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ABSTRACT 
 
 
Over 50 years ago, Susumo Ohno proposed that dosage compensation in 

mammals would require upregulation of gene expression on the single active X 

chromosome, a mechanism which to date is best understood in the fruit fly 

Drosophila melanogaster. Here, we report that the GA-repeat sequences that 

recruit the conserved MSL dosage compensation complex to the Drosophila X 

chromosome are also enriched across mammalian X chromosomes, providing 

genomic support for the Ohno hypothesis. We show that mammalian GA-repeats 

derive in part from transposable elements, suggesting a mechanism whereby 

unrelated X chromosomes from dipterans to mammals accumulate binding sites 

for the MSL dosage compensation complex through convergent evolution, driven 

by their propensity to accumulate transposable elements. 
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RESULTS AND DISCUSSION 
 

Dosage compensation in placental mammals has long been known to involve 

epigenetic silencing of one of the two X chromosomes in females1, resulting in 

one silenced X chromosome and one active X chromosome. This mechanism 

ensures that the active X to autosome ratio is the same between females, which 

have two X chromosomes, and males, which have only one X chromosome in 

each somatic cell. In addition, a growing body of evidence suggests that dosage 

compensation in mammals involves a second mechanism that augments gene 

expression from the single active X chromosome so that it is equivalent to the 

output of two active X chromosomes2–9. This second mechanism was first 

proposed in 1967 by Susumu Ohno,10 who argued that increased expression 

from the X chromosome would be required to avoid the consequences of 

aneuploidy arising from the evolutionary degeneration of its homolog into a gene-

poor Y chromosome. However, while X-linked sequences that mediate the 

silencing arm of dosage compensation, such as Xist, have been identified, X-

linked sequences that target genes on the active X chromosome for augmented 

expression have remained elusive. 

Augmented expression of X-linked genes occurs by two mechanisms in 

mammalian cells: increased transcription and increased stabilization of RNA 

transcripts7,9,11. It is generally thought that these mechanisms evolved on a gene-

by-gene basis on the X chromosome to compensate for the loss of homologous 
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genes on the Y chromosome7,12. Consistent with this model, gene-specific 

microRNA target sequences correlate with the “dosage-sensitivity” of X-linked 

genes13. However, to date no DNA sequences have been reported that support 

either a gene-by-gene or X-chromosome wide mechanism resulting in 

augmented transcription of dosage-compensated genes in mammals. 

Mechanistically, transcriptional upregulation of X-linked genes has been linked to 

the activity of the acetyltransferase, MOF/KAT8, which acetylates histone 4 at 

lysine 16 (H4K16-ac), resulting in open chromatin and increased 

transcription14,15. ChIP-seq experiments in mammalian cells show that 

MOF/KAT8, H4K16-ac, and RNA pol II are enriched about two-fold at 

upregulated X-linked genes relative to autosomal genes7,9. Moreover, RNAi 

knockdown of MOF/KAT8 in mammalian cells reduces the two-fold enrichment of 

RNA Pol II at several X-linked genes and their levels of transcription9. The 

question of how X-linked genes become targeted for transcriptional upregulation 

is therefore tied to how MOF/KAT8 becomes enriched at X-linked genes. 

Since MOF/KAT8 plays a similar role in dosage compensation in the fruit fly 

Drosophila melanogaster16,17, we reasoned that its mechanism of enrichment 

might lend insight into how X-linked genes are targeted for upregulation in 

mammals. In both flies and mammalian cells, MOF/KAT8 is recruited to the X 

chromosome as part of the MSL dosage compensation complex, which contains 

the conserved proteins, MSL1, MSL2, and MSL314–17. In flies, these proteins 
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have been shown to direct the MSL complex to the X chromosome in a two-step 

process: MSL1 and MSL2 are required for recruitment of the complex to about 

300 “chromatin entry sites” (CES), also called high affinity sites (HAS) along the 

X chromosome, and MSL3, a chromodomain protein, is required for spreading of 

the complex from the CES/HAS sites to neighboring genes18–20. In addition, two 

zinc finger proteins, CLAMP and GAF, recruit the MSL complex to DNA21,22. 

CLAMP acts locally at CES/HAS sites and at a distance with GAF to recruit the 

MSL complex and to shape the overall architecture of the X chromosome22–24. 

While it is unclear if there is a CLAMP homolog in mammals, molecular modeling 

has identified c-krox8/Th-POK as a mammalian GAF homolog25.  

Analysis of the 300 recruitment CES/HAS sites in Drosophila, as well as in vitro 

binding assays with MSL2, CLAMP, and GAF, point to the importance of GA-

dinucleotides in recruiting the MSL complex to the X chromosome. For example, 

analysis of the CES/HAS sites identified a 21-bp “MSL Recognition Element” 

(MRE) containing 8-bp GA-repeat core that is necessary for MSL complex 

recruitment18. In vitro binding studies show that MSL2 binds an MRE-like 

sequence, called “PionX” that while different from the 5’ and 3’ ends of the MRE, 

retains the 8-bp GA-repeat core26,27. Additionally, in vitro binding assays with 

CLAMP show preferential binding to longer GA-repeats between 10 and 30 bp23.  

To determine if the density of GA-repeats is likewise enriched on mammalian X 

chromosomes and at mammalian X-linked genes, we developed “GenomeHash”, 
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an algorithm to count user-defined motifs throughout specified genomes (see 

Methods). We validated our algorithm against the Drosophila genome, confirming 

previously published findings that the densities of GA-repeats are enriched ≥2-

fold on the X chromosome relative to autosomes (Supplemental Table I). For 

example, GA-repeat lengths from 8 bp to 28 bp, experimentally validated in MSL 

and CLAMP binding assays in vitro and in vivo18,23,27,	occur on the X chromosome 

at densities ≥1.0/Mb, with an average X:A density enrichment of 2.5-fold (Figure 

1a). 

We found that the density of GA-repeats on the human X chromosome is 

likewise enriched relative to autosomes. Most prominently, GA-repeats of lengths 

18–38 bp occur on the X chromosome at densities ≥ 1.0/Mb where they are 

enriched 1.5-fold relative to autosomes (Figure 1b, Supplemental Table 1). 

Although the X:A enrichment of GA-repeat densities is more modest than 

observed in Drosophila, it is statistically significant based on both Poisson tests 

and empirical bootstrapping methods (see Materials and Methods) with p-values 

ranging from 1.84e-57 for 18-mers to 1.82e-07 for 38-mers (Supplemental Table 

1). Moreover, we found that dosage compensated genes28 are more likely than 

autosomal genes to contain intronic GA-repeats (Supplemental Tables 2 and 3). 

For example, GA-repeats of length 30 bp occur in 12% of dosage compensated 

genes but only 5.3% of autosomal genes, resulting in a 2.2-fold enrichment of 

dosage compensated genes. We found similar results with clusters of GA-rich 

consensus motifs matching the Drosophila MSL recognition element (MRE), the 
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Drosophila CLAMP protein, and the mammalian GAF homolog (Supplemental 

Tables 2). Collectively, these findings show that the density and distribution of 

GA-repeats on the human X chromosome, as in Drosophila, are compatible with 

mediating chromosome-wide and gene-by-gene mechanisms of dosage 

compensation. 

As further confirmation of the possibility that GA-repeats mediate dosage 

compensation in mammals, we found that GA-repeats are enriched on the X-

chromosome not only in the human genome but also the chimpanzee, gorilla, 

dog, cat, cow, horse, mouse, rat, and opossum genomes (Supplemental Table 

1). Focusing on 20-mer GA repeats, two patterns of enrichment are apparent 

(Figure 1c). One pattern follows the ~1.5-fold X:A density enrichment of GA-

repeats that is observed in humans, and is evident in dogs, primates, horses, and 

cows. The second pattern is characterized by high densities of GA-repeats 

genome-wide. These higher densities of GA-repeats are about an order of 

magnitude greater than found on the Drosophila X chromosome and are evident 

on the X chromosome and autosomes of opossum, mouse, rat, cat and dog. In 

general, highly dense genome-wide occurrences of GA-repeats precludes their 

enrichment on the X chromosome relative to autosomes, as observed for the 

near-ubiquitous occurrences of shorter GA-repeats in flies and humans. 

However, as observed in dogs, it is possible for a genome to exhibit both 

patterns of GA-repeat enrichment.  
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Importantly, the densities of long GA-repeats across mammalian X chromosomes 

are statistically significant by Poisson tests and empirical bootstrapping methods 

(Supplemental Tables 2 and 3) and on par with other biologically active motifs 

that shape whole chromosomes. In fact, the density of 20 bp GA-repeats on all 

10 mammalian X chromosomes is more dense than the well-characterized 

genome-wide insulator protein, CTCF, which occurs about once every million 

base pairs across human chromosomes29. Additionally, 8 of the 10 mammalian 

genomes we examined exhibit X chromosome GA-repeat densities on par with or 

greater than the density of GA-repeats associated with dosage compensation in 

Drosophila23. 

Our finding that GA-repeats are abundant on X chromosomes across mammals 

supports the hypothesis that the MSL dosage compensation complex, known to 

interact with GA-repeats on the X-chromosomes in dipterans to augment gene 

expression, likewise engages with GA-repeats on mammalian X chromosomes to 

augment gene expression. However, unlike the core proteins of the MSL 

complex, which are derived from the last common ancestor between mammals 

and dipterans, GA-repeats cannot have arisen from a common ancestor, as the 

X chromosomes in dipterans and mammals have completely different 

evolutionary histories. In fact, even within dipterans the X chromosomes have 

different evolutionary histories30, and have been shown in one case to acquire 8-

bp GA-repeats through invasion and domestication of a transposable element 

(TE)31.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/485300doi: bioRxiv preprint 

https://doi.org/10.1101/485300


D’Souza et al., page				
	

9 

We likewise identified several examples of TEs associated with GA-repeats in 

the human genome. For example, LINE subfamilies L1 and L2, and the SINE 

subfamilies AluJ, AluS, AluY, have contributed loci with tandem duplications32 

containing GA-repeats ranging from 8 bp to 28 bp (Supplemental Table 4). These 

findings suggest that further investigation of LINES, some of which exhibit a 2-

fold X:A enrichment33 and SINES, present in high copy numbers in the genomes 

of opossum, mouse, rat, and dog, may explain the two patterns of GA-repeat 

enrichment we observed in mammalian genomes (Figure 1c). Additionally, other 

TE families may have also contributed to GA-repeat enrichment on the X 

chromosome. For example, we discovered that the mammalian gypsy 

retrotransposon is a good candidate: it contains clusters of GA-rich consensus 

sequences35 ranging from 6-12 bp in their Long Terminal Repeats and is three-

fold enriched on the human X chromosome relative to autosomes (p=6.14e-23) 

(Figure 2). These findings suggest systematic exploration of TEs is likely to shed 

light on the evolution of GA-repeats in mammalian genomes. 

Collectively, our results show that just as the MSL dosage compensation 

complex is conserved from flies to mammals, its corresponding GA-rich binding 

core is enriched on the X chromosomes of flies and mammals by convergent 

evolution. Our finding that GA-repeats in the human genome are derived in part 

from TEs suggests that any chromosome with a propensity to accumulate TEs 

and repetitive elements, such as ancient and nascent X chromosomes31,33,36, is 

poised to be targeted by transcriptional machinery such as the MSL complex 
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which is recruited by repetitive elements. In fact, we would predict that the MSL 

complex, by virtue of its recruitment to chromosomes by GA-repeats, is poised to 

target future X chromosomes, as our results show that accumulation of GA-

repeats is a common feature of X chromosomes.  

 

Methods 

Software, Statistical Methods, and Databases employed are provided in the 

Supplemental Materials and Methods 
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Figures and Figure Legends  
	
	
 

 
 
Fig.1| Density of GA-repeats on the X chromosomes of flies and mammals  
The density of GA-repeats per megabase (Mb) was computed on each 
chromosome by dividing the number of GA-repeat matches (hits) by the length of 
each chromosome. The Y-axis shows the ratio of GA-repeat densities on the X 
chromosome vs. autosomes for GA-repeats of specific lengths. Numbers above 
each bar represent the density of matches for each GA-repeat k-mer on the X 
chromosome, which as shown by the color-key, cluster into 3 orders of 
magnitude. a. GA-repeat k-mers in the Drosophila melanogaster genome with an 
X chromosome density ≥ 1 hit/Mb show an average 2.5-fold X:A density 
enrichment. B. GA-repeat k-mers in the human genome with an X chromosome 
density ≥ 1 hit/Mb show an average 1.5-fold X:A density enrichment. c. The 
density of GA-repeats of length 20 bp across different mammalian genomes.  
Genomes with low X:A enrichment ratios tend to have high baseline densities of 
GA-repeats. 
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Fig.2| Distribution of the mammalian Gypsy retrotransposon in the human 
genome. Ideogram of genomic locations matching the Dfam database 
mammalian gypsy consensus model. The density of matches on the X 
chromosome is 3-fold higher than the mean autosomal density (p=6.14e-23, 1-
tailed upper Poisson test). 
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