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Abstract

Mechanical heterogeneity in biological tissues, in particular stiffness, can be used to distin-

guish between healthy and diseased states. However, it is often difficult to explore relationships

between cellular-level properties and tissue-level outcomes when biological experiments are per-

formed at a single scale only. To overcome this difficulty we develop a multi-scale mathematical

model which provides a clear framework to explore these connections across biological scales.

Starting with an individual-based mechanical model of cell movement, we subsequently derive

a novel coarse-grained system of partial differential equations governing the evolution of the

cell density due to heterogeneous cellular properties. We demonstrate that solutions of the

individual-based model converge to numerical solutions of the coarse-grained model, for both

slowly-varying-in-space and rapidly-varying-in-space cellular properties. We discuss applications

of the model, such as determining relative cellular-level properties and an interpretation of data

from a breast cancer detection experiment.

Key words: cell-based model; partial differential equation; continuum-limit; multi-scale; discrete

model.

1 Introduction

Biological tissues are heterogeneous and multi-scale by their very nature (Figure 1(a)). This hetero-

geneity exists at all scales from sub-cellular to cellular, and from cellular to tissue levels [1–3]. We

focus on cellular interactions driven by mechanical stiffness which is of great importance in a vari-

ety of applications including epithelial tissue mechanics, cancer progression [4], cancer invasion and

metastasis [5], stiffness as a biomarker in cancer detection [6–8], wound healing [9], and morphogen-

esis [10]. Tissue-level stiffness information [11] has been available for much longer than cellular-level

stiffness data which requires advanced technology, such as atomic force microscopy [12–15]. How-

ever, difficulties arise in relating cellular-level data with tissue-level information when experiments
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are conducted and analysed at a single scale only. Mathematical modelling with in silico simulations

provides a clear framework to explore these connections across biological scales.

Mathematical models of cell populations are broadly classified as either discrete or continuum.

Discrete models, reviewed in [16,17], include cellular automata models, cellular Potts models, cell-

centre models [16], vertex models, subcellular-element models [18], and tensegrity models [19]. Dis-

crete models explicitly describe cellular-level interactions but often lack macroscopic intuition. Con-

tinuum models on the other hand often provide no cellular-level information [20] but can be more

adept at including concepts of macroscopic stiffness [21,22] and, for large numbers of cells, as in

epithelial tissues, tend to be less computationally expensive. Hybrid intermediate models also exist

which consider the multi-scale nature of the problem [23–25]. A range of models specifically examine

the role of mechanics [26,27]. However, in this work we focus on models which relate cellular-level

details to tissue-level outcomes. These models have been developed with a variety of coarse-graining

techniques and assumptions, including the use of slowly varying and periodic assumptions on the

heterogeneity in the model [28,29], correlation functions [30,31], and interaction forces from poten-

tials [32]. Few of these models explore the role of stiffness. The work of Murray et al. [33–36]

explicitly incorporates cell stiffness; they derive a nonlinear diffusion equation governing the evolu-

tion of the cell density in space and time, however the framework focuses exclusively on homogeneous

cell populations. Here, we extend this framework to heterogeneous cell populations.

The key focus of this work is to present a novel coarse-grained system of partial differential

equations governing the evolution of the cell density, cell stiffness and resting cell length, from a

heterogeneous cell-based model of epithelial tissue mechanics. The cell stiffness and resting cell

length are constant for each cell and are simply transported in space by cell movements. The motion

in this model is governed by cell-cell interaction forces modelled with Hooke’s law. In extending

the work of Murray et al. [33], we provide a more general derivation of the governing equations, see

Section 2, which is robust to the inclusion of both slowly-varying-in-space and rapidly-varying-in-

space cellular properties, see Section 3. We show that solutions from the discrete model converge

to the corresponding continuum model solution, under appropriate scalings. Additional results in

Section 3 show the model can be applied to interpret experimental and clinical observations relating

to breast cancer detection. Key algorithms used to generate results are available on GitHub.

2 Model description

In this section we describe the individual-based model, which we refer to throughout this work as the

discrete model, and derive a corresponding coarse-grained approximation in the form of system of

partial differential equations, which we refer to as the continuum description. The continuum limit

usually assumes that the number of discrete entities that makes up the system tends to infinity [28,37],

while the size of the domain also tends to infinity, as in the thermodynamic limit, or the size of a

length scale tends to zero, both in such a way that the ratio of the size of length scale to the number
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of discrete entities is fixed. Here, to maintain a fixed total tissue length and a fixed total number

of cells in the continuum limit, we instead assume that each cell is internally represented by several

identical springs. We then take the continuum limit by considering that the number of springs per

cell tends to infinity whilst the spring length tends to zero.

2.1 Discrete model

In this work, the discrete model describes an epithelial tissue formed by cells in contact with each

other. For simplicity, we assume that the tissue can be modelled as a one-dimensional chain of N

cells with fixed total length L. Tissues in the body commonly evolve in confined spaces, for example

imposed by bone tissues, and are subjected to strong geometric constraints so we fix the left tissue

boundary at x = 0 and the right tissue boundary at x = L. This also allows us to focus on internal

cellular heterogeneity. Alternate free boundary conditions are possible [33,40,44] but we do not focus

on such free boundary conditions in this work. Each cell can have distinct mechanical properties

(Figure 1). This model could be used to represent a single tissue with intrinsic heterogeneity or

multiple adjacent tissues with different properties. Each cell interacts with its neighbour through an

effective interaction force which could represent cell-cell adhesion [41] or compressive stresses [42].

We consider cell i, for i = 1, 2, . . . , N , to have its left boundary at xi(t) and its right boundary at

xi+1(t), with x1(t) = 0 and xN+1(t) = L at all times. The cell has a prescribed cell stiffness, ki, and

resting cell length, ai. Inside the tissue, Newton’s second law of motion governs the motion of each

cell boundary such that

Mi
d2xi
dt2

= fi+1 − fi + F visc
i , i = 2, 3, . . . , N, (1)

where Mi is the mass associated with cell boundary i, F visc
i is the viscous force associated with cell

boundary i, and we model interaction forces at cell boundary i using Hooke’s law,

fi = ki−1(xi − xi−1 − ai−1), i = 1, 2, . . . , N. (2)

The viscous force experienced by cells, due to cell-medium and cell-matrix interactions, is modelled

with F visc
i = −ηdxi(t)/dt, where η > 0 is the viscosity coefficient. Cells migrate in dissipative

environments and this is commonly modelled by assuming that the motion is overdamped [33,43],

hence the term on the left of Equation (1) is zero, giving,

η
dxi
dt

= fi+1 − fi, i = 2, 3, . . . , N. (3)

This model, as presented thus far, considers each cell to be represented by a single spring [33,44]

which is sufficient to describe the discrete model. However, when we derive the continuum model, to

maintain L and N , we represent each cell internally with m identical springs and we will later consider

m� 1, which corresponds to the spring length tending to zero, see Section 22.2. The corresponding
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(a) Stiffness in a human breast cancer biopsy 

x = 0 x = Lx = s(t)

(c) Special case of model schematic with two adjacent tissues

x1 = 0 xN+1 = L

(b) Model schematic for heterogeneous cells, with m springs per cell
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Figure 1: Stiffness heterogeneity in biological tissues. (a) Post atomic force microscopy histological
overview of an entire breast cancer biopsy, where dark regions and pink regions are associated with
low and high cell stiffness, respectively. Reproduced from [6] with permission. (b) Individual-based
model schematic for arbitrarily heterogeneous tissue with N cells and m identical springs per cell.
Cell i occupies the region xi(t) < x < xi+1(t) has cell stiffness ki and resting cell length ai. Spring

ν in cell i, occupies the region x
(ν)
i (t) < x < x

(ν+1)
i (t), is prescribed with spring stiffness k

(ν)
i = mki

and resting spring length a
(ν)
i = ai/m. The first and final spring boundaries in cell i coincide with the

cell boundary positions so that x
(1)
i (t) = xi(t) and x

(1)
i+1(t) = xi+1(t) for all time. The cell and spring

boundaries are shown as discs and hexagons, respectively. (c) Individual-based model schematic for
a special case with two adjacent tissues, similarly this could model a heterogeneous tissue with two
cell types. Cells in tissue i are prescribed with cell stiffness ki and resting cell length ai for i = 1, 2.
Here each cell is represented with a single spring. The position of the interface between the two
tissues is at x = s(t).
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discrete model for m springs per cell is now described. Cell i with boundaries xi and xi+1 now has

m + 1 spring boundaries, x
(1)
i , x

(2)
i , . . . , x

(m)
i , x

(1)
i+1, with xi = x

(1)
i and xi+1 = x

(1)
i+1, (Figure 1(c)).

The cell length is related to the spring length through the scaling xi+1 − xi ∼ m
(
x
(ν+1)
i − x(ν)i

)
as

m→∞, and with equality for all m as t → ∞. Each spring ν in cell i is prescribed with a spring

stiffness k
(ν)
i and resting spring length a

(ν)
i related to cell properties ki and ai through

k
(ν)
i = mki, a

(ν)
i =

ai
m
, i = 1, 2, . . . , N, ν = 1, 2, . . . ,m. (4)

The viscosity coefficient for a cell boundary, η, is related to the viscosity coefficient for a spring

boundary, η(ν), through η(ν) = η/m. Then the corresponding spring boundary equations are

η(ν)
dx

(ν)
i

dt
= f

(ν+1)
i − f (ν)i ,

f
(ν)
i = k

(ν−1)
i

[
x
(ν)
i − x

(ν−1)
i − a(ν−1)i

]
.

(5)

The scalings in Equation (4) and for the viscosity coefficient are chosen such that the cell boundary

velocities are maintained and are independent of m, i.e. such that dx
(1)
i /dt = dxi/dt. These scalings

are supported by results from the discrete model with varying m, see Section 3.

The discrete model is governed by Equation (3) with the fixed boundary conditions for a system

with a single spring per cell, and by Equation (5) with fixed boundary conditions for a system with

m springs per cell. In each situation the discrete model forms a deterministic coupled system of

ordinary differential equations that we can solve numerically, see Supplementary Material Section

1. We can also solve each system with an eigenmode decomposition to conveniently determine the

long-time steady state solution.

2.2 Derivation of continuum model

We now derive a coarse-grained system of partial differential equations describing the evolution of

cell density at a larger scale. To do so we take the continuum limit by increasing the number of

springs per cell, m, while maintaining the total number of cells, N , and tissue length, L, fixed, and

by performing spatial averages over length scales involving a sufficiently large number of cells to

define continuous densities, but sufficiently small to retain spatial heterogeneities. We first define

the microscopic cell density, q̂(x, t), in terms of the spring boundary positions, x
(ν)
i (t), as

q̂(x, t) =
1

m

N∑
i=1

m∑
ν=1

δ
(
x− x(ν)i (t)

)
, (6)

where δ is the Dirac delta function [37,45]. Integrating Equation (6) over the tissue domain,

0 < x < L, gives the total number of cells, N , which is independent of m. We introduce a meso-

scopic length scale δx such that a
(ν)
i � ai � δx� L and define a local spatial average which, for
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the microscopic cell density, q(x, t) = 〈q̂(x, t)〉, is

〈q̂(x, t)〉 =
1

2δx

∫ x+δx

x−δx
q̂(y, t) dy. (7)

Differentiating Equation (7) with respect to time leads to the general conservation law

∂q(x, t)

∂t
= − ∂

∂x

〈
1

m

N∑
i=1

m∑
ν=1

δ
(
x− x(ν)i (t)

) dx
(ν)
i

dt

〉
, (8)

where we use properties of the Dirac delta distribution [45] and take the spatial derivative outside of

the average by making use of the fact that δx is small. The averaged term on the right of Equation

(8) is the coarse-grained cell density flux, j(x, t), describing spring migration at the mesoscopic scale,

expressed explicitly in terms of the spring boundary positions and velocities [37]. We now introduce

three field functions, f(x, t), k(x, t), a(x, t), for the cell-cell interaction force, the cell stiffness and the

resting cell length, respectively, defined such that

f
(
x
(ν)
i (t), t

)
= f

(ν)
i , k

(
x
(ν)
i (t), t

)
= mk

(ν)
i , a

(
x
(ν)
i (t), t

)
=
a
(ν)
i

m
, (9)

where the scalings for f , k, and a, with respect to m, agree with the scalings from the discrete

system, see Equation (4). The field functions k(x, t) and a(x, t) capture the assumption that spring

properties and respective cell properties are constant along spring boundary trajectories, x
(ν)
i (t).

To represent the distribution of spring lengths across the domain, we introduce a continuously

differentiable function, l(x, t), which we define such that

l
(
x
(ν)
i (t), t

)
= l

(ν)
i (t) = x

(ν+1)
i (t)− x(ν)i (t), (10)

where l
(ν)
i � ai � δx� L. Writing Equation (5) in terms of these continuous variables, expanding

each cell-cell interaction force using the small parameter l
(ν)
i , using the viscosity coefficient scaling,

and simplifying to leading order gives,

η
dx

(ν)
i

dt
= m

[
f
(ν+1)
i − f (ν)i

]
= m

[
f
(
x
(ν+1)
i (t), t

)
− f

(
x
(ν)
i (t), t

)]
= m

∂f
(
x
(ν)
i (t), t

)
∂x

l
(ν)
i +O

([
l
(ν)
i

]2)
.

(11)

Substituting Equation (11) into Equation (8), relating the spring length to the cell density with

l
(
x
(ν)
i (t), t

)
= 1/

[
mq
(
x
(ν)
i (t), t

)]
, and integrating over the spatial average interval, (x− δx, x+ δx)

gives

j(x, t) =
1

η

( n

2δx

) 1

n

n∑
i=1

1

m

m∑
ν=1

∂f
(
x
(ν)
i (t), t

)
∂x

1

q
(
x
(ν)
i (t), t

) , (12)

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 11, 2019. ; https://doi.org/10.1101/485276doi: bioRxiv preprint 

https://doi.org/10.1101/485276


where n is the number of cells in the interval (x − δx, x + δx) and i has been reset to count these

cells. Then, taking the limit as m→∞ and performing an average over the m springs per cell, gives

j(x, t) =
1

η

( n

2δx

) 1

n

n∑
i=1

∂f(xi(t), t)

∂x

1

q(xi(t), t)
. (13)

We apply a mean field approximation, as n� 1 in (x− δx, x+ δx) due to ai � δx, by substituting

q(xi(t), t) and ∂f(xi(t), t)/∂x in the sum with the average density q(x, t) and the average interaction

force gradient ∂f/∂x in the interval (x − δx, x + δx). The factor 1/q is now independent of i and

cancels with the factor n/(2δx) which represents the density of cells in the spatial average interval.

Then the coarse-grained cell density flux is

j(x, t) =
1

η

∂f(x, t)

∂x
, (14)

which provides us with an important physical interpretation and is directly related to the velocity,

net force and cell-cell interaction force gradient. By inspection of Equation (11) and Equation (14),

we see that the cell density flux, j, is an advective flux j = qu, where u(x, t) = 〈dxi/dt〉 is the average

velocity induced by the average force gradient 〈∂f/∂x〉. We also see that the net force is given by

ηj/q and the spatially averaged interaction force gradient is given by ηj.

Substituting Equation (14) into Equation (8) gives

∂q(x, t)

∂t
= −1

η

∂2f(x, t)

∂x2
. (15)

We now return to Equation (9) and differentiate with respect to time to derive an evolution

equation for the cell stiffness function

0 =
d

dt

[
k
(
x
(ν)
i (t), t

)
−mk(ν)i

]
=
∂k
(
x
(ν)
i (t), t

)
∂t

+
dx

(ν)
i (t)

dt

∂k
(
x
(ν)
i (t), t

)
∂x

.
(16)

Using Equation (11) and similar developments, the evolution equations for the cell stiffness and

resting cell length expressed in terms of mesoscopic variables become

∂k(x, t)

∂t
+ u(x, t)

∂k(x, t)

∂x
= 0, (17)

∂a(x, t)

∂t
+ u(x, t)

∂a(x, t)

∂x
= 0. (18)

Written in terms of velocity we identify the left-hand sides of Equations (17) and (18) as the con-

vective derivatives of the cell properties.

In summary, the governing equations of the coarse-grained model are given by Equations (15),
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(17) and (18) with the interaction force f given by

f(x, t) = k(x, t)

(
1

q(x, t)
− a(x, t)

)
. (19)

This results in a system of four self-consistent equations for the continuous fields q(x, t), k(x, t),

a(x, t), f(x, t) in terms of spatial position rather than particle trajectories. The initial conditions for

the average cell density, cell stiffness and resting cell length are

q(x, 0) = q0(x), k(x, 0) = k0(x), a(x, 0) = a0(x), 0 < x < L, (20)

together with no flux boundary conditions for the average cell density, due to the microscopic motion

constraints, and Dirichlet boundary conditions for the cell stiffness and resting cell length, as cell

properties are constant along cell boundary trajectories,

∂f(x, t)

∂x
= 0, k(x, t) = k0(x), a(x, t) = a0(x), x = 0, L. (21)

These governing partial differential equations (15), (17), (18), (19) are solved numerically with the

initial conditions (20) and boundary conditions (21), see Supplementary Material Section 2. With

homogeneous cell populations the governing equations reduce to the single nonlinear density diffusion

equation previously derived in [33],

∂q

∂t
=

∂

∂x

(
k

ηq2
∂q

∂x

)
. (22)
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3 Results and discussion

In this section we compare solutions of the continuum and discrete models with the expectation that

as the number of springs per cell, m, increases solutions from the discrete model converge to the

corresponding continuum solution.

3.1 Homogeneous cell population

We first consider a homogeneous cell population, with one spring per cell, m = 1, to illustrate the

time evolution of the cell density flux during mechanical relaxation of the tissue. To compare results

from the discrete and continuum systems we choose the initial cell configuration (Figure 2(a)) to

represent a normally distributed cell density,

q0(x) =
λ√

2πσ2
exp

(
−(x− µ)2

2σ2

)
, 0 < x < L, (23)

with mean position µ = 5 and variance σ = 3. We choose λ to satisfy
∫ L
0
q0(x) dx = 40 so that

with L = 10 the total number of cells is N = 40, see Supplementary Material Section 1. Then,

using the discrete model, we observe that the system relaxes to a uniform cell distribution (Figure

2(a)). Figures 2(b) and 2(c) show how the density and velocity, respectively, propagate along the

cell boundary characteristics and demonstrate that the system undergoes temporal relaxation to a

steady state configuration. With an eigenmode decomposition of the governing equations of the

discrete system, given by Equation (3) and the fixed boundary conditions, we find all eigenvalues

are negative which explains the exponential decay behaviour.

We determine the discrete cell density as the inverse of the spacing between cell boundary tra-

jectories, qi = 1/(xi+1 − xi) and we assign this value throughout the region xi < x < xi+1. We now

compare this discrete information with the density from the continuum system, q, obtained by solv-

ing Equations (15), (17), (18), and (19). In Figure 2(d) we see that the initially normally distributed

density tends to the uniform density Q, given by lim
t→∞

q(x, t) = Q = N/L, which is independent of k

and a. From Equation (15) we see that this motion is driven by imbalances in the local interaction

force field. We relate this to the velocity, u = (∂f/∂x)/(ηq) from Section 2, and we see that as the

local imbalances tend to zero the cell boundary velocities tend to zero (Figure 2(e)). Due to fast

dynamics followed by slow long-term dynamics, results for t = 10 and t = 60 are mostly overlapping

with the steady state (Figure 2(e)). This agrees with the interpretation of the discrete system from

Equation (3).
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Figure 2: Results for homogeneous k and a, with N = 40 and m = 1. (a) Snapshots of cell
boundary positions and cell lengths at t = 0, 5, 15, 60. (b) Characteristic diagram for cell boundary
position evolution for 0 ≤ t ≤ 65. Colour denotes the cell density. Black lines with dots represent
snapshots in (a) and (d). (c) Characteristic diagram for cell position evolution for 0.0 ≤ t ≤ 0.8.
Colour denotes velocity. Black lines and dots represent snapshots in (e). (d) Cell density snapshots
at t = 0, 5, 10, 60. Results from discrete/continuum system displayed as stepped/solid lines. (e)
Velocity snapshots at t = 0.0, 0.4, 10.0, 60.0. Results from discrete simulation and continuum system
displayed as dashed/solid lines. Arrows indicate the direction of increasing time.
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3.2 Heterogeneous cell population

Here we present results for slowly-varying-in-space and piecewise constant heterogeneous cell popu-

lations.

3.2.1 Slowly varying cell population

For slowly-varying-in-space cellular properties, we explore how solutions of the discrete system con-

verge to the solution of the continuum system as m increases. We consider heterogeneity in k and

homogeneous a so that, on average, cells are in compression. Figure 3 depicts how the system relaxes

to a non-uniform density distribution, due to cell stiffness heterogeneity, as the velocity field u tends

to zero. From this simulation, we observe higher density in regions of higher k. This prediction

agrees with the steady state solution to the coarse-grained model, governed by Equations (15), (17),

(18), and (19),

Q(x) =
K(x)

bη +K(x)A(x)
, (24)

where Q(x) = lim
t→∞

q(x, t), K(x) = lim
t→∞

k(x, t) and A(x) = lim
t→∞

a(x, t), are steady-state solutions and

b is a constant of integration that is related to N . We also observe that, as cell properties are constant

along trajectories, the cell stiffness evolves at a fixed location in space. We see in Figure 3(d-l) that

there is close agreement between the discrete model and the continuum solutions as m increases. It

is notable that even for low m we have excellent agreement between the discrete density and the

continuum density at the centre of each spring. However, at spring boundaries the agreement does

not hold as well for low m. We see similar discrete-continuum agreement when we consider other

examples with heterogeneous k and homogeneous a, with homogeneous k and heterogeneous a, and

heterogeneous k and heterogeneous a (Supplementary Figures S3-S6).

3.2.2 Piecewise constant cell population

In this section, we consider a simple scenario with two adjacent tissues, modelled by assuming

sharp inhomogeneities in cellular properties. This may represent the boundary between a malignant

tissue and a normal tissue. We first explore how solutions from the discrete system converge to the

corresponding continuum solution as m increases, under these rapidly-varying-in-space conditions.

Each tissue has homogeneous cell properties given by cell stiffnesses k1, k2 and resting cell lengths

a1, a2 in the left and right tissue, respectively, with interface position s(t) (Figure 1(b)). For initial

conditions, we choose a uniform density, q0(x) = 1, cell properties k1 = 1/2, k2 = 1, a1 = a2 = 0,

L = 10 and s(0) = 5, respectively. The cell stiffness discontinuity rapidly induces a sharp change in

the density at s(t) followed by slower dynamics until reaching a piecewise constant steady state as

t→∞ (Figure 4). Even with these sharp inhomogeneities we again observe close agreement between

solutions of the discrete and continuum models, especially for the cell stiffness, k, where it is difficult

to distinguish between the discrete model with different m and the solution of the continuum model.
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Figure 3: Results for heterogeneous k and homogeneous a with N = 10, k0(x) = 1 + 0.1(x−5)2, and
a0(x) = 0. (a,b) Characteristic diagram for spring boundary position evolution for 0.00 ≤ t ≤ 16.25,
with m = 4 so that every fourth trajectory represents a cell boundary. Colour denotes (a) cell
density, (b) cell stiffness. In (a,b) black lines and dots represent times for snapshots in (c-h). (c,e,g)
Cell density snapshots at t = 0.0, 2.5, 15.0. (d,f,h) Cell stiffness snapshots at t = 0.0, 2.5, 15.0. In
(c-h) lines display results for N = 10 with m = 1 (blue), 2 (red), 4 (yellow), and continuum system
(black).
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For the cell density, q, we again see that agreement at the spring boundaries improves as we increase

m. This holds especially well given that the numerical discretisation of the continuum model does

not explicitly follow the location of the interface, see Supplementary Material Section 2. It could

however be determined by evaluating the velocity, ds(t)/dt = u, at the interface position.

This simple mechanical relaxation scenario between two tissues enables us to infer some informa-

tion on the cellular-level properties ki and ai by considering the evolution of the interface position,

s(t). The steady state interface position, S = lim
t→∞

s(x, t), is given by

S =
k1a1
k2

+ L
N2
− a2

k1
k2N1

+ 1
N2

, (25)

which depends on k1/k2, a1 and a2. Here N1 and N2 represent the total number of cells in the left

and right tissues, respectively, see Supplementary Material Section 3. We can identify S and L− S

as the lengths of the left and right tissues, respectively, after their mechanical relaxation.

To investigate the influence of k1/k2 we vary k1 and set k2 = 1. As we have fixed boundaries

at x = 0 and x = L, we set a1 = a2 = 0 to emphasise properties when we vary k1, and choose a

uniform density initial condition and N1 = N2 = 5. Evaluating s(t) numerically, for efficiency with

the discrete model from Equation (3), and S from Equation (25), shows that if k1 = 0 then S = L

and the left tissue occupies the entire domain. As k1 →∞ then S → 0 the length of the left tissue

decreases (Figures 5(a,c)).

Similarly, to investigate the influence of a1, a2 we consider a1/a2, vary a1 and set a2 = 1. We set

k1 = k2 = 1 which only impacts the rate at which we reach the long-time solution. In contrast to

varying k1/k2, steady state results depend on the choice of a2, not just the ratio a1/a2, see Equation

(25). For example, when a1 = 0 then S = 2.5 which corresponds to a non-zero minimum left tissue

length and a maximum length for the right tissue. We also observe that S is proportional to a1

(Figures 5(b,d)).

We find that we can use the interface boundary velocities to infer cellular-level properties. Plot-

ting |S − s(t)| on a logarithmic scale against time shows that we can determine k1/k2 from the

gradient of the linear section and we can determine a1/a2 from the y-intercept (Figure 5(e,f )). We

find that it is easier to distinguish the ratio k1/k2 than it is to distinguish the ratio a1/a2. If the

second tissue was a reference material with known k2, a2 we could then determine k1, a1.
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Figure 4: Results for piecewise constant cell properties, with N = 10. (a,b) Characteristic diagram
for spring boundary position evolution for 0 ≤ t ≤ 100, with m = 4 so that every fourth trajectory
represents a cell boundary. Colour denotes (a) cell density, (b) cell stiffness. In (a,b) black lines
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interface position for increasing time for varying (e) relative cell stiffness and (f ) relative resting cell
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3.3 Case study: breast cancer detection

Recent experiments have proposed a new method to classify breast biopsies in situations where stan-

dard histological analysis is inconclusive [6,12,13]. The method is based on determining the stiffness

histogram distribution of the tissue using atomic force microscopy. Normal tissues are associated

with a single, well-defined unimodal stiffness peak, whereas malignant tissues are associated with a

bimodal distribution with a prominent low-stiffness peak. Using our mathematical model, we are able

to gain more insight into the differences in mechanical properties of normal and malignant tissues at

the cellular level, in particular, the role of the resting cell length, which is not an easy quantity to

measure experimentally. It would be impossible to consider this experiment with previous models

that deal only with homogeneous cell populations.

For this case study, as the experimental data is relatively discrete, we use the discrete model,

which we consider to be a sufficiently simple yet insightful portrayal of the biological details. We set

the initial state of the system by assuming a uniform initial density distribution and by assigning

the cell stiffness of the ith cell, ki, so as to reconstruct the unimodal stiffness profile from Figure 1b

(top) in [6]. To do so, we normalise the experimental stiffness histogram and interpret the normalised

value as the length fraction of the tissue containing stiffness in the given histogram bin (Figure 6(a)).

This is consistent with the experimental method which implicitly assumes that the probability a cell

is examined during a biopsy is proportional to its size [6]. To estimate ki, we randomly sample the

unimodal stiffness distribution and arbitrarily assign them to cells i = 1, 2, . . . , N in ascending order.

Note that the ordering of the cells does not affect our results or the interpretation of our results in

any way. We assume N = 1000, m = 1 and L = 10 for illustration purposes. In order for this

initial setup to be in equilibrium despite the heterogeneity in stiffness in the tissue, the resting cell

lengths ai must be chosen heterogeneously, per the steady state system of discrete equations, see

Supplementary Material Section 4.

We proceed to consider how a bimodal stiffness distribution, associated with malignant tissues,

could arise from such an initial state with a unimodal stiffness distribution. Clearly, a bimodal

stiffness distribution may arise as a result of changes to individual cell stiffnesses, ki, e.g. due to some

pre-cancerous biological mechanisms. However, our model shows that it is also possible to interpret

the bimodal distribution as arising from changes in the resting cell lengths only. Specifically, when

we simulate the discrete model with the initial conditions as above, but modify the heterogeneity

in the resting cell lengths, ai, to a bimodal profile with high ai for very low ki, without changing

their stiffnesses, ki, the cells redistribute themselves in the tissue in such a way that the tissue

stiffness histogram develops a bimodal distribution at mechanical equilibrium (Figure 6(c)). We

note that this result is not surprising due to the coupling of cell stiffness and resting cell length in

the mathematical model. However, this intuitive result may not have been clear had we relied upon

experimental data and experimental observations alone. In addition, this approach assumes that

cells may have very different lengths which is consistent with biological observations. For example,
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in the context of melanoma biology it is well accepted that cancer cells can be significantly smaller

than healthy cells [38,39]. We also note here that changes in the resting cell lengths have been

assumed in other works [47] to model two-way feedback between mechanical tensions and signalling

and here could similarly represent some unknown underlying pre-cancerous biological mechanisms.
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Figure 6: Breast cancer detection case study. (a) Initial unimodal stiffness distribution, normalised
by tissue length fraction, associated with normal tissues. (b) Initial cell stiffness ki and modified
resting cell length ai for each cell i = 1, 2, . . . , 1000, leading to a bimodal stiffness distribution.
(c) Steady-state stiffness distribution obtained with the modified resting cell lengths, exhibiting a
bimodal distribution associated with malignant tissues.

4 Conclusion and future work

In this work, we present a one-dimensional cell-based model with heterogeneous cell properties, and

its coarse-grained continuum approximation. The motion of cells is driven by cell-cell interaction

forces which could represent cell-cell adhesion [41] or compressive stresses [42]. Heterogeneous cell

properties, cell stiffness and resting cell length, are constant for each cell and are transported in space

by cell movements. The continuum limit is taken by increasing the number of springs per cell, while

maintaining the number of cells in the tissue and its fixed total length, and by considering spatial

averages over length scales involving a large enough number of cells to define continuous densities

but small enough to retain spatial heterogeneities.

Our results shows that solutions of the discrete model approach the solution of the continuum

model as the number of springs per cell increases whilst the spring length tends to zero, even for

rapidly varying spatial cell properties. Excellent agreement is observed even for few springs per cell

at the centre of each cell. For the examples presented in this work, we find that the solution of the

discrete model can be obtained much faster than the solution of the continuum model. However,

the time required to simulate the discrete model increases rapidly with the number of cells. In

contrast, the time required to simulate the continuum model is independent of the number of cells.

Therefore, when we have large numbers of cells, as in an epithelial tissue, the continuum model

is advantageous. Another advantage of the continuum model is that we can quickly develop exact

closed form expressions for the long-time interface position which are more difficult to establish

with the discrete model. Furthermore, the continuum model allows us to understand macroscale
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phenomena which are not obvious from microscopic interactions. The fact that the cell density flux

in the continuum model, a macroscopic quantity, is explicitly related to the gradient of the cell-cell

interaction force may have been anticipated, but it is not obvious from the microscopic interactions

that this leads to an effective non-linear diffusive transport. Finally, because the continuum model

exhibits explicit relationships between macroscopic quantities, it will be more useful for inverse

problems.

By dealing explicitly with heterogeneous cell populations, this model has many potential applica-

tions. The first application we consider is a simple tissue relaxation simulation, where we track the

position of the interface between two distinct adjacent tissues as the system mechanically relaxes,

to infer cellular-level properties. Results suggest it is easier to determine the relative cell stiffnesses

than it is to determine the relative resting cell lengths. Results also show that when cells are, on

average, in tension a tissue with lower stiffness extends and compresses a tissue with higher stiff-

ness. In the second application, we use the model to interpret recent experiments in breast cancer

detection which reveal distinct stiffness profiles associated with normal, benign and malignant tis-

sues [6]. We show that a bimodal stiffness distribution, associated with a malignant tissue, could

arise from a unimodal stiffness distribution, associated with a normal tissue, from changes not just

in cell stiffnesses but from changes in the resting cell length’s only. The resting cell length is not

an easily measured experimental quantity and these results suggest that this could be an important

variable to consider.

Many extensions of this work are possible, both mathematically and biologically. Important ex-

tensions will be to introduce cell proliferation, apoptosis, and free boundaries where the continuum

limit is less obvious [33,40,44]. Another interesting extension will be to generalise the cell-cell in-

teraction force law to include nonlinear effects for large separations [34,44]. These extensions will

be the subject of future works. Finally, the model’s ability to relate cellular-level stiffness data

and tissue-level information has many potential extensions biologically including applying the model

to particular scenarios such as epithelial tissue mechanics, cancer progression [4,5], cancer detec-

tion [6–8], wound healing [9], and morphogenesis [10].
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