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Abstract  

The accurate prediction of protein stability upon sequence mutation is an important but 

unsolved challenge in protein engineering. Large mutational datasets are required to 

train computational predictors, but traditional methods for collecting stability data are 

either low-throughput or measure protein stability indirectly. Here, we develop an 

automated method to generate thermodynamic stability data for nearly every single 

mutant in a small 56-residue protein. Analysis reveals that most single mutants have a 

neutral effect on stability, mutational sensitivity is largely governed by residue burial, 

and unexpectedly, hydrophobics are the best tolerated amino acid type. Testing various 

stability prediction algorithms against our data shows that all perform moderately, and 

combinations of algorithms can better identify the most stable variants in the single 

mutant landscape. We find that strategies to extract stabilities from high-throughput 

fitness data such as deep mutational scanning are promising and may be applicable 

toward training future stability prediction tools.  
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Thermodynamic stability is a fundamental property of proteins that significantly 

influences protein structure, function, expression, and solubility. Efforts to identify the 

molecular determinants of protein stability and to engineer improvements have thus 

been crucial in the development and optimization of a wide range of biotechnology 

products, including industrial-grade enzymes, antibodies, and other protein-based 

therapeutics and reagents1-3. The ability to reliably predict the effect of mutations on 

protein stability would greatly facilitate engineering efforts, and much research has been 

devoted to developing computational tools for this purpose4-9. Understanding how 

mutations affect stability can also shed light on various biological processes, including 

disease and drug resistance10. More than 100,000 genetic variants have been 

associated with human disease11 thanks to recent advances in genotyping and next 

generation sequencing, demonstrating a large need for fast and accurate stability 

prediction. 

However, the accurate prediction of the impact of an amino acid substitution on 

protein stability remains an unsolved challenge in protein engineering. Correlation 

studies have shown that computational techniques can capture general trends, but fail 

to precisely predict the magnitude of mutational effects12,13. The success of these 

techniques is dependent on the quality of the input structure, conformational sampling, 

the free energy function used to evaluate the mutant sequences, and importantly, the 

data used for training and testing8,12,14. Traditionally, protein stability data are collected 

by generating and purifying a small set of selected protein variants for characterization 

via calorimetry or spectroscopically measured chemical or thermal denaturation 

experiments. Values typically determined include the chemical or thermal denaturation 
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midpoint (Cm or Tm, respectively), the free energy of unfolding (ΔG), and the change in 

ΔG relative to wild type (WT) (ΔΔG). Although low-throughput, the widespread use of 

these methods has generated a wealth of protein stability data over time, which has 

shaped our current understanding of protein structure-function relationships15-18. Much 

of this work has been aggregated in the ProTherm19 database, commonly used as a 

training data resource. Until recently, ProTherm was the largest public source of 

thermodynamic protein stability data, containing over 25,000 entries from 1,902 

scientific articles. The database has been critical to the development of a variety of 

computational tools, from knowledge-based potentials exclusively trained on 

experimental data6 to physics-based potentials with atomic resolution7 and everything in 

between. Unfortunately, the ProTherm website is no longer being supported. The 

ProTherm data are still available, however, in ProtaBank20, a recently developed online 

database for protein engineering data (https://protabank.org).  

Although training and validation datasets from ProTherm have been widely used, 

ProTherm data suffer from three flaws: (1) experimental conditions vary widely among 

entries, requiring manual filtering to obtain comparable data, which results in smaller 

datasets, (2) little information is included on unfolded or alternatively folded sequences, 

precluding training on this type of mutational data, and (3) results from alanine scanning 

mutagenesis are overrepresented, biasing the dataset toward large to small mutations. 

Thus, training or testing on ProTherm data may mask deficiencies in computational 

algorithms or result in predictions that are biased toward particular features of the 

dataset. As many of the stability prediction tools available today rely on experimental 
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data from ProTherm, it is perhaps not surprising that none are very accurate and all 

perform about the same12. 

Comprehensive mutagenesis studies, with stabilities measured under fixed 

experimental conditions, could provide better training data. The low-throughput nature 

of traditional methods, however, makes the collection of stability data for large numbers 

of protein variants unfeasible. Several strategies have been devised to improve this 

process, including the use of genetic repressor systems21, plate-based fluorescence 

assays22,23, differential scanning fluorimetry24, and more recently, yeast-displayed 

proteolysis25. Unfortunately, these approaches generally make compromises by either: 

(1) tying an easy-to-measure but indirect protein stability readout to large variant 

libraries, or (2) addressing the throughput of stability determination, but not the 

laborious nature of variant generation and purification.  

Here, we develop an automated method that addresses both of these issues and 

apply it to obtain thermodynamic stability data from the comprehensive mutagenesis of 

an entire protein domain—the 56-residue β1 domain of Streptococcal protein G (Gβ1). 

Gβ1 was chosen for its small size, high amount of secondary structure, and well-

behaved WT sequence. Drawing both inspiration and methodology from structural 

genomics, we couple automated molecular biology procedures with a high-throughput 

plate-based stability determination method, resulting in a 20-fold increase in throughput 

over traditional bench-top methods. We applied our experimental pipeline to Gβ1 to 

produce a dataset that maintains constant experimental conditions, includes data on 

non-folded sequences, and features an unbiased mutational distribution over 935 

unique variants covering nearly every single mutant of Gβ1. Data in hand, we examine 
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positional sensitivity and amino acid tolerance, and evaluate several protein stability 

prediction algorithms and engineering strategies. Finally, we compare our dataset 

against one derived by deep mutational scanning (DMS), a technique that can generate 

large mutational datasets via functional selections and deep sequencing26,27, and 

explore whether stability data from DMS studies are applicable towards training future 

protein stability prediction tools. 

Results 

Automated site-directed mutagenesis and stability determination pipeline 

increases throughput 20-fold. Using laboratory automation, we constructed, 

expressed, and purified nearly every single mutant in Gβ1. The automated pipeline is 

illustrated in Fig. 1a. Each variant was constructed explicitly instead of by saturation 

mutagenesis so that mutants not found in the first pass could be more easily recovered. 

Variants were constructed using a megaprimer method that requires only one 

mutagenic oligonucleotide, thereby halving oligonucleotide costs. The thermodynamic 

stabilities of the generated variants were then determined using an improved version of 

our previously described plate-based chemical denaturation assay22 (Fig. 1b). 

Enhancements include adaptation to automated liquid handling for increased speed and 

precision, and doubling the number of data points collected per curve to improve 

accuracy. Although the intent was to collect data on 19 amino acids at 56 positions for a 

total of 1,064 variants, a tradeoff was made in which mutations at the buried tryptophan 

(Trp) at position 43 (W43) were excluded to preserve the integrity of the Trp-based 

fluorescence assay. Also, mutations incorporating cysteine (Cys) or Trp were omitted to 

avoid oligomerization by disulfide formation and potential interference with W43, 
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respectively. Thus, mutations to 17 of 19 possible amino acids were made at 55 of 56 

positions, for a total of 935 single mutants.  

Each step of the workflow was developed as an independent module, allowing for 

optimization outside the full experimental pipeline. Modularization also permits flexible 

scheduling and parallelization, allowing modules to run multiple times per day. For 

comparison, eight days is a reasonable estimate for traditional procedures to construct, 

verify, express, purify, and measure the thermodynamic stability of 8 single mutants. 

Extrapolating to 935 variants (the number in this study), traditional procedures would 

take 935 days, or 2.5 years. In contrast, our platform can generate data on 935 variants 

in 5–6 weeks, a speedup of at least 20-fold.  

Stability determination of Gβ1 single mutants. We measured the Trp fluorescence of 

each variant in response to a 24-point guanidinium chloride (GdmCl) gradient, thereby 

generating an unfolding curve (Fig. 1b) from which we determined the concentration of 

denaturant at the midpoint of the unfolding transition (Cm) and the slope (m-value)28. 

While ∆∆G can be calculated in multiple ways (Supplementary Methods), a more 

precise method for our data takes the difference between the mutant and WT Cm values 

and multiplies it by their mean m-value (𝑚)29 as shown in the following equation:  

∆∆G =   𝑚  × (Cm mutant   −   Cm WT) 

where the m-value was obtained with the linear extrapolation method30. Using this 

equation, stabilizing mutations have positive ∆∆G values, and destabilizing mutations 

have negative values. Of the 935 variants analyzed, 105 failed the assumptions of the 

linear extrapolation method (reversibility of folding/unfolding and two-state behavior) 

due to poor stability, presence of a folding intermediate, or no expression 
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(Supplementary Fig. 1). The 830 variants that passed these criteria are referred to as 

the quantitative dataset, and the remaining 105 are referred to as the qualitative 

dataset. The single mutant stabilities (∆∆Gs) for the entire dataset are shown as a heat 

map in Fig. 2. 

Stability distribution of Gβ1 single mutants is primarily neutral. The ΔΔG 

distribution of Gβ1 single mutants is primarily neutral (ΔΔG of 0 ± 1 kcal/mol) with a long 

tail of destabilizing variants (Fig. 3a). The median of the quantitative dataset is 0.05 

kcal/mol with an interquartile range of 1.0 kcal/mol (Fig. 3c), and the fraction of positive, 

neutral, and negative mutations is 3%, 68%, and 29%, respectively. If we assume the 

qualitative data contains only negative mutations, then our complete dataset shifts the 

fractions to 3%, 60%, and 37%, respectively. Summing the positive and neutral 

mutations, almost two thirds of the tested single mutants (63%) have at worst no effect 

on Gβ1 stability. The fraction of destabilizing mutations (37%) is on the low end 

compared to an experimental dataset of 1285 mutants from ProTherm, which shows 

that ~50% of single mutants are destabilizing (ΔΔG < 1 kcal/mol)31,32. The destabilizing 

fraction we obtained for Gβ1 would likely increase, however, upon making mutations to 

W43 and including Trp and Cys scanning variants as these residues are generally 

difficult to substitute in or out33. Also, the Gβ1 domain itself may skew mutational 

outcomes as its small size results in a large surface-to-buried area ratio. This ratio likely 

contributes to fewer destabilizing mutations than larger proteins with larger cores, 

assuming that most core mutations are destabilizing16,21,34,35. 
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Positional sensitivity is governed by residue burial. The heat map in Figure 2, which 

is organized by primary structure, allows for a granular look at the distribution of 

mutational stability. We observe two clear trends: (1) the mutational sensitivity (ΔΔG) of 

the domain is largely determined by the position of the mutation, not the amino acid 

identity, unless (2) the mutations are to glycine (Gly) or proline (Pro), for which most 

mutations are deleterious. Positions 3, 5, 26, 30, 41, 45, 52, and 54 are particularly 

sensitive to mutation. If we map the positional sensitivity (median ΔΔG at each position) 

onto the Gβ1 structure (Fig. 4), we see that residues in the interior of the protein are 

more susceptible to destabilization. This is also observed when analyzing the 

distribution by tertiary structure, but not by secondary structure (Fig. 3c). That is, 

classifying residues into core, boundary, or surface with the RESCLASS algorithm4 

shows that the median ΔΔG for core residues is ~1.5 kcal/mol lower than that of the rest 

of the protein. In addition, the qualitative dataset, which contains mutants whose 

stabilities are difficult to measure or are fully unfolded, has 5-fold more core variants as 

compared to the boundary or surface, adding further support to this observation (Fig. 

3b). Although this relationship has been observed with other datasets using a variety of 

proxies for protein stability16,21,34,35, this study provides a comprehensive analysis at the 

whole domain level with direct thermodynamic stability measurements.  

As seen in Fig. 2, however, not all core positions behave the same, as some are 

more sensitive to mutation than others. For engineering purposes, it would be useful to 

identify specific protein attributes that could serve as quantitative predictors of positional 

sensitivity. We therefore performed linear regression with 10-fold cross validation on a 

large number of attributes that might impact protein stability. Attributes tested included 
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measures of residue burial, secondary structure type/propensity, structural flexibility, 

and the change upon mutation of residue descriptors such as hydrophobicity, volume, 

and charge. The best individual predictors were measures of residue burial: depth of the 

Cβ atom36,37 and occluded surface packing (OSP)38,39, with correlation coefficients (r) of 

0.82 and 0.76, respectively. This demonstrates that not all core positions are created 

equal, and that there is a direct relationship between how buried a position is and its 

sensitivity to mutation. Flexibility descriptors such as root mean squared fluctuations 

(RMSF) (from molecular dynamics simulations) or secondary structure descriptors such 

as α-helix propensity performed less well (r = 0.42 and 0.06, respectively). We repeated 

these analyses with sequence entropy40 as an alternative metric of positional sensitivity, 

and the conclusions remain the same (Cβ depth and OSP were the two best predictors, 

with r = 0.81 and 0.78, respectively). Combinations of attributes were also tested, but 

these did not substantially improve predictability. Given the strong correlation between 

positional sensitivity and residue burial indicators like OSP and Cβ depth, calculation of 

these measures should be among the first tools employed when evaluating positions for 

substitution, provided structural information is available.   

Hydrophobics are the best tolerated amino acid type. A common practice in protein 

redesign and optimization is to restrict core residues to nonpolar amino acids and only 

allow polar amino acids at the surface. We tested the validity of this strategy with our 

quantitative dataset by calculating median ΔΔG by incorporated amino acid and ranking 

the amino acids from worst tolerated to best tolerated across the entire domain (Fig. 

5a). In general, the two worst amino acids for incorporation are Pro and Gly, which is 

unsurprising given their vastly different Ramachandran preferences compared to all 
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other amino acids. Beyond secondary structure-breaking amino acids, the third worst 

tolerated amino acid, interestingly, is aspartic acid (Asp), which may be rationalized by 

the fact that it is very hydrophilic41 and has one of the highest charge densities among 

the amino acids42. Unexpectedly, hydrophobic amino acids, particularly isoleucine (Ile) 

and phenylalanine (Phe), are among the best tolerated residues across all Gβ1 

positions. Even among surface positions, which make up over 50% of the dataset, Ile is 

the most favored individual residue, and hydrophobic amino acids as a whole are 

favored equally or better than the other amino acid types (Fig. 5b). The preference for 

hydrophobic amino acids extends to the chemically similar amino acid pairs, Asp/Glu 

and Asn/Gln, where the pair member containing the extra methylene is better tolerated 

across the domain (Fig. 5a) and in almost every RESCLASS environment (Fig. 5c). To 

determine if this observation is unique to Gβ1, we performed domain-wide in silico 

stability predictions6,43 on five compositionally diverse proteins, including Gβ1 

(Supplementary Table 1). Remarkably, the calculations recapitulated our observations 

for Gβ1 and produced similar results for the other proteins, even across different 

RESCLASS types (Supplementary Fig. 3).  

Several other experimental studies have also found that hydrophobic amino acids 

are well tolerated on the surface44-48. The investigators attributed these findings to 

unique amino acid properties or structural contexts that enable these nonpolar 

mutations to stabilize the mutation site. However, our results suggest that non-position-

specific increases in nonpolar surface area and volume are well tolerated, and the more 

the better. Larger hydrophobic amino acids like Ile, Phe, and Tyr are consistently ranked 

as the best tolerated, and smaller hydrophobics like Ala or Val do much worse across all 
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three residue classes, including surface residues (Fig. 5b). Although multiple nonpolar 

mutations to the surface are still likely deleterious to protein stability and solubility45, 

single mutations to hydrophobic amino acids should not be categorically excluded for 

stability optimization.  

Benchmarking protein stability prediction algorithms. We evaluated the ability of 

three stability prediction algorithms, PoPMuSiC43, FoldX7, and Rosetta5,8, to recapitulate 

the 830 ΔΔG values in our quantitative dataset. To better understand the effect of 

training data on each algorithm's performance, we compare the mutational composition 

of ΔΔG datasets used in the development of each algorithm (Table 1). PoPMuSiC is a 

simplified-representation statistical energy function trained on a very large experimental 

dataset from ProTherm. FoldX is similarly trained, albeit with a smaller and more Ala 

biased dataset, and mixes all-atom physical potentials with weighted statistical terms. 

Rosetta also mixes statistical and all-atom physical potentials, but is trained to recover 

native sequence compositions for protein design. A recent study systematically explored 

the effect of 19 different Rosetta parameter sets on single mutant stability prediction8, 

four of which are evaluated here. Three of the tested parameter sets use identical 

weights and terms but allow increasing amounts of backbone flexibility. That is, after 

sidechain repacking, the structure either undergoes no energy minimization, 

constrained backbone minimization, or unconstrained backbone minimization. Initially 

described as row 3, row 16, and row 198, we refer to these parameter sets here as 

NoMin, SomeMin, and FullMin, respectively. The fourth Rosetta parameter set 

evaluated here (SomeMin_ddg) combines constrained minimization with optimized 

amino acid reference energies trained on single mutant ΔΔG data from ProTherm, 
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similar to FoldX and PoPMuSiC. Overall algorithm performance was evaluated by 

Pearson correlation coefficients (Table 2) and for both tertiary structure (RESCLASS) 

and volume change to assess performance by mutation type. As energies from physical 

potentials can be dramatically skewed by atomic clashes, we excluded mutations with 

exceptionally high clash energies (clash outliers).  

The Rosetta SomeMin method is the best performing algorithm overall with a 

Pearson correlation coefficient of 0.64 (Table 2). The other methods perform less well at 

r = 0.56 (PoPMuSiC) and r = 0.51 (FoldX). All of the algorithms scored lower on our 

dataset than previously reported on independent test sets, where r values of 0.69 

(Rosetta SomeMin)8, 0.67 (PopMuSiC)37, and 0.64 (FoldX)4 were obtained. Comparing 

the different Rosetta methods, we observe that increasing backbone flexibility 

decreases the number of clash outliers, but does not necessarily improve overall 

performance. The constrained minimization in SomeMin considerably improves the 

correlation over NoMin, but unconstrained minimization in FullMin shows diminishing 

returns in allowing increased flexibility, as observed previously8. Significantly, the 

Rosetta SomeMin_ddg method performed worse than the SomeMin method (r = 0.54 

and 0.64, respectively), demonstrating a limitation of training all-atom potentials with 

small, biased experimental datasets (Table 1). 

If we look at the Pearson correlation coefficient by residue class, we find a general 

performance trend of boundary > surface > core. Except for Rosetta NoMin, which 

performs poorly across all categories, the all-atom algorithms exhibit very strong 

correlations in the boundary (r ≈ 0.7), with weaker correlations on the surface (r ≈ 0.5). 

In contrast, PoPMuSiC performs similarly across these two residue classes (r = 0.56 
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and r = 0.51, respectively). All algorithms do a poor job at predicting core mutations 

(r values range from 0.13 to 0.37), possibly because these mutations are more likely to 

lead to structural rearrangements that are not well captured by the algorithms6-8. The 

significant differences in correlation accuracy observed here likely do not stem from 

deficiencies in training data, as the composition by residue class is fairly uniform across 

algorithms (Table 1).  

The data were also analyzed by mutations that either reduce side chain volume 

(large to small, −VolΔ) or increase side chain volume (small to large, +VolΔ). Overall, 

across all methods, large to small mutations are better predicted than the inverse, which 

correlates with the composition of the training sets used in algorithm development 

(Table 1). 

All algorithms were also evaluated by the Spearman correlation coefficient to 

minimize penalties on skewed energies and instead reward correct rank ordering. The 

differences found with the Pearson method on the overall dataset are no longer 

observed (Supplementary Table 2). PoPMuSiC and all the Rosetta methods perform 

about the same, with FoldX performing less well. The performance trend between 

residue classes is retained with boundary > surface > core, and the performance edge 

for large to small mutations is widened when evaluated by the Spearman coefficient. 

Because mutations that remove substantial volume often create a destabilizing cavity49, 

the direction of the stability change of large to small mutations is more easily predicted 

and indeed captured by all of the algorithms equally well. The small to large mutation 

type can have very different outcomes (stabilized backbone accommodation or 

under/over-packed destabilization) and thus is harder to rank, much less predict 
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accurately, as observed here. The volume change performance trend demonstrates 

why stability predictors often feature favorable correlation coefficients on test sets 

containing a bias towards mutations to small amino acids like Ala, which is nearly 

always overrepresented in the datasets, as observed in Table 1.  

Practical stability engineering with in silico methods. As shown above and 

previously12, highly accurate stability prediction (r > 0.8) is beyond current algorithms. 

However, this limitation has not prevented the successful application of in silico tools to 

stabilize proteins and engineer protein interaction specificity50. One common approach 

is to: (1) generate stability predictions for every single mutant of a domain, (2) filter the 

stability predictions by an arbitrary ∆∆G(predicted) cutoff, (3) experimentally verify the 

small number of mutants above the cutoff, and (4) combine the hits. Here, our objective 

is to identify the in silico method that best performs this task on our Gβ1 dataset. That 

is, determine which algorithm recovers the greater number of stable variants (i.e., hits) 

near the top of its own predicted single-mutant list. We do this by calculating a couple of 

metrics across the two sorted lists of experimental and predicted variants, and, starting 

from the most stable variant, sequentially increase the number of mutants (N) that are 

compared. The first metric, % enrichment (%E), records the percent overlap between a 

list of experimentally verified mutants and a list of in silico predictions: 

%𝐸(𝑁) =
𝜔 𝑁
𝑁  

where ω (N) is the number of mutants found in both the experimental and predicted lists 

when N mutants are compared. The second metric, positive predictive value (PPV), first 

classifies the experimental dataset into “good” variants with ΔΔG > 0 and “bad” variants 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/484949doi: bioRxiv preprint 

https://doi.org/10.1101/484949
http://creativecommons.org/licenses/by-nd/4.0/


	   16 

with ΔΔG ≤ 0, and then uses receiver operating characteristic (ROC) methods to 

calculate the fraction of true positives out of all positive predictions:  

𝑃𝑃𝑉(𝑁) =
𝑇𝑃(𝑁)

  𝑇𝑃(𝑁)+ 𝐹𝑃(𝑁) 

where TP(N) is the number of true positives when comparing lists of N mutations and 

FP(N) is the number of false positives when comparing lists of N mutations. Although 

both methods focus on positive predictions, %E is more sensitive to how stability 

algorithms order their comprehensive single mutant predictions, whereas PPV will give 

a favorable score as long as the mutants predicted are classified as “good” (ΔΔG > 0). 

Values of %E and PPV as a function of the number of mutants (N) in the 

comparison, or %E(N) and PPV(N), were calculated for FoldX, PoPMuSiC, and the four 

Rosetta methods. All the combinations of the in silico methods were also tested by 

taking the mean of the predictions and then calculating %E(N) and PPV(N) as before. 

Focusing on the top 175 variants, which correspond to ∆∆G > 0.5, both metrics indicate 

that Rosetta NoMin is the best single algorithm (Fig. 6 and Supplementary Fig. 4). If we 

limit N to the top 20 variants, such as if experimental throughput is limiting, the Rosetta 

methods with backbone flexibility outperform Rosetta NoMin. When considering 

combinations of algorithms, the best performers are PoPMuSiC with either Rosetta 

NoMin or Rosetta SomeMin (Fig. 6). These two combinations have a higher %E(N) and 

PPV(N) than any single algorithm or any other combination of two algorithms when 

measuring the area under the curve (AUC). Nearly all three-algorithm combinations fail 

to outperform PoPMuSiC+Rosetta NoMin, indicating diminishing returns upon adding 

more algorithms. Prior work also indicates that combinations of algorithms outperform 

single algorithms in predicting the best single mutants45,50. We found this to be true 
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across our entire dataset and with both metrics, except when FoldX is included in the 

combination (data not shown).  

Note that the relationship between the number of variants and the PPV(N) values 

depends on the stability distribution of the protein of interest. Not every protein domain 

will have more than 175 variants experimentally determined to have ∆∆G > 0 to use in a 

“good” classification. In contrast, the %E(N) metric is independent of the stability 

distribution, and its values can be compared to prior studies using arbitrary ∆∆G cutoffs. 

Across nine studies using only FoldX and a ∆∆G cutoff, there were 81 true positives 

predicted out of a total of 244, for a success rate of 33%50. When another algorithm 

(typically Rosetta) was combined with FoldX, the total success rate climbed to 47%. 

However, for each individual study, combined FoldX+Rosetta success rates varied 

between 14% and 68%, suggesting other factors are involved, such as the ∆∆G cutoff 

employed, or the quality of the input structure. When benchmarked against our 

experimental data, FoldX performed very poorly regardless of the value of the ∆∆G 

cutoff, but especially in the top 30 predicted variants (0% E(N)). In contrast, Rosetta 

FullMin achieved %E(N) values of roughly 20% over the top 30 variants, and 

PoPMuSiC+Rosetta NoMin maintained values above 30% for the majority of the cutoffs 

tested (Supplementary Fig. 4). These results clearly demonstrate that combinations of 

algorithms can improve the outcome of ∆∆G cutoff stability studies. 

Comparing with deep mutational scanning studies. By coupling high-throughput 

functional selections with next generation sequencing, DMS can provide mutational data 

on thousands or even millions of variants with relatively little experimental effort26,27. 

This technology is being applied to an increasing number of proteins and has the 
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potential to supply a wealth of new data to train stability prediction tools51, provided the 

DMS technique can be properly validated. Serendipitously, a DMS study was performed 

on every single mutant and nearly every double-mutant of Gβ152, allowing for a direct 

comparison with the thermodynamic stability data presented here. Using a selection 

based on binding to IgG Fc, Olson et al. found that fitness values obtained using binding 

affinity enrichment (ln W) correlated very poorly (r = 0.013) with ∆∆G values reported in 

the literature for 82 single mutants (∆∆G_lit). When we compared ln W with the ∆∆G 

values from our larger set of 830 single mutants, we found a better, but still small 

correlation (r = 0.19) (Supplementary Fig. 5a).  

To address this issue, Olson et al. devised a strategy to estimate single mutant 

stabilities from their DMS fitness data. This approach requires identifying destabilized 

mutational backgrounds using double mutant fitness data so that the functional effect of 

a second mutation in these backgrounds could be used to compute single mutant ∆∆Gs. 

They identified five background mutations that produced a large correlation (r = 0.91) 

with ∆∆G_lit and later demonstrated an approach (see Wu et al.53) that avoids the need 

for pre-existing stability data. In Fig. 7a, we plot our experimental ∆∆Gs vs. those 

predicted using the Wu et al. method (∆∆G_Wu) for 794 single mutants. The correlation 

(r = 0.60) is significantly lower than the value obtained using the smaller ∆∆G_lit dataset 

(r = 0.91). A closer look at the 82 mutants in ∆∆G_lit reveals a relatively small % of 

mutations in the core and a bias towards Ala substitutions, resulting in a dataset that 

does not reflect the breadth of possible mutations in the entire domain (Table 1). As 

seen in Supplementary Fig. 5b, the limited number of mutants in ∆∆G_lit masks the 
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lower correlation between ∆∆G and ∆∆G_Wu by serendipitously avoiding off-diagonal 

single mutants.   

A recent report by Otwinowski reanalyzed the Olson et al. fitness data with a method 

based on a thermodynamic model describing three states (bound-folded, unbound-

folded, and unfolded) that avoids the need for preexisting mutational or structural data54. 

The method calculates distinct energies for folding (E_folding) and binding (E_binding). 

We compare the E_folding energy (∆∆G_Otwinowski) with our experimental ∆∆G values 

in Fig. 7b, which shows an improved correlation (r = 0.72) over the Wu et al. method 

(r = 0.60). Supplementary Table 3 analyzes the correlations for the two methods by 

residue class, volume change, and polarity change. The ∆∆G_Otwinowski energy yields 

better correlations across the board, with the core continuing to show a significantly 

lower correlation. Thus, although DMS fitness data are poorly correlated with 

thermodynamic stability, simple biophysical models can be constructed that lead to 

significantly improved correlations. We expect that large, comprehensive datasets 

containing thermodynamic measurements such as those provided here will facilitate the 

development of improved methods to extract biophysical quantities (e.g., stability and 

binding) from fitness data, thus greatly expanding the utility of DMS and other deep 

sequencing techniques. 

Discussion 

We described an automated chemical denaturation methodology that produces high 

quality thermodynamic stability data at a throughput that enables the near total site-

saturation mutagenesis of small protein domains. Although other low-cost methods such 

as thermal challenge assays or differential scanning fluorimetry can also provide useful 
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data, and deep sequencing approaches such as DMS can streamline the entire 

process, these methods do not directly report thermodynamic information. The 

automated pipeline described here makes gathering accurate thermodynamic stability 

data at a large scale feasible. The broad, unbiased nature of our near complete Gβ1 

single mutant study provides an important dataset for examining previously reported 

trends, evaluating stability prediction tools, and validating methods to extract stability 

values from DMS results.  

We found that while the stability distribution of our Gβ1 dataset features a long tail of 

destabilizing variants, most mutations (68%) are neutral. However, if variants without 

quantitative data and those omitted for technical reasons are assigned negative 

outcomes, destabilizing variants make up 45% of the 1,064 possible single mutants of 

Gβ1, approaching predicted published values31. Other trends followed conventions, with 

mutations to Gly, Pro, and core positions almost always being deleterious. However, not 

all core positions show the same degree of sensitivity, as measures of residue burial 

such as Cβ atom depth and OSP were found to best correlate with median ∆∆G at each 

position. Although the correlation of residue burial with individual ∆∆G measurements 

was previously reported for a collection of variants across many proteins36, our domain-

wide dataset allows the position-specific nature of the relationship to be fully observed. 

Similarly, using our unique dataset to calculate median ∆∆G by incorporated amino acid 

reveals an unexpected tolerance for large hydrophobic amino acids. This preference 

extended across tertiary structure, and stability predictions on four other proteins 

confirmed this trend. 
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Evaluating three stability prediction algorithms against our dataset, we found that all 

performed moderately and recapitulated the general trends of the data. The flexible 

backbone Rosetta method (SomeMin) provided the best overall Pearson correlation (r = 

0.64), but all of the Rosetta methods and PoPMuSiC performed equally by the 

Spearman rank correlation coefficient. Except for PoPMuSiC, all methods showed 

higher correlations in the boundary than on the surface (r = ~0.7 and ~0.5, respectively), 

all showed consistently lower correlations for mutations at core positions (r = 0.13 to 

0.37), and nearly all were better at predicting large to small mutations than small to 

large ones. 

Overall, the Rosetta SomeMin method was the most accurate stability algorithm 

tested here. It gives the best Pearson correlation for nearly every mutational category 

and is near the top in non-parametric methods as well. However, Rosetta SomeMin, 

and to a greater extent, Rosetta FullMin, require the most computational resources. For 

lower computational cost, PoPMuSiC provides the next best correlation coefficients on 

our quantitative dataset. For identification of the most stable single mutants, the 

combination of PoPMuSiC and Rosetta NoMin gave the best overall performance in 

each of the metrics tested. Both methods are computationally efficient, and when 

combined give enrichment values over 30% and PPVs over 90% after analyzing the 

predicted top 100 variants. 

DMS holds great promise as an extremely high-throughput method for obtaining 

mutational data for entire protein domains. However, correlating the fitness data to 

thermodynamic quantities such as stability is not straightforward, given that the 

selection method provides only an indirect measure of stability. In comparing our ∆∆G 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/484949doi: bioRxiv preprint 

https://doi.org/10.1101/484949
http://creativecommons.org/licenses/by-nd/4.0/


	   22 

values against strategies designed to extract stabilities from high-throughput fitness 

data, we find that a simple thermodynamic model that distinguishes binding and folding 

energies results in a Pearson correlation coefficient of r = 0.7. Even higher correlations 

are achieved by omitting core variants, and this strategy could yield useful training sets 

in the near term. 

Beyond the engineering insights described here, it is our hope that our single mutant 

dataset of thermodynamic stabilities will prove to be a powerful training set for use in 

developing better stability prediction tools and better methods for deriving stabilities 

from high-throughput fitness data.  

Methods 

Liquid handling robotics. A 2-meter Freedom EVO (Tecan) liquid-handling robot was 

used to automate the majority of the experimental pipeline. The instrument includes an 

eight-channel fixed-tip liquid-handling arm, a 96 disposable-tip single-channel liquid-

handling arm, and a robotic plate-gripping arm. The robot’s deck features a fast-wash 

module, a refrigerated microplate carrier, a microplate orbital shaker, a SPE vacuum 

system, an integrated PTC-200 PCR machine (Bio-Rad Laboratories), stacks and hotels 

for microplates, and an integrated Infinite M1000 fluorescence microplate reader 

(Tecan). All molecular biology methods were developed de novo and optimized as 

necessary. 

Site-directed mutagenesis. The Gβ1 gene, with an N-terminal hexahistidine tag, was 

inserted into pET11a under control of an IPTG inducible T7 promoter. Mutagenic 

oligonucleotides were ordered from Integrated DNA Technologies in a 96-well format 
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(150 µM concentration, 25 nmole scale) and purified by standard desalting. The site-

directed mutagenesis reaction was performed in two parts: (1) diluted mutagenic 

oligonucleotides were mixed with a master mix solution composed of Hot-start Phusion 

DNA polymerase (NEB), GC Phusion buffer, dNTPs, the plasmid template, and the non-

mutagenic flanking oligonucleotide, followed by (2) mixing ¼ of the first step product 

with a similar master mix solution that omits the flanking oligonucleotide. The PCR 

cycling conditions for the two parts were: (1) a 30 s preincubation at 98°C followed by 

15 thermocycling steps (98°C, 8 s; 62°C, 15 s; 72°C, 20 s), and (2) a 30 s preincubation 

at 98°C followed by 25 thermocycling steps (98°C, 8 s; 72°C, 3 min) followed by a final 

extension step at 72°C for 5 min. After mutagenesis, samples were mixed into an 8%-

by-volume Dpn1 (NEB) digestion reaction (37°C, 1 h) to remove the parental template 

plasmid. 

During development, reactions were diagnosed by E-Gel 96 (Invitrogen) 

electrophoresis systems, with loading performed by the liquid-handling robot. 

Visualization of the desired first-step and second-step products would guarantee 

positive mutagenesis. Almost 85% of all site-directed mutagenesis reactions were 

successful in the first pass. 

Bacterial manipulation and sequence verification. Dpn1 digested products were 

mixed with homemade chemically competent BL21 Gold DE3 cells55 in a 20 µL total 

reaction volume, and incubated at 4°C for 10 min. After heat shock (42°C, 45 s) on the 

PCR machine, the bacterial transformations were recovered by adding 100 µL of SOC 

media, and shaken off robot at 1200 rpm for 1 h at 37°C on a microplate shaker 

(Heidolph). 
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The transformation mixtures were plated by the liquid-handling robot onto 48-well LB 

agar Qtrays (Genetix) and spread by sterile beads55. The Qtrays were incubated off 

robot for 14 h at 37°C. For each mutagenesis reaction, eight colonies were picked by a 

colony-picking robot (Qbot, Genetix) into 384-well plates (Genetix) filled with LB/10% 

glycerol. The 384-well receiving plates were incubated overnight at 37°C, after which 2 

of the 8 cultures per mutagenesis reaction were used to inoculate 96-well microplates 

containing LB/10% glycerol. These 96-well glycerol stock plates were grown overnight 

at 37°C, replicated, and sent to Beckman Genomics for sequencing. 

After analyzing the sequencing data, missing library members could be recovered 

either by sending more picked colonies from the 384-well receiving plate, or by redoing 

the mutagenesis reaction with different PCR conditions. Once all of the mutants were 

constructed, work lists were generated for the liquid-handling robot to cherry-pick from 

the replicated 96-well glycerol stock plates and inoculate into 96-well master stock 

plates containing LB/10% glycerol. The master stock plates were then incubated 

overnight at 37°C and frozen at  −80°C until needed. 

Protein expression and purification. Small volumes from replicated master stock 

plates were used to inoculate 5 mL of Instant TB auto-induction media (Novagen) in 24-

well round-bottom plates (Whatman). The 24-well plates were incubated overnight, 

shaking at 250 rpm, at 37°C. The expression cultures were then pelleted, lysed with a 

sodium phosphate lysis buffer solution (pH 8) containing CelLytic B (Sigma Aldrich), 

lysozyme, and HC benzonase (Sigma Aldrich). Lysates were then added directly to 96-

well His-Select Ni-NTA resin filter plates (Sigma Aldrich) and processed off-robot by 

centrifugation. His-tagged protein was washed and eluted in sodium phosphate buffer 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/484949doi: bioRxiv preprint 

https://doi.org/10.1101/484949
http://creativecommons.org/licenses/by-nd/4.0/


	   25 

(pH 8) containing 0 mM and 100 mM imidazole, respectively. Protein samples were 

diluted five-fold into sodium phosphate buffer (pH 6.5), thereby diluting the final amount 

of imidazole in each sample before stability determination. 

Plate-based stability assay. Large volumes (0.2 L) of each concentration of a 24-point 

gradient of GdmCl in sodium phosphate buffer (pH 6.5) were constructed using 

graduated cylinders and dispensed into 96-well deep-well plates by a multi-channel 

pipettor. These reagent reservoirs, along with the liquid-handling robot, greatly 

simplified and sped up the stability assay previously described22. Each stability assay 

was comprised of 24 individual solutions containing 1 part purified protein to 4 parts 

GdmCl/buffer solution, and measured by the integrated plate reader for Trp 

fluorescence (Ex: 295 nm, Em: 341 nm). The assay employed 384-well UV-Star plates 

(Greiner) that allowed 16 different protein mutants to be measured per plate, thus 

requiring 6 of these plates per 96-well master stock plate. All variants were measured 

2–6 times. Data were analyzed as described previously22. 

Positional sensitivity. Positional sensitivity was evaluated via two metrics: (1) the 

median ∆∆G value and (2) sequence entropy. The median ∆∆G value for each position 

(j) was calculated by finding the median of ∆∆G values for all mutations measured at j, 

where mutations in the qualitative dataset were assigned a ∆∆G value of −4 kcal/mol. 

The sequence entropy at a position j was calculated as 𝑠(!) =   − 𝑝!
(!) ln𝑝!

(!)!"
!!!  where 

𝑝!
(!) , the probability of a given amino acid i at position j was determined by   𝑝! =

𝑒∆∆!!/!"
𝑒∆∆!!/!"!"

!!!
. The WT residue was assigned a ∆∆G value of zero and mutations 

in the qualitative dataset were assigned a value of −4 kcal/mol. The positional sensitivity 
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at each position was visualized on the crystal structure of Gβ1 (PDB ID: 1PGA) using 

VMD56. 

Protein attributes. All structure-based attributes were calculated using the crystal 

structure of Gβ1 (PDB ID: 1PGA). Occluded surface packing39 was calculated using 

software downloaded from http://pages.jh.edu/pfleming/sw/os/. Root mean square 

fluctuation (RMSF) was calculated over a 20 ns molecular dynamics trajectory in full 

solvent using NAMD57. The depth of the Cβ atom was calculated by the RESCLASS 

algorithm4 to decide core, boundary, and surface residues. Linear regression with 10-

fold cross validation was performed with scikit-learn58 to identify attributes that correlate 

highly with positional sensitivity. Recursive feature elimination was also performed with 

scikit-learn using a ridge estimator, and 5-fold cross validation was performed to 

evaluate combinations of attributes. Recursive feature elimination was also performed 

with scikit-learn to evaluate combinations of attributes.  

Stability prediction algorithms. The crystal structure of Gβ1 (PDB ID: 1PGA) was 

used as the input structure for all algorithms. The webserver for PoPMuSiC version 3, 

located at http://www.dezyme.com, was used to perform a “Systematic” command on 

the Gβ1 crystal structure. A copy of FoldX (version 3.0, beta 5) was retrieved from 

http://foldx.crg.es. The crystal structure was prepared by using the “RepairPDB” 

command to perform Asn, Gln, and His flips, alleviate small van der Waals clashes, and 

optimize WT rotamer packing. Every mutant in the dataset was constructed through the 

“BuildModel” command, and the difference in energy between the WT reference and the 

corresponding mutant was averaged over five trials. A copy of Rosetta (version 3.3) was 
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retrieved from http://www.rosettacommons.org. The ddg_monomer application was 

used to generate single mutant stability data from the Gβ1 crystal structure. We 

followed the available online documentation in order to prepare all necessary input files. 

Option sets described in the documentation pertain to the various Rosetta iterations 

tested in this paper (NoMin: low-resolution protocol; SomeMin: high-resolution protocol; 

FullMin: high-resolution protocol with an empty distance restraints file). 

Statistical visualization and analysis. All plots were generated using the software 

Tableau (Seattle, WA). Custom python scripts were developed to calculate the large 

number of thermodynamic stability curve fits. Correlation coefficients (Pearson’s and 

Spearman’s) were calculated either in Tableau or in the software package R (version 

3.2.2). The ROCR package for R was used for classification and receiver operator 

characteristic analysis59.  

Data availability. The ΔΔG distribution of Gβ1 single mutants generated during this 

work is publicly available in ProtaBank (https://protabank.org), a protein engineering 

data repository, under the ID gwoS2haU3. All of the other data that support the 

conclusions of the study are available from A.N. upon request. 
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Fig. 1 Automated site-directed mutagenesis and stability determination pipeline. a 

Modular protocols enable the rapid construction, sequence verification, and stability 

determination of single mutant variants. For illustrative purposes, each step shows the 

number of plates required for 96 individual reactions. Oligonucleotides direct 

mutagenesis reactions on 96-well PCR plates followed by bacterial transformation and 

plating onto 48-well agar trays. Individual colonies are picked, cultured, and re-arrayed 

after successful sequence validation. Confirmed variants are expressed in 24-well 

culture blocks and NiNTA purified. Each reaction was tracked via a database throughout 

the pipeline, allowing for method optimization. b Thermodynamic stability was 

determined by measuring Trp fluorescence in response to a 24-point GdmCl gradient. 

Each row of a 384-well plate is one protein stability curve from which the concentration 

of denaturant at the midpoint of the unfolding transition (Cm) is directly measured. After 

estimating the slope of the curve (m-value), the change in the free energy of unfolding 

(ΔΔG) of each variant relative to WT is calculated by taking the difference between the 
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WT and mutant Cm values and multiplying by their mean m-value (see Supplementary 

Methods and Supplementary Fig. 2). 
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Fig. 2 Single mutant thermodynamic stability landscape of Gβ1. The vertical axis of the 

mutational matrix depicts the primary structure of Gβ1, with the position and WT amino 

acid as columns. The horizontal axis depicts mutant amino acids examined in the study, 
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grouped by amino acid type. Variants are colored by their determined ΔΔG value where 

red is destabilizing, blue is stabilizing, and white is neutral. Self-identity mutations such 

as M1M have ΔΔG = 0 and thus are colored white. Variants from the qualitative dataset 

are assigned an arbitrary value of −4 kcal/mol and are colored accordingly. 
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Fig. 3 Stability distribution of Gβ1 single mutants. a–b The 935-member dataset is split 

between variants with quantitative data (gray) and those with only qualitative data (red) 

due to poor stability or misfolding. a The ΔΔG distribution is split into 0.25 kcal/mol bins. 

Variants belonging to the qualitative dataset are shown to the left of the distribution, 

indicating ΔΔGs < −4 kcal/mol. b Variants are binned into core, boundary, or surface 

using RESCLASS4. c Box and whisker plots of the quantitative dataset describe the 

median, the quartile cutoffs, and the outlier cutoffs of the ΔΔG distribution for all the 

residues (All), binned into secondary structure classifications as defined by DSSP60, or 

binned by RESCLASS. Outliers are shown as unfilled circles and are defined as points 
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that are 1.5 × interquartile range above or below the 3rd quartile or 1st quartile, 

respectively. 
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Fig. 4 Positional sensitivity (median ∆∆G at each position) of Gβ1. Gβ1 X-ray crystal 

structure (PDB ID: 1PGA) is colored by the positional sensitivity at each position. 

Sidechain atoms are shown for residues with a positional sensitivity score less than 

zero (destabilized).  
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Fig. 5 ΔΔG distribution by incorporated amino acid. Amino acids are colored by 

physiochemical type. a Individual variants are shown as Gantt lines and distributed by 

the incorporated amino acid. The amino acid bins are ordered from left to right by the 

median ΔΔG of each distribution (black lines). b Median ΔΔGs of the incorporated 

amino acid distribution grouped by RESCLASS4. For clarity, only hydrophobic amino 

acids are labeled. c Median ΔΔGs of chemically similar pairs (D/E and N/Q), grouped by 

RESCLASS. 
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Fig. 6 Comparing stability prediction algorithms by positive predictive value, PPV. a 

PPV(N), as defined in the text, is plotted as a function of the number of variants 

included in the list comparison. Only the top 175 Gβ1 single mutants are shown, sorted 

by ΔΔG. Each of the single algorithms and, for simplicity, only the best two-algorithm 

combination (PoPMuSiC+Rosetta NoMin) are shown, colored according to the legend. b 
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As a reference, experimental ΔΔG values are plotted as a function of the ranked variant 

index, a sorted list of the stability distribution.  
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Fig. 7 Comparing experimental ∆∆Gs with predictions obtained from DMS fitness data. 

Gβ1 single mutant stabilities from our experimental quantitative dataset (∆∆G) are 

plotted against (a) ∆∆G values predicted from the DMS data using the Wu et al. 

method53 (∆∆G_Wu) (n = 794) or (b) E_folding values predicted from the DMS data 

using Otwinowski's three-state thermodynamic model54 (∆∆G_Otwinowski) (n = 812). In 

both cases, DMS data is from Olson et al.52 Points are colored by RESCLASS4 values. 

A linear regression line is shown in red, and the correlation coefficient is shown in the 

lower right of each plot. 
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Table 1 Mutational composition of protein stability datasets  

ΔΔG dataset Total # % surface % boundary % core % +VolΔ % −VolΔ % Ala  

FoldX training set7 339 32 27 36 3 97 61 
FoldX test set7 625 32 30 35 5 95 54 
PoPMuSiC training set6 2644 26 32 40 33 67 28 
PoPMuSiC test set6 350 21 27 48 40 60 26 
Rosetta test set8 1210 32 30 38 16 84 47 
ΔΔG_lit52 82 71 21 8 52 48 20 
This dataset 935 53 25 22 56 44 5 

Residues were classified as core, boundary or surface with the RESCLASS4 algorithm. Mutations with 
mislabeled or non-standard PDB data (< 5%) were omitted from residue classification. +VolΔ, small to 
large mutations; −VolΔ, large to small mutations. 
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Table 2 Algorithm performance by Pearson correlation  

   Pearson correlation coefficient (r) 

 
Algorithm 

Backbone 
minimizationa 

Clash 
outliersb 

 
Overall 

 
Surfacec 

 
Boundaryc 

 
Corec 

 
+VolΔ 

 
−VolΔ 

PoPMuSiC  0 0.56 0.51 0.56 0.33 0.43 0.64 
FoldX  17 0.51 0.42 0.68 0.17 0.46 0.56 
Rosettad         
  NoMin None 22 0.33 0.29 0.26 0.13 0.38 0.28 
  SomeMin Constrained 17 0.64 0.53 0.73 0.37 0.56 0.66 
  SomeMin_ddge Constrained 6 0.54 0.49 0.68 0.15 0.46 0.66 
  FullMin Unconstrained 3 0.60 0.52 0.69 0.24 0.48 0.69 

Predicted ΔΔGs from stability algorithms were compared to experimental ΔΔGs for Gβ1 single mutants in 
the quantitative dataset. Mutations with exceptionally high clash energies (clash outliers) were excluded 
when calculating each algorithm’s correlation coefficient. +VolΔ, small to large mutations; −VolΔ, large to 
small mutations. 
a Level of backbone minimization after repacking for Rosetta methods. 
b Number of mutations with a calculated repulsive energy > 2 standard deviations above the mean. 
c Residues are classified as core, boundary, or surface using RESCLASS4. 
d Rosetta parameter sets NoMin, SomeMin, and FullMin were initially described as row 3, row 16, and row 
19, respectively8.  
e Combines constrained backbone minimization with optimized reference energies trained on single 
mutant ΔΔG data from ProTherm. 
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