mer based binning were then used to identify 
highly informative repeats (features with high chi-squared value). Intersection of differential 
repeats with the 150 most informative repeats from each subgenome yielded 300 informative 
differential repeats. PolyCRACKER then performed feature selection on the matrix, keeping 
columns/repeats corresponding to highly informative repeats. PolyCRACKER performed 
principal component analysis and clustered the feature selected matrix to find new labels of 
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scaffolds and to see if repeats can distinguish subgenomes. In this clustering process, nodes, 
representing scaffolds, were linked by edges that connected two nodes with similar consensus 
repeat coverage/content, and Spectral Clustering was used to perform normalized cuts of this 
graph to form initial partitions. Using the same process as outlined for k-mers, differential 
repeats were identified between the initial sequence bins by being eight or greater times present 
in one genome versus the other, and then they were used to recruit more subsequences via the 
signal amplification process, finding the total hits of these differential repeats in each bin. 
PolyCRACKER reassigned subgenome labels if their ratio of hits of the total differential repeat 
counts is greater than a threshold, in this case 3 times greater. The process of identifying 
differential repeats and then re-binning by the ratio of total repeat counts for each scaffold is 
reiterated via a bootstrap process until convergence, in which after a number of trials, the amount 
of sequence assigned to each bin does not appear to make large changes, converges on a set 
amount of sequence, and the number of times this process can be run is left to the user’s 
discretion.  

 

Identification of informative repeat classes  
Consensus repeats, identified during de novo repeat finding and labelled by unique 

identifiers were identified by polyCRACKER as differential if the number of identified instances 
of that consensus repeat were five or more times more frequent in one subgenome versus the 
other. Out of all differential repeats identified, polyCRACKER selected 400 (200 from each 
subgenome) of these repeats (from the unanchored N. Tabacum scaffolds) as subgenome 
signatures. The repeats were grouped together by their subclass annotation. Specific subclasses 
of repeats were found by polyCRACKER to be highly informative if their number of informative 
differential consensus repeats was statistically significantly under or over represented versus a 
similar distribution of the consensus repeats across the entire genome (via a chi-squared 
statistic). 
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Supplementary Material 
 
polyCRACKER performance on simulated datasets comprised of mixtures of subsequences 
from multiple closely-related species 

Three simulated datasets created from reference fungal or algal genomes were used to 
develop and test polyCRACKER. The genomes were chosen to cover a range of repeat contents 
and genomes sizes. The simulated datasets were created by fragmenting and pooling the 
reference genomes to simulate the contigs expected from a very simple metagenome or polyploid 
genome. PolyCRACKER was then optimized to correctly assign the sequence fragments to their 
genome of origin. 

The first simulated dataset contained genomes from two closely related (mean nucleotide 
identity of CDS, 77%) Basidiomycte fungi, Ustilago hordei [17] and U. maydis, whose small 
(~20Mb) genomes contain only 7.8% and 2% repetitive DNA, respectively [17, 18]. Genomes of 
the two species were broken into 50 kb fragments, labeled by species (for subsequent calculation 
of accuracy), and then combined into a single FASTA file. Without any other input, 
polyCRACKER assigned sequences to the correct species with perfect precision and 99% recall 
(Table 1).  

 

Supplemental Table 1 Unsupervised separation of simple mixtures of fungal and algal 
genomes using PolyCRACKER’s differential k-mer analysis.  

Species Fragment 
size 

k-mer 
length Precision Recall F1 

Score Accuracy 

Aspergillus aculeatus, A. 
glaucus, A. versicolor, and A. 
wentii 

100 kb 11 0.95 0.9 0.92 0.9 

Ustilago hordei, and Ustilago 
maydis 

50 kb 15,30,45* 1 0.99 0.99 0.99 

Chlamydomonas 
subellipsoidea, and 
Chlamydomonas reinhardtii 

50 kb 26 0.93 0.92 0.92 0.92 

 
* Three separate k-mer lengths were used in this analysis because a greater repetitive k-mer signal 
was found at different k-mer lengths over various subsets of subsequences. 
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Supplemental Table 2 Dimensionality reduction and clustering techniques used in 
polyCRACKER for the simulated metagenomes. 

Species Dimensionality reduction technique Clustering technique 

A. aculeatus, A. glaucus, A. 
versicolor, and A. wentii 

TSNE Bayesian Gaussian 
Mixture Models 

U. hordei and U.maydis KPCA with linear kernel Bayesian Gaussian 
Mixture Models 

C. subellipsoidea and C. 
reinhardtii 

TSNE Spectral Clustering 

 

The second simulated dataset contained four closely related (pairwise nucleotide identity 
of CDS ranged from 63-70%) Ascomycete fungi: Aspergillus glacus (30 Mb, 3% repetitive), A. 
aculeatus (35 Mb, 4.5% repetitive), A. versicolor (33 Mb, 1.8% repetitive), and A. wentii (34 
Mb, 1.8% repetitive) [19]. The four genomes were broken into 100 kb fragments and pooled as 
for the first dataset. PolyCRACKER assigned the sequences to the correct species with 95 
percent precision and 90 percent recall (Table 1). 

Lastly, we tested our method on a simulated dataset containing two single-cell green 
algae: Chlamydomonas reinhardtii [20] (16% repetitive DNA) and Coccomyxa subellipsoidea] 
(1.5% repetitive DNA). The simulated dataset was created exactly as for the first dataset. 
PolyCRACKER assigned the sequences to the correct species with 93 percent precision and 92 
percent recall (Table 1).  

The dimensionality reduction and clustering techniques used to establish the initial 
species bins are depicted in Table 2. The amount of repetitive k-mers in each of the genome 
fragments of the two algae lines’ broken assemblies is shown in Figure 1. It is fairly low as 
compared to N. Tabacum’s distribution of its repetitive content, after scaling for fragment length. 
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Supplemental Fig. 1. Distribution of the number of repeat-mers for all of the chunked genome 
fragments of the two single-cell green algae assemblies. These numbers were derived from counting 
the total number of repetitive k-mers in each genome fragment after breaking the assembly into 
chunks of a fixed size. 
 

Highly differential repeat subclasses between N. Tabacum subgenomes  
Two hundred informative differential repeat consensus sequences were chosen for each 

subgenome (S and T) of the unanchored scaffold set via the same process used to identify highly 
informative differential repeats, and analyzed for their subclasses and the subgenome specificity 
of these subclasses. All repeats and the top differential repeats were broken down into their class 
or subclass and the categorical distribution of all consensus repeats were used as the null 
distribution. The categorical distribution of the top differential repeats were compared to the null 
distribution, and expected number of top differential repeats were found for each subclass. The 
resulting distributions with the top four chi-squared values are displayed in Table 3. The top 
subclass, Unknown, with a highest chi-squared value of 780.74, was found, and all top 
differential Unknown consensus sequences were broken down into their subgenomes and a 
phylogenetic tree of 25 bootstraps was found between the consensus sequences. The same 
analysis was done for top subclass three, LTR/Gypsy, but not subclass two, since Simple Repeats 
are very small and aligning them yields little to no new information about their clade structure. 
However, it should be noted that Simple Repeats were entirely T subgenome enriched. 
Information on the subgenome specificity of each top differential subclass and the phylogenetic 
tree of those sequences can be found in Figure 2.  
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Supplemental Table 3  N. Tabacum subgenome repeat analysis. 

 LTR 
Copia 

LTR 
Gypsy 

Simple 
repeat 

Unknown 
repeat 

Number of consensus sequences 151 527 10,694 1,414 

Number included in the 400 most 
informative repeats 

5 70 90 229 

Expected number among 400 most 
informative repeats 

4.68 16.35 331.93 43.88 

Chi-Squared Value 0.02 175.9 176.3 780.7 

Top 400: Number of S subgenome to T 
subgenome consensus repeats 

1:4 43:27 0:90 152:77 
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Supplemental Fig. 2. Specific repeat classes contribute to the differentiation of the N. tabacum 
subgenomes. IQTree GTR trees for top subclasses of N. tabacum genome assembly. The top 
three differential classes are (a) transposons with unknown class enriched in the S subgenome 
(red) (b) tranLTR/Gypsy (S subgenome enriched). Phylogenetic trees were constructed using 
maximum likelihood General Time Reversible (GTR) model of evolution, performed with 25 
bootstrap iterations. 
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