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Abstract 
 
Resistant tumours are thought to arise from the action of Darwinian selection on 
genetically heterogenous cancer cell populations. However, simple clonal selection 
is inadequate to describe the late relapses often characterising luminal breast 
cancers treated with endocrine therapy (ET), suggesting a more complex interplay 
between genetic and non-genetic factors. Partially, this is due to our limited 
understanding on the effect of ET at the single cell level. In the present study, we 
dissect the contributions of clonal genetic diversity and transcriptional plasticity 
during the early and late phases of ET at single-cell resolution. Using single-cell 
RNA-sequencing and imaging we disentangle the transcriptional variability of plastic 
cells and define a rare sub-population of pre-adapted (PA) cells which undergoes 
further transcriptomic reprogramming and copy number changes to acquire full 
resistance. PA cells show reduced oestrogen receptor α activity but increased 
features of quiescence and migration. We find evidence for sub-clonal expression of 
this PA signature in primary tumours and for dominant expression in clustered 
circulating tumour cells. We propose a multi-step model for ET resistance 
development and advocate the use of stage-specific biomarkers. 
 
Keywords: Breast cancer, endocrine therapy, drug resistance, single cell RNA 
sequencing, plasticity, phenotypic heterogeneity 
 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/485136doi: bioRxiv preprint 

https://doi.org/10.1101/485136
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

Introduction 

 
The outgrowth of primary luminal breast cancer (BCa) is driven by non-

mutated estrogen receptor α (ERα), with all patients receiving adjuvant endocrine 
therapy after curative surgery (ET). This strategy significantly delays clinical relapse 
but does not abrogate it completely, as about ~3% of the patients each year come 
back with overt relapse, inevitably leading to further metastatic development1–3. The 
frequency of relapse remains constant up to 20 years after surgery making ET-
resistance the most critical clinical problem for the management of these patients4. 
The processes of adaptation and selection leading to late relapse are currently 
poorly understood and should be interpreted in light of adjuvant therapies. 

Recent developments in next-generation sequencing (NGS) revealed that 
tumours are genetically heterogeneous5–7 and in some cancer types, heterogeneity 
correlates with the likelihood of recurrence and development of drug-resistance8,9. In 
some instances, targeted therapy can lead to the rapid expansion of genetically 
defined pre-existent resistant cells that can be explained by simple models of clonal 
selection10–12. However, this same model is mostly inconsistent with the decade-long 
latency observed in luminal BCa. In addition, despite recent studies showed that the 
majority of the genetic lesions in BCa are accumulated during the early phases of 
tumour development5,13, they failed to identify any major driver associated to 
metastasis and resistance, with the exception of a minor fraction of cases showing 
either ESR1 mutations or CYP19A1 amplification14–17. Yet, the transcriptomes of the 
resistant cells are profoundly heterogeneous and different from those of the primary 
tumour18–20, suggesting a contribution of non-genetic mechanisms21. 

Rare phenotypic subpopulations, showing features of drug-tolerance and 
sometimes of quiescence, have been found in primary melanomas22, leukaemia23, 
non-small cell lung cancer24 and triple negative breast cancer (TNBC)25. In primary 
melanoma, a rare, transient subpopulation expressing resistant markers at high 
levels can survive and persist to become stably resistant26. Nevertheless, it remains 
unclear how genetic and non-genetic components contribute to different types or 

stages of ERα-BCa. 

In this study, we used a combination of live cell imaging, single cell RNA-
sequencing (scRNA-seq) and machine learning to dissect the phenotypic 
heterogeneity and plasticity of ERα-positive BCa and leveraged this information to 
identify a subpopulation of rare, pre-adapted cells both in vitro and in vivo. These 
cells (termed PA, from Pre-Adapted) display a unique transcriptional signature with 
features of dormancy and mixed epithelial and mesenchymal traits, and which was 
found dominant in clustered circulating tumour cells. PA cells showed a significant 
survival advantage under short-term ET but required further transcriptional 
reprogramming and genetic alterations to acquire full resistance and re-establish a 
proliferative phenotype in vitro. These results highlight the multi-faceted effects of ET 
at single cell level and suggest a multi-step mechanism of drug resistance that 
involve both non-genetic and genetic contributions. 
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Phenotypical equivalent of fully resistant clones is absent in treatment-naïve 
cells 
In order to study the dynamic process of ET resistance, we exploited an in vitro 
system that maximises reproducibility while minimising confounding factors15,27. 
Long-term oestrogen deprived (LTED) cells originate from ESR1 wild-type MCF7 
that have been deprived from oestradiol for one year. This model is generally 
considered a good proxy to study the effect of aromatase inhibitors (AI) (Fig. 1a). We 
previously showed that resistance in this model is driven by amplification of the 
aromatase gene (CYP19A1) in combination with endogenous cholesterol 
biosynthesis, but not by mutated ESR115,28. Even in this accelerated model, fully 
resistant cells emerge between 6 to 12 months of oestrogen deprivation29, which is 
incompatible with clonal selection of a pre-resistant cell30. In line with this, less than 
1.5% of early-stage BCa show evidence of a pre-existent ESR1-mutant clone31 
(Supplementary Table 1), suggesting key driver mutations to be acquired at a later 
stage. However, this model does not fully exclude pre-existence of transcriptomic 
clones with features of resistance. To investigate this, we generated scRNA-seq 
high-quality profiles for >1,200 MCF7 and >1,900 LTED cells (Supplementary Table 
2). 

Dimensionality reduction (Similarity Weighted Nonnegative Embedding, or 
SWNE)32 showed MCF7 and LTED as completely separated populations, with no 
single MCF7 clustering with LTED cells (Fig. 1b). Studies in melanoma and TNBC 
suggest that drug-resistant cells can rapidly emerge25,26. This implies that in drug-
naïve tumors, at least a few cells have a transcriptional profile similar to that of fully 
resistant cells. However, our data suggest this is not the case in luminal breast 
cancer cell lines, which is concordant with the long latency taken by ET-resistance to 
occur in most patients treated with endocrine therapies. To completely exclude any 
contribution of a pre-existent genetic clone, we inferred single-cell, copy number 
alterations (CNAs) from scRNA-seq data (Methods). Clustering of single MCF7 and 
LTED cells based on the inferred patterns of CNAs identified two clades, one 
including all the MCF7 and one all the LTED cells (Fig. 1c). In line with CYP19A1 
significantly contributing to AI resistance in vivo and in vitro15, an amplification 
involving the region was found in almost all LTED cells but not in MCF7 (Fig. 1c). 
This was confirmed by shallow whole genome sequencing (Supplementary Fig. 1a). 

Taken together, these data support that AI resistance is not driven by a pre-
resistant clone (whether genetic or in a particular transcriptional state), suggesting a 
multi-step adaptation process in which the necessary hits occur with a different 
timing during ET. 
 Using scRNA-seq, we were able to confirm that certain pathways, such as 
cholesterol biosynthesis, are profoundly reprogrammed by ET at the population level 
(Fig. 1d and Supplementary Fig. 1b). Nevertheless, clustering of single-cell profiles 
identified five distinct groups (two for the MCF7 and three for the LTED), reflecting a 
certain degree of diversity for the activity of these pathways. This led us to further 
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dissect the phenotypic heterogeneity of breast cancer cells with the aim of 
pinpointing rare, transcriptionally-defined clones in the drug-naïve condition. 
 
Characterisation of a phenotypically distinct population of plastic cells in 
luminal breast cancer 
We first aimed at identifying any surface marker that could guide the dissection of 
the phenotypic heterogeneity of luminal breast cancer cells. Genes showing high 
transcriptional variability across single MCF7 cells were intersected with annotation 
in the Cell Surface Protein Atlas33. Among the top 30 genes, we identified CD44 
(Supplementary Fig. 2) which has been previously recognised as a marker of plastic 
cells in various solid tumours34–36. Further investigation confirmed variable 
expression of CD44 in primary tumours (Supplementary Fig. 3a-c and Fig. 2a,b). 
CD44 positive cells were found significantly enriched after treatment in a cohort of 
neo-adjuvant AI patients (Fig. 2a; 3.8-fold, p-value = 0.0032; two-tailed paired t-test) 
as well as in matched AI-treated primary-metastatic (Fig. 2b and Supplementary Fig. 
3d; 2-fold, p-value = 0.0029; Wilcoxon signed-rank test), suggesting higher chances 
of survival to ET for CD44-expressing cells in vivo. We next sought to investigate if 
CD44high cells can be also found at other active sites in breast cancer patients. 
Interestingly, we found substantial CD44high cells in pleural effusions from all four 
patients examined (Supplementary Fig. 3e). In line with this, the fraction of FACS-
sorted CD44high cells was significantly increased in LTED (upper panels in 
Supplementary Fig. 3f,g). Extensive functional characterisation of these cells 
demonstrated that MCF7-CD44high cells were more invasive, more clonogenic, and 
could form first and second-generation of mammosphere at higher efficiency than 
CD44low cells (Supplementary Fig. 3h-j). In agreement with previous studies36, 
CD44high cells also showed cellular plasticity as they could recapitulate the entire 
population while CD44low were capable of generating only CD44low cells 
(Supplementary Fig. 3f). 

To further investigate the plasticity of CD44high cells in vitro at the single-cell 
level, we generated MCF7 and LTED cell lines with a GFP reporter expressed under 
the promoter of the CD44 gene (Supplementary Fig. 4). Reconstitution experiments 
from FACS-sorted cells showed that CD44GFP-high cells could recapitulate all the 
functional aspects of endogenous CD44high cells including cellular plasticity (Figure 
2c). Interestingly, both CD44GFP-high and CD44GFP-low showed features of plasticity in 
fully resistant cells (Fig. 2d and Supplementary Fig. 3g). When MCF7 were 
challenged with short-term ET, only CD44GFP-high cells appeared to adapt to it, while 
CD44GFP-low cells were rapidly cleared out between days 4 and 7 (Fig. 2e). Single-cell 
plating experiments confirmed that only CD44high cells could drive the formation of 
early colonies under E2-deprivation, but the colonies were significantly smaller 
compared to E2-supplemented conditions (Fig. 2f). These observations indicate 
combined cytostatic and cytotoxic effects of ET and that those cells that could adapt 
to the therapy originate within the CD44high compartment. Extrapolation of cell-cycle 
dynamics of CD44GFP-high and CD44GFP-low cells from time-lapse imaging data 
revealed comparable cell-cycle length in E2-supplemented condition (Fig. 2g; +E2). 
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Nevertheless, CD44GFP-high cells had a significantly lower proportion of cells engaged 
in productive cell cycle entry, suggesting the existence of a low-proliferative 
subpopulation within the CD44high compartment even under permissive 
environments. Under E2-deprivation, the CD44GFP-low completely failed to undergo 
cell-cycle entry, while 12% of CD44GFP-high managed to do one or more cell cycles, 
with a much longer latency (Fig. 2g; -E2). 

Taken together, these results further support the idea that at least some of the 
cells in the CD44GFP-high (but not CD44GFP-low) compartment have an increased ability 
to survive the acute phase of ET, and this correlates with their features of plasticity. 
This led us to hypothesise that non-genetic, transcriptional variability would reflect 
pre-existent, rare subpopulations in treatment-naïve cells with higher chances to 
survive and give rise to fully-resistant cells. 
 
Single-cell transcriptomic profiling unveils further heterogeneity of plastic 
cells 
To investigate the transcriptional variability of CD44high cells, we carried out sorting-
driven, scRNA-seq of CD44-GFP luminal breast cancer cells. About 10,000 single 
cells in E2-supplemented condition were profiled (CD44GFP-high and CD44GFP-low in 
equal proportions; Fig 3a; in the remainder of the text, these two sorted 
subpopulations will be referred to as CD44high and CD44low). Dimensionality 
reduction (Fig. 3a) highlighted a surprising similarity between the profiles of CD44high 
and CD44low, except for a small percentage (~4%) of CD44high cells significantly 
departing from the main cluster. In line with this, differential expression analysis of 
the two subpopulations resulted in 10-fold less differentially regulated genes (DEGs) 
than those observed by comparing them to LTED (Fig. 3b; Supplementary Table 3). 
Nevertheless, CD44high showed an overall, significantly higher transcriptomic 
variability (p-value < 2.2e-16; Wilcoxon rank-sum test) than CD44low (Fig 3c). 

We next sought to systematically address whether the observed variability 
was the result of either an increased transcriptional noise specific to CD44high cells 
(compatible with a bet-hedging mechanism) or instead the reflection of a regulated 
network (leading to coordinated expression of multiple genes in the same cell). We 
applied PIDC37, an algorithm using partial information decomposition (PID), to 
identify regulatory relationships between genes, and reconstructed the gene 
regulatory networks (GRNs) from the scRNA-seq profiles of CD44high and CD44low 
cells, separately (Supplementary Table 4). The two networks were merged and 
analysed to identify major communities (Fig. 3d). The larger of the three identified 
communities (#1 in Figs. 3d-f) showed low similarity between the CD44high and 
CD44low GRNs, with the majority of edges supported only by the CD44high GRN (Fig. 
3e). Pathway enrichment analyses38 for the genes in this community showed highly 
significant enrichments for oestrogen response, TNFα signalling, epithelial-
mesenchymal transition and p53 pathway (Fig. 3f; q-value < 1e-8). These results 
strongly suggest that the variability specific to the CD44high compartment is the result 
of the coordinated regulation of genes within well-defined subpopulations. With this 
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in mind, we hypothesised a central role for these rare cells in the early phases of 
acute oestrogen deprivation (termed acute-ET). 
 
Single-cell profiling of acute response to endocrine therapy identifies a 
subpopulation of pre-adapted cells 
To investigate the role of transcriptomic variability of plastic cells during acute-ET, 
we performed scRNA-seq experiments upon oestrogen deprivation (Supplementary 
Table 2). Continuous single-cell imaging suggested that cells within the CD44low 
subpopulation started being differentially affected by acute-ET after 48 hours of 
treatment (Fig. 2e). We thus profiled gene expression data of about 10,000 single 
cells at 48 hours of starvation (Fig. 4a). Applying a stringent threshold on the first 
SWNE component, we could define a rare, pre-adapted (PA) subpopulation among 
plastic cells (CD44high) expressing a signature of acute-ET even in permissive E2-
supplemented condition. The identification of PA cells was confirmed using an 
approach based on Random Forests classification (Fig. 4b, Supplementary Table 5 
and Methods). Of note, PA cells are genetically indistinguishable from the other 
CD44high cells and have not yet acquired any of the genetic re-arrangements of the 
fully resistant, LTED cells (Fig. 4c). Considering both approaches and both a lenient 
and a stringent threshold, PA cells are estimated to constitute 0.76 to 4% of the 
CD44high cells, which correspond to 0.03 to 0.14% of the total MCF7 population. 
Overall, these data suggest that PA cells might represent the first step in the process 
of adaptation to acute-ET. 
 We then sought to validate if the PA transcriptional state would confer a 
survival advantage compared to other plastic cells exposed to acute-ET. First of all, 
we identified the Claudin-1 gene (CLDN1) as a marker for PA cells (in combination 
with CD44). We then generated MCF7 cells stably labelled with either a nuclear GFP 
or mKate2 and leveraged this tool to follow two subpopulations over time after mixing 
them. The same amount of sorted PA cells (CD44high and CLDN1high) was mixed with 
other plastic cells (CD44high and CLDN1low; Fig. 4d). CD44high CLDN1high PA cells 
showed increased survival to acute-ET compared to CD44high CLDN1low, with this 
effect increasing over time. As a control, no difference was observed between 
CLDN1high and CLDN1low from the CD44low compartment. These data strongly 
support the hypothesis that PA cells have distinctive survival advantage under acute-
ET (Fig. 4e). 

We then further characterised these cells functionally. We focused on a 
stringent set of differentially expressed genes between the PA cells and the rest of 
the CD44high cells in +E2 condition (312 up-regulated and 341 down-regulated; Figs. 
4a,b and Supplementary Table 5). PA cells displayed features of mixed epithelial 
and mesenchymal traits, along with up-regulation of p53 pathway, cell polarity (apical 
junction components), and hypoxia (Fig. 5a, upper panel). PA cells also showed 
reduced ERα activity and down-regulation of the cell cycle machinery, while still 
expressing ESR1 (Fig. 5a, lower panel and Supplementary Fig. 5). Interestingly, both 
plastic and non-plastic cells lied on a continuum showing negative correlation 
between the expression of the genes of the cell cycle and of those in the signature of 
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PA cells (Fig. 5b; Spearman’s Rank Correlation coefficient = -0.519; p-value < 2.2e-
16), with PA cells found at the edge of this spectrum. We finally sought to quantify 
the overlap between the PA cells signature (up-regulated genes) with the CD44high-
enriched GRN we previously identified (Figs. 3d-f). Indeed, when we further 
dissected the GRN (community #1) into its two main components, we found 
extensive overlap between one of these components and the PA signature (Fig. 5c; 
p-value = 2.7e-21; hypergeometric test). This further supports the idea that the 
genes in this signature are part of a co-regulated network. 

Overall, these data support the hypothesis that plastic cells are non-
genetically heterogeneous, and among them rare cells in the PA state have a 
survival advantage during acute-ET. 
 
Pre-adaptation is a persistent feature of acute-ET but differs from a signature 
of full resistance 
While these analyses support a pivotal role for the PA phenotype in conferring a 
survival advantage during acute-ET, PA cells are still genetically indistinguishable 
from the rest of the cells. This suggests these cells do not represent the final step of 
drug resistance. Nevertheless, we aimed at determining whether longer exposure to 
acute-ET correlates with the persistence of the PA signature, and/or this also 
coincides with other reprogramming events. In order to capture the different 
dynamics of survival of CD44high and CD44low (Figs. 2e and 6a), we generated 
scRNA-seq profiles at 4 and 7 days of oestrogen deprivation (Supplementary Table 
2), a period in which the relative number of CD44high cells does not change while 
CD44low undergo rapid extinction. Dimensionality reduction of >28k cells showed 
increased prevalence of the PA signature with time of starvation (Fig. 6a). Formal 
quantification using AUCell39 confirmed this trend (Fig. 6b, left panel and Fig. 6d). 
The same analysis using a LTED-specific signature (Methods and Fig. 1) failed to 
identify any cell expressing it during acute-ET (Fig. 6b, right panel). In line with this, 
the critical transcriptional pathways driving full resistance (i.e. cholesterol 
biosynthesis and re-activation of ERα signalling) were completely abrogated in PA 
and cells exposed to acute-ET (Figs. 6c,d). On the other hand, some of the 
pathways associated to PA phenotype (partial-EMT, cell polarity, hypoxia) were 
found to consistently increase during treatment. 
 Unexpectedly, while imaging showed that after 7 days >75% of the CD44low 

died and were destined to extinction (Fig. 2f), the profiled CD44high and CD44low cells 
converged on the same transcriptional changes. We reasoned that since scRNA-seq 
experiments capture viable cells exclusively, we profiled only those cells that were 
still alive at day 7. Thus, we hypothesised that the PA-like transcriptional program is 
an intermediate bottleneck during acute-ET. In line with this, we discovered that 
CD44low cells can occasionally up-regulate a signature overlapping that of PA cells, 
but this happens with lower efficiency (Fig. 6b) and it is not sufficient to give them the 
survival advantage shown by CD44high. To validate these observations at the protein 
level, we performed a multi-marker tracing profile, exploiting some marker genes 
(namely, GPRC5A, MFGE8, FSCN1 and RAB11FIP1) showing a trend of up-
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regulation with starvation time. This trend was confirmed at the protein level, with 
values consistently higher in CD44high compared to CD44low cells (Fig. 6e and 
Supplementary Fig. 6 and 7). Nevertheless, this did not prevent cells in the CD44low 

compartment to die at an almost linear rate (Fig. 6e). 
Taken together, these observations confirmed that the PA transcriptome is 

strongly selected by acute-ET. Nevertheless, the observed rapid expansion (Fig. 6b) 
seems incompatible with the strict selection of a pre-existing population30. The 
observation that also CD44low cells can adopt a similar transcriptional profile in 
response to ET (despite being unable to survive) suggests the PA program is 
required but not sufficient to explain the survival of plastic cells to acute-ET (see 
Discussion). 
 
The pre-adapted signature is active in primary tumors and enriched in clusters 
of circulating tumor cells 
We first looked for evidence of expression and co-regulation of genes up-regulated 
in PA cells, in 825 primary luminal breast tumours40. Tumours classified as luminal A 
showed significantly higher expression of the signature compared to luminal B (p-
value < 2.2e-16; Wilcoxon rank-sum test) and TNBC/HER2+ lesions (p-value = 1.9e-
8) (Fig. 7a). Of note, luminal A exhibit the longest latencies in relapse development 
amongst all BCa41–43. Considering >600 luminal A samples, we then checked the 
distribution of pairwise correlations between the expression pattern of the genes in 
the signature, as a proxy for co-regulation. Compared to a size-matched set of 
randomly picked genes, those in the PA signature showed significantly higher 
coefficients (Fig. 7b; p-value < 2.2e-16; Wilcoxon rank-sum test), with hundreds of 
pairs with values over 0.5 (Spearman’s Rank Correlation coefficient). These results 
further corroborate our previous observations that these genes tend to be controlled 
by the same GRNs and showed a trend of higher expression in luminal tumours with 
longer latency of recurrence (A vs B; Fig. 7a). 

Given that some of the key pathways active in PA cells hinted to mixed 
epithelial and mesenchymal features, as well as cell polarity and migration, we asked 
if the PA phenotype could play a role in metastatic progression. Previous data 
strongly suggest that epithelial-like cluster of circulating tumour cells (CTCs) are 
responsible for 85-92% of metastatic dissemination44, with individual CTC showing 
more mesenchymal features playing a more limited role45. Interestingly, the PA 
signature was found significantly enriched in CTCs45 (Fig. 7c; q-value = 0.017, 
permutation test) and at even higher levels in clusters of CTCs44 (Fig. 7d; q-value = 
0.066, permutation test). These results provide a further link between drug-induced 
adaptation and metastatic invasion27,46. 
 
Discussion   
In this study, we leveraged an in vitro model to investigate the contribution of genetic 
and transcriptional heterogeneity to the development of resistance to ET in luminal 
breast cancer. As opposed to previous observations in melanoma, TNBC, lung and 
colorectal cancers, in which targeted therapy lead to the rapid emergence of fully-
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resistant cells10–12,18,26, we could not find any genetic or phenotypic clone showing 
features of resistance in treatment-naïve cells (Fig. 1). The same observation held 
true even after thoroughly dissecting the heterogeneity of the cells showing features 
of plasticity (Figs. 2-3). On the other hand, we could identify and characterise a small 
subpopulation (~0.1% of the treatment-naïve cells) showing a pre-adapted (PA) 
phenotype (Fig. 4). These cells showed a 2-fold increased survival to acute-ET 
compared to other plastic cells, while non-plastic cells undergo complete extinction 
under selective pressure (Fig. 4e), along with mixed epithelial and mesenchymal 
features, and quiescence. Interestingly, while any cell (also those with no feature of 
plasticity) can adopt a transcriptional program overlapping that of the PA cells, only 
plastic cells can withstand acute-ET (Fig. 6a and 6e), with PA cells showing a more 
pronounced survival advantage (Fig. 4e). Finally, we found an enrichment of the PA 
signature in clusters of CTCs. To our knowledge, this is the first time a quiescent 
population from the primary tumour has been linked to both features of survival to 
therapy and of CTCs. Interestingly, it has been reported that early stage metastatic 
cells possess partial features of survival, dormancy and EMT, which all overlap with 
our PA signature47. A signature of partial-EMT has also been recently shown to be 
expressed in the cells at the leading edge of primary head and neck cancers48. It is 
tempting to speculate that PA cells might not only display a survival advantage 
during the early phases of the therapy but might also be the pioneers of micro-
metastatic spread. 
 Surprisingly, we found that also cells with no features of plasticity were able to 
adopt the PA signature, even though with a much lower efficiency, which cannot 
prevent the extinction of the compartment after two weeks of oestrogen deprivation 
(Fig. 6). On top of this, 70% of the plastic cells adopted a PA signature within 48 
hours of acute-ET (Fig. 6b). This fast transition to a diverse transcriptional state is 
hardly explained by straight Darwinian selection of a persister cell30. For reasons that 
remain to be investigated, plastic cells have a much higher probability than non-
plastic ones to transition into a PA state, and this probability is dramatically 
increased by oestrogen deprivation. We reason that upon stress, plastic PA cells are 
better positioned than cells requiring transcriptional reprogramming, hence the 
observed difference in survival within the plastic compartment (Fig. 6e). 

PA cells represent an obligated step toward the acquisition of resistance while 
still requiring substantial reprogramming to recapitulate features of full resistance 
cells. We propose that the delayed relapse common to ET treated patients might be 
mediated by similar processes, in which PA-like cells are selected for and stalled by 
ET for up to >10 years. This model would reconcile why ET are sometime effective 
for down staging neo-adjuvant patients but fail to clear micro-metastatic disease. 
Nevertheless, how this bottleneck affects the progression of the tumour requires 
further investigation. Future studies on the necessary steps and their timing of 
occurrence during treatment must be carried out in order to expose potential 
vulnerabilities of these quiescent cells. 
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Methods 
Cell lines. Cells were originated as previously described27. MCF7 cells were 
maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal 
calf serum (FCS). Long-term oestrogen-deprived cells (LTED) were derived from 
MCF7 after one year oestrogen deprivation as previously described and were 
maintained in phenol-red free DMEM containing 10% charcoal stripped fetal calf 
serum (SFCS)27. Both media were supplemented with 2 mM L-glutamine, 100 
units/mL penicillin and streptomycin. 10−8 M estradiol (E2758 Sigma) was added 
routinely to MCF7. Primary metastatic breast cancer cells were derived from pleural 
effusions of patients with metastatic breast cancers. The pleural effusion (PE) cells 
were maintained in DMEM containing 10% fetal calf serum (FCS) and 2 mM L-
glutamine, 100 units/mL penicillin and streptomycin. 
 

Plasmids. pLVX-IRES-mCherry-puro lentiviral vector (Cambridge Bioscience, 
Cambridge, UK) was used to infect MCF7 and LTED cells. CD44 reporter GFP cells 
were established with CD44CR1-IRES-GFP-puro lentiviral vector (Tebu-Bioscience). 
Stable and polyclonal cell populations were established after puromycin selection 
(0.5 μg/ml). NucLight Green lentivirus (IncuCyte, 4626) and NucLight Red Lentivirus 
(IncuCyte, 4627) were used to infect MCF7. Stable and polyclonal cell populations 
were established after Zeocin selection (300 μg/ml). H2B-mCherry-puro lentiviral 
vector was used to infect stable CD44 reporter GFP cells. Stable and polyclonal cell 
populations were established after sorting.   
 
Antibodies. Anti-ERα antibody (Vector Laboratories, VP-E613) 1:100 for 
immunofluorescence (IF) and anti-ERα (Santa Cruz, HC-20) 1:1000 for western blot 
(WB), anti-CD44 antibody (Santa Cruz, sc-7297,) 1:200 for IF and 1:100 for 
immunohistochemistry (IHC), anti-pan Cytochemistry antibody (Abcam, ab17154) 
1:200 for IF, anti-FGFR4 antibody (Abcam, ab44971) 1:100 for IF, anti-
FSCN1(Sigma, HPA005723) 1:100 for IF, anti-MFGE8 (Sigma, HPA002807) 1:100 
for IF, anti-RAB11FIP1 (Sigma, HPA023904) 1:100 for IF, anti-GPRC5A (Sigma, 
HPA007928) 1:100 for IF, anti-caspase3 (Merk, MAB10753) 1:100 for IF. 
 
FACS analysis. Cells were cultured to 70 to 80% confluence and detached from the 
cell culture flasks using EDTA. Cell pellets were obtained and washed with cold 
phosphate-buffered saline (PBS) containing 1% FCS and 5mM EDTA. All further 
steps were performed on ice and all centrifugation steps at 4°C. Fluorochrome-
conjugated monoclonal antibodies against human CD44 (FITC, BD Pharmingen; 
BV421, BD Pharmingen), Claudin1 (APC, R&D systems), and their isotype controls 
were added to the cell suspension at concentrations recommended by the 
manufacturer (BD Biosciences) and incubated at 4 °C in the dark for 30 min. The 
labelled cells and CD44 reporter GFP cells were washed in PBS and then were 
analyzed on a FACSAria (BD Biosciences). Gating was set to relevant isotype 
control (IgG-FITC)-labeled cells or unstained cells for each cell line. Propidium iodide 
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(Bio-Rad, 1351101) and DRAQ7 (BioLegend, 424001) were used for the dead cell 
removal.  
 
Soft Agar Colony-Forming Assay. Anchorage independent cell growth was carried 
out in six-well tissue culture plates. A 1-mL layer of 0.6% agar (DIFCO Laboratories) 
in appropriate cell culture medium was solidified at the bottom of each well. Cells to 
be assayed were suspended in 1 mL of 0.3% agar in medium. 1 × 104 cells were 
seeded in each dish. After 4 weeks of incubation at 37 °C in 5% CO2, colonies were 
visualized by staining with 0.02% Crystal violet. 
 
Mammosphere Culture. Cells were plated as single cells at a density of 5x102 
viable cells/well in ultralow attachment 6 well plates (Corning, CLS3814). Cells were 
grown in a serum-free DMEM or phenol-red free DMEM, supplemented with B27 
(Invitrogen, 17504-044), 20 ng/mL EGF (Sigma, E9644) and 20 ng/mL bFGF (R&D 
systems, 233-FB-025). Mammospheres were grown for 10–14 d and phase contrast 
images were obtained using the ImageXpress Micro microscope (Molecular 
Devices). For the second-generation experiment, first-generation mammospheres 
were collected from multiple wells and spun at 500 × g per 5 minutes. The pellet was 
resuspended in 50μl Trypsin and the sample was passed 25 times through a sterile 
needle to get single cell suspension. The same density of cells as in first generation 
culture was seeded, and cells were allowed to grow for 14 days. 
 
Immunofluorescence. Briefly, 104 cells were seeded on chamber slides (Lab-Tek). 
On the final day, cells were washed twice with PBS at room temperature and 4% 
PFA/PBS was added for 15 minutes. Cells were washed twice with PBS and NH4Cl 
was added as quencher. 0.2% Triton/PBS was added for 5 minutes. 10% BSA/PBS 
was used as blocking reagent. 5% BSA/PBS was used to dilute primary antibodies 
and Alexa-fluor 488, 568, 594, 647 labelled anti-rabbit or anti-mouse secondary 
antibodies (ThermoFisher). Nuclei were counterstained with DAPI and were mounted 
in ProLong Antifade Mountant (ThermoFisher, P36941). Pictures were acquired 
using EVOS microscope system (Advanced Microscopy Group, Bothell, WA, USA) 
or Zeiss Axiovert 200M inverted microscope. 
 
Tissue microarray (TMA) of paired primary and secondary breast cancers.  
Twenty primary breast carcinomas with a paired metastasis were acquired from the 
pathology archives of Charing Cross Hospital, London, UK. A tissue microarray was 
constructed using a manual microarrayer and 0.6 mm punches. The tissue 
microarray was immunohistochemically profiled for CD44 (Santa Cruz sc-7297). 
Antigen retrieval was performed using 0.01M citrate buffer, pH 6.0 followed by 
blocking in 0.3% hydrogen peroxide in PBS, then in normal goat serum (20 μl per ml) 
for 30 min. The primary antibody was incubated overnight at 4°C at 1:100, and then 
detected using anti-mouse secondary antibody (Vector Laboratories), Vectastain 
Elite peroxidase ABC kit, and ImmPACT DAB kit (Vector Laboratories). 
Subsequently, 4μm TMA sections were immuno-stained using the optimized staining 
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protocol, including negative controls (omission of the primary antibody). Staining was 
scored based on the H-score and Allred Quick score by three independent 
investigators (including one consultant pathologist) blinded to the clinicopathological 
characteristics of patients. H = (3 × % of strongly stained cells) + (2 × % of 
moderately stained cells) + (1 × % of weakly stained cells) + (0 × % of cells without 
staining). Negative controls were performed by omission of the primary antibody.  
 
Neo-adjuvant patient selection. All clinical data from patients operated at the 
European Institute of Oncology (IEO) were prospectively entered in an Institutional 
data base. For the present study we retrieved data from patients with a neoadjuvant 
treatment from 1999 to 2014. We selected patients having had pre-surgical biopsy 
and surgery in our Institute, in order to have their sample analyzed in the same 
laboratory. We randomly selected 20 patients with luminal tumors, treated by 
neoadjuvant hormone only (aromatase inhibitors), 10 responders and 10 non-
responders.  
 
Reconstitution  assay. After sorting with CD44 using FACS Aria III (BD 
Biosciences), 105 cells of CD44high and CD44low were seeded on 6 well plates and 
incubated for 7 days. After 7 days, cells were trypsinized and stained with anti-CD44 
antibody (FITC, BD) for FACS. After sorting with GFP using FACS Aria III (BD 
Biosciences), 105 cells of CD44GFP-high and CD44GFP-low were seeded on 6 well plates 
with oestradiol supplement or deprivation. Five pictures per condition were taken 
using an EVOS microscope system (Advanced Microscopy Group, Bothell, WA, 
USA) during 14 days. Fifty different fields were counted. The % of GFP positive cells 
was calculated by number of GFP positive cells/ number of total cells x100.  
 
Monoclonal Assay. Using FACS Aria III (BD Biosciences), single cell of mCherry-
MCF7 was seeded on 96 well plates with oestradiol supplement or deprivation. 
Single cell was confirmed using an EVOS microscope system (Advanced 
Microscopy Group, Bothell, WA, USA). The cells were incubated for 30 days, and 
colonies were counted on EVOS microscope system.  
 
Live cell imaging and Data Analysis. After sorting with GFP by FACS Aria III (BD 
Biosciences), 105 cells of H2B mCherry MCF7 CD44rep GFPpos and GFPneg were 
seeded on 6 well plates with estradiol supplement or deprivation. Time-lapse live cell 
imaging was performed on IncuCyte ZOOM (Essen BioScience) equipped with 
temperature, humidity and CO2 control. Images were acquired every 6 hours with 
10X plan fluorescence objectives for a proliferation assay and every 15 min with 20x 
up to 10 days for a cell cycle analysis. Excitation (Ex) and emission (Em) filters sets 
(Chroma Technology Corporation) were as follows: CFP, 427-10nm (Ex), 483-32 nm 
(Em); YFP, 504-12 nm (Ex), 542-27 nm (Em); mCherry, 589-15 nm (Ex), 632-22 nm 
(Em). Micromanager 1.3 was used for acquisition of time-lapse images. All data 
analysis was done with scripts written in Matlab (Mathworks) or using Cell Profiler 
(Broad Institute) and ImageJ (National Institutes of Health). 
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Symmetric/Asymmetric/conversion analyses were performed on a total of 200 cells. 
Each cell was monitored for the first 3 cell divisions (1 cell to 2 cells, 2 cells to 4 
cells, 4 cells to eight cells). Symmetric division was scored if the daughter cell 
matched the mother. Asymmetric was scored if the daughter cell did not match the 
mother. Conversion was scored if cell changed CD44 status without cell division (at 
least 4 hours pre- or post- division).  Cell cycle speed was established by calculating 
the time intervening between two consecutive metaphase plates. 
 
Statistical analyses. Unless specified otherwise, all the analyses and plots were 
performed in the statistical computing environment R v3 (www.r-project.org).  
 
Single cells preparation. Single cells were prepared from a full population of MCF7 
and LTED, or from sorting MCF7 CD44-GFP reporter cells by the level of GFP 
expression at different time points of E2 deprivation. After centrifugation, single cells 
were washed with PBS and were re-suspended with a buffer (Ca++/Mg++ free PBS + 
0.04% BSA) at 1,000 cells/µl. 
 
Single-cell RNA sequencing. Viability was confirmed to be > 90% in all samples 
using acridine orange/propidium iodide dye with LUNA-FL Dual Fluorescence Cell 
Counter (Logos Biosystems, L20001). Single cell suspensions were loaded on a 
Chromium Single Cell 3’ Chip (10X Genomics) and were run in the Chromium 
Controller to generate single-cell gel bead-in-emulsions using the 10x genomics 3’ 
Chromium v2.0 platform as per manufacturer’s instructions. Single-cell RNA-seq 
libraries were prepared according to the manufacturer’s protocol and the library 
quality was confirmed with a Bioanalyzer High-Sensitivity DNA Kit (Agilent, 5067-
4627) and a Qubit dsDNA HS Assay Kit (ThermoFisher, Q32851). Samples were 
pooled up to four and sequenced on an Illumina HiSeq 4000 according to standard 
10X Genomics protocol. 
 
Single-cell RNA-seq raw data analysis. cellRanger (v2.1.1) was run on the raw 
data using GRCh38 annotation (v1.2.0). Output from cellRanger was loaded into R 
using the function load_cellranger_matrix_h5 from package cellranger (v1.1.0; 
genome = ”GRCh38”). Datasets were merged according to gene names. All cells 
sampled were retained except for flow-sorted CD44high and CD44low either in +E2 
media or starved for two days, for which the top 5,000 cells in terms of UMIs per cell 
were considered. In order to robustly detect transcriptional states, a recent paper 
suggested to consider a coverage of at least 1,500 detected genes per cell49. A filter 
on cells showing at least 1,500 detected genes per cell and at least 5,000 UMIs per 
cell was then applied. After that, reads mapping on mitochondrial genes were 
excluded. Before normalization, a series of filtering steps were performed. To do 
that, data were imported in Seurat (v2.3.4)50 and scaled (NormalizeData function 
using normalization.method = "LogNormalize", scale.factor = 10000, followed by the 
ScaleData function). A filtering step was then performed based on the cumulative 
level of expression (the sum of the Seurat-scaled values) of three housekeeping 
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genes (GAPDH, RPL26 and RPL36)51. Manual inspection of these values versus the 
number of UMIs per cell (or the number of genes with non-zero expression per cell) 
revealed no correlation between the two. Nevertheless, a number of cells showed 
very low expression for these genes. Cells showing housekeeping gene expression 
in the bottom 1% were then excluded from further analyses. At last, genes 
expressed in less than 20 cells were excluded. Across-cells normalization was 
performed using the R package Scran (v1.6.9)52. Raw counts were imported into a 
SCE object using the newSCESet function; size factors were calculated using 
computeSumFactors (sizes = seq(20, 250, 10)), on data pre-clustered through 
quickCluster. 
 
Estimation of Copy number alterations (CNAs) from scRNA-seq data. CNAs 
were estimated directly from the scRNA-seq data, using an approach similar to the 
one used by Patel at al.53. Only genes expressed in >=25 cells were considered.  
A reference gene expression profile was generated based on published scRNA-seq 
profiles of hormone-responsive luminal cells (termed L2)54, using only the datasets 
obtained using a droplet-based approach. After normalizing each single-cell profile 
based on the total number of detected transcripts to a fixed constant (10,000), a 
pseudo-bulk profile for the L2-cells was derived using the mean expression value of 
each gene across all cells.  
Before running the actual CNAs quantification, all the raw scRNA-seq datasets 
generated in this study (after filtering, pre-normalization) and the pseudo-bulk profile 
generated as described above were linearly normalized to a constant (10,000) and 
log-scaled (pseudo-count set to 1). 
First of all, chromosomal coordinates of all genes were retrieved using the biomaRt 
R package (v2.34.2; host set to “jul2015.archive.ensembl.org”)55. This way, genes 
were sorted by chromosomal coordinates. A genome-wide scan was then conducted 
using a sliding window of 100 genes, with a step of 10. Using the rollapply function 
from the zoo package in R (v1.8-3), mean value of expression in each bin was 
calculated for each single cell, as well as for the reference profile. The resulting 
genome-wide profile from each single cell was then linearly regressed against the 
reference estimate (using the function lm). The residuals were then considered as a 
proxy for CNAs and plotted in the form of heat maps. Single-cell, CNAs profiles were 
hierarchically clustered (hclust, method="ward.D2") and shown as a circular 
dendrogram using circlize_dendrogram from R package dendextend (v1.8.0). In 
case of MCF7 and LTED (full populations), CNAs were estimated on all the cells. In 
case of the identified pre-adapted cells, the same number of cells (n = 81) was 
randomly sampled from the other groups of cells. 
 
Estimation of CNAs from ChIP-input-DNA. Reads were aligned to the hg19 
human reference genome using bowtie2 (v2.3.4.3)56. Aligned reads were converted 
to BAM files, sorted and indexed using Samtools (v1.9)57. Duplicated reads were 
marked and removed using Picard MarkDuplicates (v2.1.1; 
REMOVE_DUPLICATES=true). Only uniquely mapped reads were retained for 
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further analyses. Copy numbers were inferred using CNVkit tools (v.0.9.4.dev0)58, as 
described here: https://cnvkit.readthedocs.io/en/stable/pipeline.html. CNVkit was run 
with the default parameters of the batch command after creating a flat reference 
genome as suggested in the manual using the command reference. 
 
Dimensionality reduction and clustering. Normalized data was then imported in 
Seurat and scaled. Variable genes were identified using the FindVariableGenes 
function (mean.function = ExpMean, dispersion.function = LogVMR, x.low.cutoff = 
0.01, x.high.cutoff = 6, y.cutoff = 0.01, num.bin=100). Principal component analysis 
(PCA) was run using variable genes as input, and the top 50 components were kept. 
Clusters were then identified using FindClusters (resolution = 0.6). Considering only 
those variable genes identified as described above (Similarity Weighted Nonnegative 
Embedding (SWNE)32 was applied to further reduce the dimensionality of the data. 
The k parameter was estimated using FindNumFactors on a subsample of 1,000 
cells (loss = “mse”, 2 to 50 as range of values, with a step of 2). The choice of k is 
determined by randomly set 20% of the gene expression matrix as missing, followed 
by finding the factorization that best imputes the missing values, minimizing the 
mean squared error. Using this parameter, non-negative matrix factorization was 
then run through RunNMF (alpha = 0, init = "ica", loss = “mse”), followed by 
EmbedSWNE (alpha.exp = 1.25, snn.exp = 1.0, n_pull = n_4, dist.use = "IC"). For 
this step, the shared nearest neighbour (SNN) matrix calculated by the FindClusters 
function of Seurat was used. 
 
Differential expression analysis. The Two-sample Likelihood Ratio Test 
implemented in the LRT function of the MAST R package (v1.4.1)59 was used to 
identify marker genes for a given sample or cluster. Briefly, each cell was either 
flagged as either belonging to the sample (or the cluster) or not. Those genes 
identified as up-regulated in the cluster at FDR <= 0.05 (Benjamini-Hochberg 
correction)60 and showing an Area Under the Curve (AUC) >= 0.6 were classified as 
markers for the sample or the cluster. The AUC is an estimate on how accurately a 
certain gene predicts a cell as part of a certain sample or cluster. AUCs were 
calculated using the ROCR R package61. 
 
Functional enrichment analyses. For functional enrichment analyses a selected 
number of gene sets was employed. The fifty Hallmark gene sets from the Molecular 
Signature Database (MSigDB)38 were downloaded from the MSigDB website 
October 19, 2017. Gene sets from Puram et al.48 (Table S7), along with a manually 
curated list of ERα-core target genes (BYSL, GREB1, HEY2, MPHOSPH10, MYB, 
NIP7, RARA, SLC9A3R1, TFF1, XBP1) were also considered. For a given subset of 
cells, each gene set was scored separately as the sum of the normalized expression 
values of all the genes in the set. The resulting distributions were then used for 
statistical testing and visualization. 
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Single cell gene regulatory network inference. Networks were inferred separately 
for CD44high and CD44low cells, with nodes representing genes and edges 
representing statistical dependencies between gene pairs. For each dataset, genes 
expressed in fewer than 20% of cells were excluded; then all possible network edges 
were ranked using the PIDC network inference algorithm37 implemented in 
NetworkInference.jl (http://github.com/Tchanders/NetworkInference.jl), with 
expression data for each gene discretized independently into 6 bins of equal width; 
finally, a network was defined keeping the 2,000 highest ranking edges. The two 
networks were then superimposed to form an overlapping network with edges 
belonging (i) only to the CD44high network, (ii) only to the CD44low network, or (iii) to 
both networks. Communities were detected in the overlapping network (and 
recursively in each community) using the label propagation method implemented in 
LightGraphs.jl (http://github.com/JuliaGraphs/LightGraphs.jl). Communities were 
required to include at least 10 nodes. Similarity of the CD44high and CD44low 
networks within each community was calculated using the Jaccard index: the 
number of edges in the community that belong to both the CD44high and CD44low 
networks divided by the total number of edges in the community; an edge was 
deemed to belong to a community if it connected two nodes in the community. 
 
Identification of the pre-adapted cells. Two different strategies were employed to 
identify the pre-adapted cells. The first one takes advantage of SWNE; a threshold 
was applied on the first component and the cells showing extreme values (>= 0.75) 
were labeled as pre-adapted. The second strategy leverages random forests 
classifiers62. First of all, the datasets of CD44high cells in +E2 media and starved 
conditions (2 days) were split into training and testing sets, using 10% and 90% of 
the cells, respectively. The training set was then used to call the DEGs between the 
two conditions (+E2 vs starved), using the procedure described in the Differential 
expression analysis paragraph above. These DEGs were used as input features to 
train a random forest classifier, using the randomForest R package (v4.6-14; default 
parameters). This model was then used to test the remaining data. Those cells in the 
testing set labelled as +E2 that were showing a probability >50% of being classified 
as starved were considered pre-adapted. 
AUCell39 (R package v1.0.0) was the used to quantify the activity of the pre-adapted 
signatures (and of other signatures, whenever indicated in the text) in single cells. 
First of all, normalized data was processed using the AUCell_buildRankings function. 
The resulting rankings, along with the signatures of interest, were then subject to 
function AUCell_calcAUC (aucMaxRank set to 5% of the number of input genes). 
Following inspection of the resulting distributions, thresholds were then manually set 
to 0.37, 0.18 and 0.32 for the signatures of pre-adapted cells either based on SWNE 
or random forests, or for the LTED signature (defined as those genes up-regulated in 
LTED vs MCF7, as described in the Differential expression analysis paragraph 
above). 
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Re-analysis of published primary samples. Bulk RNA-seq datasets for 1,222 
breast cancer samples were downloaded from the GDC (Genomic Data Commons)40 
data portal (http://portal.gdc.cancer.gov/) using gdc-client, according to metadata 
obtained on July 25, 2018. Gene features were normalized to sequencing depth. 
Given that only a fraction of the samples was pre-classified using PAM5063, k-
nearest neighbors (k-NN) classification was employed to impute the rest of the 
samples. This was performed via the knn function in the R package class (v7.3-14), 
using the pre-classified samples as training data. Unclassified samples were 
ascribed to a particular subtype only when showing >60% probability of being 
assigned to that class. Spearman’s correlations between expression profiles of pairs 
of genes were calculated on the depth-normalized values. Prior to calculating 
signature scores, these numbers were further log2-transformed (pseudo-count set to 
1) and scaled to z-score gene-wise. 
 
Re-analysis of published datasets for circulating tumour cells (CTCs) and 
clusters of CTCs. Normalized data for CTCs collected at five time points from a 
single patient along with identically processed blood specimens from 10 healthy 
donors45 were downloaded from GEO (GSE41245). For each capture, the log2-fold-
change between EPCAM+ cells and the matched IgG+ cells (control) was calculated. 
DEGs were defined as those genes showing a linear fold-change between EPCAM+ 
cells and control >= 1.5. The fraction of DEGs overlapping the genes in the pre-
adapted signature was then calculated for each pair. To test if the observed 
difference between the fraction of DEGs in CTCs and in healthy specimens was 
random, a P-value was calculated using the Wilcoxon rank-sum test. The 
corresponding false discovery rate (FDR) was estimated by 1,000 permutations. 
Raw data for individual CTC-clusters (median of 3 cells per cluster) and numerically 
matched pools of single CTCs from the same specimen44 were downloaded from 
GEO (GSE51827). Each profile was normalized by depth, then a profile-specific 
score was derived for the signature of the pre-adapted cells by summing the 
normalized expression values of all genes in the signature. These numbers were 
then divided by the maximum across all profiles. To test if the observed difference 
between the values obtained for the clusters against the matched pools of CTCs, a 
P-value was calculated using the Wilcoxon rank-sum test. The corresponding false 
discovery rate (FDR) was estimated by 1,000 permutations. 
 
GFP+ cells quantification. A custom Python script (available on request) was 
employed to segment images based on DAPI (to count the total number of cells) and 
GFP signal (to quantify the fraction of GFP+ cells).  
 
Data availability. Raw sequencing data was deposited at the Gene Expression 
Omnibus (GEO) under accession number GSE119693. Reviewers can access the 
data using token mzgzmeowzfctneb and following the instructions provided at this 
link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122743  
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Figure Legends 
 
Figure 1. Phenotypical equivalent of fully resistant clones is absent in 
treatment-naïve cells. (a) Schematic representation of the in vitro approach 
(bottom), which mimics the development of resistance to aromatase inhibitors (AI) in 
patients. (b) Bi-dimensional representation of 3,159 single cell transcriptomes (1,125 
MCF7 and 1,944 LTED) (SWNE; k = 16). (c) Copy number profiles of the cells 
shown in (b), as estimated from scRNA-seq profiles. Data shown as heat map and 
as dendrogram (hierarchical clustering; Ward’s method; Euclidean distance). (d) 
Overall expression for selected gene sets, by cluster of cells (as defined in b). 
 
Figure 2. Characterisation of a phenotypically distinct population of plastic 
cells in luminal breast cancer. (a) CD44 expression in neo-adjuvant AI patients 
(pre- and post- treatment; p-value from two-tailed paired t-test). (b) Same as (a), but 
in matched AI-treated primary-metastatic (p-value from Wilcoxon signed-rank test). 
(c) Reconstitution experiments from FACS-sorted MCF7-CD44GFP-high or MCF7-
CD44GFP-low cells. (d) Same as (c) but using FACS-sorted LTED cells. (e) Survival 
curves of MCF7-CD44GFP-high and MCF7-CD44GFP-low cells in oestrogen-deprived 
conditions. (f) Single-cell plating experiments in oestrogen-supplemented (+E2) or 
deprived conditions (-E2) for 30 days. From top to bottom: (i) schematic 
representation of the results; (ii) representative pictures of single wells after 30 days 
(scale bar = 400 μm); (iii) Immunofluorescence staining highlighting CD44 
expression (scale bar = 200 μm); (iv) summary statistics. (g) Cell-cycle dynamics of 
MCF7-CD44GFP-high and MCF7-CD44GFP-low cells inferred from time-lapse imaging. 
The length of the cell cycle and percentage of cell entering the cell cycle are 
indicated for both oestrogen-supplemented (+E2; top) or deprived conditions (-E2; 
bottom). 
 
Figure 3. Single-cell transcriptomic profiling unveils further heterogeneity of 
plastic cells. (a) Schematic representation of the strategy to FACS-sorted MCF7-
CD44GFP-high (CD44high) and MCF7-CD44GFP-low (CD44low) cells (left) along with 
results of dimensionality reduction for single-cell transcriptomes (right) (SWNE, k = 
22); percentage of extreme outliers in the two subpopulations indicated in the bottom 
right corner. (b) Number of up-regulated genes in the indicated comparisons (FDR 
<= 0.05; AUC >= 0.6). (c) Cell-cell heterogeneity within CD44high and CD44low 
subpopulations. (d) Regulatory networks reconstructed using either CD44high and 
CD44low profiles were superimposed and the edges color-coded according to 
whether each edge was identified only in the CD44high (blue), the CD44low (orange) or 
both (dark grey) networks. Nodes in the three larger communities were color-coded 
accordingly. (e) Fraction of edges identified in the CD44high, the CD44low or both 
networks, for each one of the three communities shown in (d). Similarity between 
CD44high and CD44low networks is also shown. (f) Enrichment analysis using the 
hallmark gene sets38 across the three communities shown in (d). 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2018. ; https://doi.org/10.1101/485136doi: bioRxiv preprint 

https://doi.org/10.1101/485136
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

 
Figure 4. Single-cell profiling of acute response to endocrine therapy identifies 
a subpopulation of pre-adapted cells. (a) Dimensionality reduction of single-cell 
transcriptional profiles of oestrogen-supplemented (+E2; top) or deprived (-E2; 2 
days) cells. Pre-adapted (PA) cells highlighted in boxes. (b) PA cells identification 
using two different strategies (SWNE and Random Forests). DEGs = Differentially 
Expressed Genes. (c) Copy number profiles of PA cells (n = 81), along with the 
same number of LTED, CD44low and CD44high (not PA) cells, as estimated from 
scRNA-seq profiles. (d) FACS-sorted PA cells (CD44high and CLDN1high) stably 
labelled with mKate2 were mixed with other plastic cells (CD44high and CLDN1low) 
stably labelled with GFP and followed up for 7 days upon oestrogen-deprivation (e).  
 
Figure 5. Functional characterisation of the signature of pre-adapted cells. (a) 
Hallmark gene sets38 enriched in genes either up- or down-regulated in PA cells. (b) 
Correlation analysis between expression of cell cycle marker genes and genes 
belonging to the PA-signature (up-regulation) at the single-cell level. rs = Spearman’s 
Rank Correlation Coefficient. (c) Same representation as in Fig. 3d but limited to 
community 1. Two sub-communities were identified (left) with community 1.1 being 
more strongly enriched for genes in the PA-signature (p-value from Hypergeometric 
Test). 
 
Figure 6. Pre-adaptation is a persistent feature of acute-ET but differs from a 
signature of full resistance. (a) Sampling design along with dimensionality 
reduction of single-cell transcriptional profiles of oestrogen-supplemented (day 0) or 
deprived (days 2, 4 and 7). (b) AUCell39 quantification of the fraction of single-cells 
showing transcriptome compatible with either the PA (left) or the LTED (right) 
signatures. (c) Selected gene set enrichment across all conditions profiled in this 
study. (d) Score distributions across cells. (e) Multi-marker tracing profiles for 
selected genes (box plots) in CD44high and CD44low cells upon oestrogen-deprivation. 
Survival (as relative number of residual cells) is also shown (bar plots). 
 
Figure 7. The pre-adapted signature is active in primary tumors and enriched 
in clusters of circulating tumor cells. (a) Expression of the PA signature in bulk 
RNA-seq samples from TCGA. (b) Distributions of Spearman’s rank correlation 
coefficients between expression profiles of genes in the PA signature (red) or a set 
of randomly picked genes of the same size (grey), across bulk RNA-seq samples 
from TCGA classified as luminal A. (c) Expression of the PA signature in circulating 
tumour cells (CTCs) compared to blood specimens from healthy donors. (d) 
Expression of the PA, the EMT and a cell cycle signatures in clusters of CTCs 
compared to single CTCs. False discovery rates estimated by permutations. 
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Supplementary Figure Legends 
 
Figure S1. (a) Copy number profiles of the MCF7 (full population), MCF7-CD44high, 
MCF7-CD44low and LTED, as estimated from ChIP-input DNAs. (b-c) Normalized 
expression of a selection of ER-target genes (b) and genes involved in cholesterol 
biosynthesis and homeostasis (c) in single MCF7 and LTED cells. 
 
Figure S2. (a) Heterogeneously Expressed Surface Markers as estimated from 
scRNA-seq profiling. Genes were selected as showing dispersion >= 2 (n = 27) out 
of Fraction of Cells >= 1% (N = 778). 
 
Figure S3. (a-d) Immunohistochemical staining of CD44 in two primary tumours (c) 
and in one matched primary-metastatic pair. Staining from lung and pancreas (a) 
and from liver, ovary and adrenal gland (b) are shown as positive and negative 
controls, respectively. (e) FACS quantification of CD44high cells in pleural effusion 
cells from four patients. (f-g) FACS quantification of CD44high cells in MCF7 (f) or 
LTED (g) cells. Unsorted populations were compared to purified CD44high or CD44low 

cells cultured for 7 days in oestrogen-supplemented medium. (h-i) Invasion (h) and 
colony formation (i) assays for CD44high and CD44low cells sorted from either MCF7 
or LTED cells. Representative images shown below the plots (p-values estimated 
using two-tailed paired t-tests). (j) Mammosphere-forming efficiency (SFE) of for 
CD44high and CD44low cells sorted from either MCF7 or LTED cells. Representative 
images shown below the plots (p-values through ANOVA) Scale bars = 1,000 μm (i), 
100 μm (j). Standard deviation of the mean estimated from 3 replicates is shown. * p 
<= 0.05, ** p <= 0.01, *** p <= 0.001, **** p <= 0.0001). 
  
Figure S4. (a) Overview of the construct used to derive MCF7 stably expressing 
GFP under the control of the promoter of the CD44 gene. (b) Representative 
immunofluorescent images of FACS-sorted GFPhigh and GFPlow cells, stained for 
DAPI and CD44. Scale bar = 200 μm. (c) Quantification of the fraction of FACS-
sorted GFPhigh and GFPlow cells from (b). Standard deviation of the mean estimated 
from 3 replicates is shown. 
 
Figure S5. Normalized expression of ESR1 and of selected ER-target genes in the 
indicated subpopulations of MCF7 cells. 
 
Figure S6. Representative images of purified CD44high or CD44low cells, stained for 
DAPI, CD44, Caspase3 and the indicated marker gene. Scale bar = 10 μm. 
 
Figure S7. (a-c) For the indicated genes, the fraction of cells expressing them (a) 
along with the average (b) and the distribution (c) of normalized expression values 
are shown for the indicated subpopulations (top panel). 
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Supplementary Table Legends 
 
Table S1. Results of the re-analysis of treatment-naïve HR+/HER2- primary tumours 
from Razavi et al. 201831. 
 
Table S2. Summary statistics for all scRNA-seq samples reported in this study. 
 
Table S3. Differentially expressed genes (DEGs) between MCF7-CD44high (CD44H), 
MCF7-CD44low (CD44L) and LTED. For each comparison, the false discovery rate 
(FDR) estimated using MAST59, along with the area under the curve (AUC) and the 
fraction of cells expressing each DEG in the compared subpopulations are indicated. 
 
Table S4. Network reconstructed using PIDC37. For each inferred regulatory 
interaction, the two nodes are shown (genes 1 and 2), along with information 
indicating whether the edge is supported by either the network inferred from CD44high 
and CD44low data only, or both. For both genes, the table indicates the network 
component, whether the gene falls into one of the three main network communities 
(i.e. the three larger components) and into any of the two sub-communities of 
community 1, and whether the gene is part of the PA signature. 
 
Table S5. Genes either up- or down-regulated in PA cells, using either the SWNE-
based or the Random-Forest-based (RF) approach. For each list, the false discovery 
rate (FDR) estimated using MAST59, along with the area under the curve (AUC) and 
the fraction of cells expressing each DEG in the compared subpopulations are 
indicated. 
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