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ABSTRACT – International consortia, including ENCODE, Roadmap Epigenomics, Genomics of Gene 
Regulation and Blueprint Epigenome have made large-scale datasets of open chromatin regions publicly 

available. While these datasets are extremely useful for studying mechanisms of gene regulation in 

disease and cell development, they only identify open chromatin regions in individual samples. A uniform 

comparison of accessibility of the same regulatory sites across multiple samples is necessary to correlate 

open chromatin accessibility and expression of target genes across matched cell types.  Additionally, 

although replicate samples are available for majority of cell types, a comprehensive replication-based 

quality checking of individual regulatory sites is still lacking. We have integrated 828 DNase-I 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484840doi: bioRxiv preprint 

https://doi.org/10.1101/484840
http://creativecommons.org/licenses/by-nc/4.0/


hypersensitive sequencing samples, which we have uniformly processed and then clustered their 

regulatory regions across all samples. We checked the quality of open-chromatin regions using our 

replication test. This has resulted in a comprehensive, quality-checked database of Open CHROmatin 

(OCHROdb) regions for 194 unique human cell types and cell lines which can serve as a reference for 
gene regulatory studies involving open chromatin. We have made this resource publicly available: users 

can download the whole database, or query it for their genomic regions of interest and visualize the 

results in an interactive genome browser. 

 

INTRODUCTION 

In recent years, multiple international consortia-based projects, such as ENCODE (1), NIH Roadmap 

Epigenomics Mapping Consortium (REMC) Project (2), NHGRI Genomics of Gene Regulation (GGR) 

Project (3) and Blueprint Epigenome (4) have made several large scale chromatin accessibility datasets 
publicly available. ENCODE, GGR and REMC datasets contain open chromatin data samples (e.g. 

ATAC-seq and DNase-I seq) for hundreds of primary cell types, stem cells, cell lines and tissues. 

Blueprint Epigenome project has also made open chromatin data available for hundreds of 

haematopoietic cell types. These datasets are extremely useful for studying mechanisms of gene 

regulation in different contexts, including disease and cell development. However, current regulatory 

region identification pipelines process samples within these datasets individually, making it difficult to 

annotate and analyze DHS sites across multiple samples in a study, and across studies. Accessibility of 

regions of open chromatin varies across cell types, and may even vary within biological replicates of the 
same cell type. The absence of a well-defined, reference map for genomic locations of accessible 

chromatin that is also consistent across replicates frequently poses challenges to many downstream 

analyses, such as investigations into the association between accessibility state of specific regulatory 

elements and the expression of the genes which they control. 

Although most epigenomics datasets such as ENCODE, GGR, REMC and Blueprint Epigenome 
data contain multiple biological and/or technical replicates of the same cell type, a comprehensive 

replication-based quality check of individual regulatory regions identified by peak calling algorithms is still 

lacking. Quality checking measurements that are used in other open chromatin databases check quality 

of individual samples and filter unreliable samples (5); however, they do not assess quality of individual 

regulatory sites across multiple samples. It is already well-recognized that several peaks identified in a 

sample by peak calling algorithms may not be supported in replicate samples (6) (7). Quality checking 

methods such as jMOSAiCS (6), MSPC (7) and irreproducibility discovery rate (IDR) (8) have been 
developed to compare peaks identified in pairs of replicates in order to identify replicable peaks in 

sequencing experiments with a main focus on ChIP-seq experiments. IDR in particularly has been used in 

the ENCODE Project, and has been applied to various sequencing-based experiments such as ATAC-
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seq, DNase-seq and ChIP-seq data. However, QC methods are limited by the fact that they compare 

replicates from one cell type only, and subsequently can be quite stringent at filtering true peaks in the 

absence of orthogonal information. 

In order to address the above problems we designed and implemented a pipeline that obtained 
DNase-I Hypersensitive (DHS) peaks of 828 data samples obtained from multiple resources (including 

ENCODE, REMC, Blueprint Epigenome and GGR), aligned them across samples, assessed replicability 

of each DHS site across several cell types using our recently developed replication test (9) and filters 

unreliable DHS sites (9). This has resulted in a quality-checked database of regions of open chromatin 

comprising 1,455,046 reliable DHS for 194 unique cell types across the autosomal genome. To our 
knowledge, OCHROdb is the first and the most comprehensive DHS database obtained by (a) aligning 

the same regulatory sites across more than 800 samples from multiple public datasets and (b) checking 

quality of individual DHS sites, and it can serve as a reference for studies concerned with DHS activities 

and their role in gene regulation. This database can be accessed through our website 

(https://dhs.ccm.sickkids.ca/), where users can query and download the data either fully or at specific 

genomic regions of interest. We have also prepared an interactive genome browser for effective 

visualization of DHS sites across several cell types. 

 

MATERIAL AND METHODS 

Data collection 

We collected DHS data generated by multiple international consortia-based projects including ENCODE, 

REMC, GGR and Blueprint Epigenome. The data generated by ENCODE, REMC and GGR are hosted by 

ENCODE and publicly available through (https://www.encodeproject.org). Blueprint DHS data samples 
from Haematopoietic Epigenomes are available at (http://www.blueprint-epigenome.eu). In August 2017 

we collected from these resources the following types of the data: 

(i) Data samples in BED format, where regions of open chromatin were identified by Hotspot 

peak calling algorithm (narrow  peaks; FDR of 0.05) (10). This was available for 362 samples 

from ENCODE, 318 samples from REMC, 51 samples from GGR and 97 samples from 
Blueprint Epigenome project (See Table S1 for a full list of samples). 

(ii) Metadata describing file accession ID, cell type, project, assembly and file download URL 

(See metadata in Tables S1). We used ENCODExplorer R Bioconductor package (11) to get 

access to and query metadata for ENCODE, REMC and GGR data files. The metadata of 

Blueprint Epigenome data was downloaded from 
ftp://ftp.ebi.ac.uk/pub/databases/blueprint/data_index/homo_sapiens/data.index. 
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Data processing workflow 

Step 1 – Analyzing raw DNase-I sequencing data to identify DHS peaks 

All DHS samples released from ENCODE project website (i.e. GGR, ENCODE and REMC data samples) 
had previously gone through the ENCODE uniform processing pipeline for DNase-I Hypersensitive 

experiments (https://github.com/ENCODE-DCC/dnase_pipeline/). Briefly, first a bwa index and a 

mappability file were produced by using a reference (e.g. GCRh38) fasta file and a DNase mappability file 

specific to a read size. Then BWA was used to generate bam files containing all reads mapped to the 

reference genome, and the bam files were merged and filtered to include only high quality mapped reads. 

At the last step, hotspot peak calling algorithm (10) was applied to the filtered bam files to identify 

enriched regions (i.e. peaks and hotspots). DHS data samples released through Blueprint Epigenome 

project were also analyzed following a similar procedure. First, the reads were mapped to human genome 
GCRh38 reference using BWA 0.7.7. Bam files were sorted and duplicates were marked using Picard 

Tools (12). Then, the output bam files were filtered and reads with Mapping Quality of less than 15 were 

removed. Finally, the Hotspot peak calling algorithm was applied to identify peaks and hotspots. 

 

Step 2 – Checking quality of samples 

We originally obtained a total of 847 samples containing DHS peaks in BED format from ENCODE and 

Blueprint site (Figure 1A). We found that five Blueprint data samples do not have a cell type and/or donor 

ID assigned to them in the metadata and removed them. Additionally, by considering distribution of 
number of DHS peaks per sample, we identified and removed 14 outlying samples with too many (> 

500,000 peaks) or too few (< 40,000 peaks) DHS peaks (See Figure 3A for distribution of number of DHS 

peaks per samples). The total number of samples remaining after the above quality checking steps was 

828 (Figure 1A). Of these 828 samples, 45 were mapped to GRCh37 genome reference and the rest 

were mapped to GRCh38 genome build. We converted GRCh37 samples to GRCh38 using the GATK 

API (13). Figure S1 shows a histogram of the number of biological and technical replicates per cell type. 

As shown in this figure, these 828 samples come from 194 unique cell types. 161/194 cell types have at 
least two replicate samples. 

 

Step 3 – Clustering peaks 

In the 828 samples, we found a total of 117,488,197 DHS peaks on the autosomes (i.e. excluding X and 

Y chromosomes). Peak calling algorithms such as Hotspot (10) and MACS (14) identify peaks in each 
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individual sample separately (Figure 1B). In order to identify the same DHS sites over multiple samples, 

we followed the method that we developed earlier (9), where we used Markov clustering (MCL) (15) with 

its default parameters to cluster the peaks across multiple samples (Figure 1C). In our application, each 

DHS peak is treated as a graph node. Similarity between the two nodes is defined as the length of 
intersection between the two peaks divided by the length of union of the intervals containing of the two 

peaks. Although any other clustering algorithm can be used at this stage, we chose MCL for two reasons. 

First, MCL does not require estimation of the number of clusters a priori. Second, the complexity of MCL 

is O(Nk2), where N is the number of nodes (i.e. peaks), and k is the number of resources allocated per 

node (a relatively small number for sparse graphs). The fact that MCL complexity is linear with the 

number of peaks makes it quite fast for our application. Using MCL we were able to group 117,488,197 

DHS peaks across 828 samples into 4,020,940 DHS clusters across the autosomal chromosomes. 

 

Step 4 - Replication-based quality checking of DHS Clusters 

Both peak calling and peak clustering ignore sample labels (i.e. cell types of origin), so we can check 
DHS cluster quality by looking for evidence that DHS peaks are replicated in this analysis. We expect that 

for a DHS cluster that represents a true regulatory site, the DHS accessibility is consistent across 

replicates. We therefore employed our previously designed replication test (9) to assess consistency 

across replicates (Figure 1D). As required by our replication test, we selected cell types with at least two 

replicates (161/194 of cell types). Since for 84/161 cell types, we had more than two replicates per cell 

type (Figure S1), we repeated our replication test ten times, each time we randomly selected two 
replicates per cell type. We then merged the test statistics obtained from each test. The output of each 

run of our replication test follows a Chi-squared distribution with one degree of freedom (𝜒2 (df=1)) (9) 

and thus, the sum of the test statistics resulting from running our replication test ten times follows a 𝜒2 

(df=10) distribution (16). We selected DHS clusters that pass a nominal significance threshold of p ≤ 0.05 

for the combined replication test and called them replicable DHS. In order to examine how many runs of 

replication test is required in order to obtain a stable set of replicable DHS, we applied the replication test 

20 times. Then for any N between 1 and 19, we found a list of replication test obtained by combining N 

replication tests. Our results indicated that the Area Under the Curve (AUC) obtained for 
sensitivity/specificity analysis remained above 0.95 after nine iterations, confirming that running the 

replication test ten times is appropriate (Figure S2). 1,460,986/4,020,940 (36.3%) of DHS clusters passed 

the combined replication test. As we previously showed, active replicable DHSs that we annotated 

capture the majority of proportion of disease heritability (h2g) explained by all DHS-detected peaks in a 

tissue (9), suggesting the non-replicating peaks are spurious. 
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Step 5 - Incorporating DHS accessibility significance 

Chromatin accessibility as a quantitative measure is the density of mapped DNase-I cleavage at different 
genomic locations. Chromatin accessibility varies across replicable DHS sites of the same sample. Also, 

different samples have different accessibilities at the same replicable DHS site. Since DHS accessibility 

can be an indicator of how active a DHS site is in a particular sample, we incorporated DHS accessibility 

information to our data. To measure significance of accessibility of each replicable DHS in each sample, 

we first identified all DHS peaks that belong to a replicable DHS, and assigned -log10(P value) of the 

most significant DHS peak of a sample to that replicable DHS in the sample of interest. 

There exist batch effects in DHS intensities (i.e. -log10(P value of accessibility)) due to the fact 
that DHS data were generated and processed in multiple centres (ENCODE, REMC, Blueprint and GGR) 

(Figure 2A). As the result of this batch effect, in the tSNE plot, samples generated by the same project 

grouped together disregard of their cell type similarity (Figure 2B).  We applied the following steps to 

remove these batch effects. First, we normalized DHS intensities within each sample by linearly scaling 

them between 0 and 1. The number of accessible DHS varied from sample to sample. We therefore 
randomly selected 10,000 accessible DHS sites (i.e. with non-zero intensities) from each sample to 

estimate DHS intensity distributions for each sample, and adopted a method similar to ComBat (17) (18) 

to remove batch effects. Briefly, we sorted intensities of randomly selected DHS sites within each sample, 

quantile normalized them to make distributions of intensities similar across samples. We then interpolated 

intensities of the DHS sites that were not initially chosen in the random selection and estimated their 

quantile normalized values. This process resulted in removing batch effects of DHS intensities, and made 

them comparable across samples generated by different centres, and therefore samples grouped 

together based on their cell type similarity (Figure 2C). 

Finally, we collapsed DHS intensities of samples from the same cell types by measuring median 

intensities over these samples. 1,455,046 out of 1,460,986 (99.5%) replicable DHS have median 

intensities higher than 0.25 in at least one cell type. We considered these 1,455,046 sites as the final 

replicable DHS sites to build our database of regions of open chromatin for 194 cell types. 

 

RESULTS 

Database content and statistics 

We have prepared a comprehensive and quality-checked database of regions of open chromatin using 

DNase-I Hypersensitive datasets generated by REMC, ENCODE, GGR and Blueprint Epigenome 

Projects. OCHROdb contains DHS intensities for 1,455,046 DHS sites aligned over 828 samples. These 
828 samples comprise of 194 distinct cell types, including 27 immune cell types, 18 CNS, 9 muscle, 57 
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cell lines, 10 stem cells, 6 digestive system cell types in addition to lung, cardiovascular, fibroblasts, 

kidney, extra embryo, male and female reproductive system and endothelial cell types (See Table S1 for 

the full list of cell types). tSNE plots of DHS activities of the 194 cell types shows that cell types from 

similar tissues group together confirming they have similar DHS activities (Figure 2C). 

As it is shown in Figure 3C, the number of accessible replicable DHS varies across cell types. 

Additionally, number of cell types where a replicable DHS is accessible can be any number between one 

cell type (i.e. cell-type specific DHS) to 194 cell types (i.e. constitutive DHS). The median number of 

active cell types per replicable DHS is eight (mean=21.3; sd=33.4) (Figure 3B). Around 10.2% 

(148,142/1,455,046) of replicable DHS are cell-type specific, meaning that they are active in one cell type, 
and only 1,773 out of 1,455,046 replicable DHS are constitutive, meaning that they are active in all 194 

cell types. Median length of replicable DHS is 310 base pairs (sd = 112 bp) (Figure 3B). 

 

Web interface and genome browser 

We developed a web interface that permits users and researchers access to OCHROdb by primarily 

utilizing React, Tabix, Node.js, and Express.js. React (19), a component-based JavaScript library 

developed by Facebook, was selected for the front-end to establish a single page application with high 

performance. React helps to render HTML for web applications without refreshing the page or website 
templates and allows the client and server to communicate faster. Tabix is a software package that 

indexes tab-delimited files to efficiently perform queries and was developed specifically for biological data. 

Data indexing involves sorting data based on specific fields and allows a query to be completed without 

reading the entire data file, greatly reducing query speeds if implemented properly. Several actions were 

executed to prepare the DHS dataset for Tabix queries, such as sorting the files by chromosome and 

start position, compressing the file, and indexing the file with Tabix. The back-end of our web application 

is composed of the server-side JavaScript runtime environment Node.js (20), in conjunction with 

Express.js (21), a web application framework that is used for the web server. Node.js forms a connection 
between Tabix (22) and React front-end and allows the user to view and interact with the DHS data on 

the web application. Express.js is a flexible and highly documented web framework built on top of Node.js 

and greatly simplifies the complexity of back-end code written. 

We have made the metadata, entire curated DHS dataset and data specific to each chromosome 

downloadable from the web interface. Through the web interface, the user can also query the database 
by specifying a region of interest (i.e. entering a specific chromosome number and start and end 

coordinates). After submitting coordinates of a region of interest, an exportable table of the results 

matching the user input is generated by a JavaScript library called DataTables.net (23) (Figure S3A). 
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Additionally, the user can visualize the replicable DHS data through JBrowse (24), an 

embeddable genome browser, by specifying coordinates of the region and cell types of interest (Figure 

4). To do this, a GFF (general feature format) file per cell type is generated by reading the original BED 

files using a Python script. Information specific to each replicable DHS (e.g. intensity of the DHS for any 
given cell-type and genomic coordinates of the DHS) can be found in the pop-up window that opens after 

clicking on a given DHS (Figure S3B). Replicable DHS are only visible if they are accessible (i.e. having 

non-zero intensities) at the cell types of interest. The replicable DHS that are accessible in multiple cell 

types get the same color on different tracks (each corresponding to a cell type) of the genome browser, to 

make adjacent DHS more trackable visually across several cell types. 

 

DISCUSSION 

Multiple large-scale consortia-based projects, including ENCODE, REMC, Blueprint and GGR have 
generated thousands of sequencing-based data samples that capture regions of open chromatin for the 

whole genome in hundreds of cell types. Building on this immensely informative DHS datasets, we have 

developed an analysis pipeline that gets hundreds of pre-processed DHS data samples (i.e. in narrow 

peaks format) as the input, aligns regions of open chromatin across samples, checks quality of each 

region using a replication-based test, and outputs a database of open chromatin accessibility across the 

whole genome. 

Through applying our processing pipeline to 828 DHS data samples obtained from multiple public 
datasets, we have built a database of 1,455,046 regions across the whole genome for 828 samples 

comprising of 194 cell types. The main advantages of OCHROdb compared to previous datasets that are 

available publicly (e.g. ENCODE, REMC, Blueprint and GGR) are as follows. 

(i) In the publicly available datasets the DHS peaks are identified for each individual sample 
separately, while our method incorporates peaks from multiple samples together, aligns them 

across samples, and releases them as a coherent DHS database consisting of replicable peaks 

from multiple samples. Since in the previous datasets, each sample is analyzed separately, 

annotation of the same DHS sites across several samples is not available. 

(ii) Additionally, the batch effects that exist across samples due to the fact that multiple centers 
generate and analyze the data are not adjusted in the previous DHS datasets. In our database, 

we removed the batch effects that exist in the data samples collected from multiple centers. 

(iii) We have employed our replication test that considers multiple samples from a diverse range of 

cell types in order to check replicability of each DHS site. This results in identifying replicable 
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DHS that present true regulatory sites (See partitioning heritability results in (9)), while preserving 

regulatory sites filtered by more stringent tests such as IDR (8). 

Although we have explained our processing pipeline in the context of DHS data samples, it can 
also be applied to the narrow peaks obtained by other assays such as ATAC-seq. We therefore plan to 

process open chromatin datasets generated by other assays (e.g. ATAC-seq) and make these results 

available in our database. Additionally, we aim to process non-human (e.g. mouse) open chromatin 

datasets and release them separately in our open chromatin database. 

Recently, International Human Epigenome Consortium (IHEC) have collected and processed 
individual epigenome data samples from multiple large-scale international projects, such as ENCODE, 

REMC and Blueprint Epigenome. It is expected that more epigenome samples from other projects 

become available through IHEC portal. This includes the data from Deutsches Epigenome Program 

(DEEP), McGill Epigenomics Mapping Center, 4D Nucleome, Hong Kong Epigenomes Project (EpiHK), 

Multiple MS and SYSCID. As more open chromatin data samples are generated and released by IHEC 

and other projects (25), we plan to apply our processing pipeline to these samples and release the 
processed data as part of our open chromatin database. Making a comprehensive database of regions of 

open chromatin using the data released by IHEC project aligns with IHEC goals and will benefit the 

scientific community. We will maintain our database and release new updates every six months. 

In summary, we believe that our open chromatin database, which contains a wide range of cell 

types can serve as a reference map for regions of open chromatin and will find many applications in 

studies concerned with uncovering gene regulatory mechanisms of disease and cell development. 

 

AVAILABILITY 

OCHROdb is a database of open chromatin regions from sequencing data. It is available to download 

through https://dhs.ccm.sickkids.ca/. Additionally, our interactive open chromatin browser is accessible 

through the same link. 

 

SUPPLEMENTARY DATA 

Supplementary Data are available at NAR online. 
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Figures and Tables Captions 

Figure 1: Post processing of DNAse-I Hypersensitive (DHS) Data. (A) A total of 847 DHS data 

samples were collected from ENCODE, REMC, GGR and Blueprint Projects. 828/847 passed initial 

quality checking. (B) All the DNase-I sequencing data samples were already pre-processed by ENCODE 

and Blueprint consortia and narrow peaks were identified by Hotspot peak calling algorithm (10). (C) 

Following the method we previously developed (9), we clustered DHS peaks across samples and (D) 

checked quality of each DHS cluster using our replication test. 
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Figure 2: Removing batch effects caused by generation of data by multiple centers. (A) There exist 

batch effects in accessibility levels of replicable DHS clusters as a result of generation of data by multiple 

centers. (B) This resulted in grouping samples together based on the project that generated them 

disrespect of cell type similarity. (C) We removed batch effects and merge intensities of multiple replicates 
of the same cell types. After batch effect removal, in tSNE plot cell types grouped together based on their 

cell type similarities. 

Figure 3: Statistics on DHS data. (A) Distribution of number of DHS peaks per sample. (B) Distributions 

of length of replicable DHS and number of cell types where each replicable DHS is accessible. Average 

length of replicable DHSs is 310 base pairs. Around 10.2% of replicable DHS are active in one cell type 
only and a very small portion of DHS (1,773/1,455,046) are active in all cell types. (C) Number of 

replicable DHS is between around 40,000 to 400,000, and it varies substantially across cell types. The 

percentage of genome covered by replicable DHS per cell type is between around 0.4% to 4% depending 

on the cell type. 

Figure 4: Interactive genome browser. We developed a customized genome browser to visualize DHS 
data. Here users can (A) specify their genomic region of interest, and (B) select from different cell 

categories and different cell types within each category. (C) The selected cell types appear on the left 

side of the browser. (D) Genomic location of replicable DHS appears on the middle of the browser, where 

each replicable DHS, aligned across multiple cell types, appears in a different colour to make it 

distinguishable from other replicable DHS adjacent to it. 
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Figures 

 

Figure 1: Processing of DNAse-I Hypersensitive (DHS) Data 
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Figure 2: Removing batch effects caused by generation of data by multiple centers 

 

2
4

6
8

Samples

In
te

ns
ity

 (l
og

2)

ENCODE
Roadmap
GGR
BLUEPRINT

DH
S 

In
te

ns
ity

 
-lo

g1
0(

p)

1
2
3

4

5
6

7
8

Samples

ENCODE Roadmap GGR Blueprint

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●
●

● ●

●

−3

0

3

6

−4 0 4
tSNE_1

tS
N

E_
2

●
●
●
●
●
●
●
●
●
●

CNS

digestive

endothelial

epithelial

extra embryo

fibroblast

immune

kidney

muscle

reproductive

tSNE 1

tS
NE

2

Central Nervous
System (CNS)

Kidney

Muscle

Immune

Digestive

Epithelial

Fibroblast
Endothelial

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●
●

●

● ●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

● ●

●

●●
● ●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

−20

0

20

40

−20 −10 0 10 20
tSNE_1

tS
NE

_2

●
●
●
●

BLUEPRINT−BLUEPRINT

ENCODE−ENCODE Processing Pipeline

GGR−Tim Reddy, Duke

Roadmap−ENCODE Processing PipelinetS
NE

2

tSNE 1

Blueprint
GGR

ENCODE

Roadmap

A

B C

Batch Effects in Distribution of DHS Intensities Due to Generation of Data by Multiple Centers

Before Removing Batch Effects After Removing Batch Effects and Merging Replicates

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484840doi: bioRxiv preprint 

https://doi.org/10.1101/484840
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 3: Statistics on DHS data 
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Figure 4: Interactive genome browser 

 

AB

C D

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2018. ; https://doi.org/10.1101/484840doi: bioRxiv preprint 

https://doi.org/10.1101/484840
http://creativecommons.org/licenses/by-nc/4.0/

