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Abstract 

Coupling of neuronal oscillations may reflect and facilitate the communication between 

neuronal populations. Two primary neuronal coupling modes have been described: 

phase-coupling and amplitude-coupling. Theoretically, both coupling modes are 

independent, but so far, their neuronal relationship remains unclear. Here, we combined 

MEG, source-reconstruction and simulations to systematically compare cortical phase-

coupling and amplitude-coupling patterns in the human brain. Importantly, we took into 

account a critical bias of amplitude-coupling measures due to phase-coupling. We found 

differences between both coupling modes across a broad frequency range and most of 

the cortex. Furthermore, by combining empirical measurements and simulations we 

ruled out that these results were caused by methodological biases, but instead reflected 

genuine neuronal amplitude coupling. Overall, our results suggest that cortical phase- 

and amplitude-coupling patterns are non-redundant, which may reflect at least partly 

distinct neuronal mechanisms. Furthermore, our findings highlight and clarify the 

compound nature of amplitude coupling measures. 
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1. Introduction 

The brain is a distributed information processing system. Correlated oscillations of 

neuronal activity have been proposed to facilitate and orchestrate communication 

between distant brain regions (Fries, 2015; Siegel et al., 2012; Singer, 1999). In this 

context, neuronal firing is described as a probabilistic process that is shaped by the 

phase and amplitude of oscillatory rhythms (Destexhe et al., 1999; Engel et al., 2013, 

2001; Fries, 2015; Hillebrand et al., 2012; Hipp et al., 2012; Jahnke et al., 2014; Jensen 

and Mazaheri, 2010; Siegel et al., 2012). When temporally correlated, co-fluctuations of 

local oscillations may enhance effective communication between neuronal populations 

and enable the multiplexing of neuronal information (Akam and Kullmann, 2014; Lopes 

da Silva, 2013; Singer, 2013). There are two primary coupling modes between neuronal 

oscillations: phase-coupling and amplitude-coupling (Bruns et al., 2000; Siegel et al., 

2012; Engel et al., 2013). 

Phase-coupling refers to a consistent phase-alignment between neuronal oscillations, 

which may reflect a frequency specific signature of neuronal interactions (Siegel et al., 

2012). Moreover, phase-coupling may itself modulate effective connectivity by aligning 

rhythmic excitability fluctuations to rhythmic spike inputs (Fries, 2015). Consistent with 

this functional role, long-range neuronal phase-coupling reflects various cognitive 

processes, such as e.g. selective attention (Bosman et al., 2012; Buschman and Miller, 

2007; Gregoriou et al., 2009; Siegel et al., 2008), perception (Hipp et al., 2011), memory 

(Fell and Axmacher, 2011; Palva et al., 2010) and task switching (Buschman et al., 

2012). Moreover, task-dependent phase-coupling is expressed in well-structured, large-

scale cortical networks (Hipp et al., 2011; Palva et al., 2010). 

Amplitude-coupling refers to the temporal co-modulation of the amplitude (or power) of 

neuronal oscillations. Like phase-coupling, amplitude-coupling may not only result from, 
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and thus reflect, neuronal interactions, but may also regulate these interactions by 

temporally aligning distant processes associated with fluctuating oscillations (Siegel et 

al., 2012; von Nicolai et al., 2014). Also amplitude-coupling is expressed in well-

structured cortical networks that match known anatomical and functional connectivity 

(Hipp et al., 2012; Siems et al., 2016), resemble fMRI correlation patterns (Brookes et 

al., 2011; Deco and Corbetta, 2011; Destexhe et al., 1999; Hipp and Siegel, 2015; 

Mantini et al., 2007; Nir et al., 2008; O’Neill et al., 2015), and are more stable than 

phase-coupling networks (Colclough et al., 2016; Wang et al., 2014). Amplitude-coupling 

is largely driven by amplitude dynamics below 0.1 Hz (Hipp et al., 2012), which may 

reflect the slow establishment and decay of communicating networks (Destexhe et al., 

1999; Leopold et al., 2003; Mantini et al., 2007; Larson-Prior et al., 2011; Hipp et al., 

2012; Engel et al., 2013).  

Both coupling modes may provide versatile biomarkers for various neuropsychiatric 

diseases (Fornito et al., 2015; Stam, 2014) including autism (Kitzbichler et al., 2015), 

schizophrenia (Cetin et al., 2016; Maran et al., 2016), epilepsy (Burns et al., 2014; van 

Dellen et al., 2014; Zerouali et al., 2016), dementia (Koelewijn et al., 2017; Maestú et al., 

2015), Parkinson’s disease (Oswal et al., 2016), multiple sclerosis (Cover et al., 2006; 

Schoonheim et al., 2013; Tewarie et al., 2014) and blindness (Hawellek et al., 2013).  

Despite the strong interest and rapidly growing evidence on both, neuronal phase- and 

amplitude coupling measures, their relationship remains unclear. One the one hand, 

both coupling-modes could be independent. There could be phase-coupling without 

amplitude-coupling and vice versa (Siegel et al., 2012). In this case, phase- and 

amplitude-coupling could be caused by distinct neuronal mechanisms and their cortical 

coupling-patterns may be dissociated. On the other hand, both coupling modes may be 

tightly linked, e.g. if both modes reflect the same underlying neuronal interactions, or if 

one coupling mode causes the other (von Nicolai et al., 2014; Womelsdorf et al., 2007). 
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In this case, the cortical patterns of both coupling modes may be highly similar or even 

identical. Intermediate scenarios are also possible. The central aim of this study was to 

non-invasively investigate this relationship between phase- and amplitude coupling in 

the human brain with MEG. 

Addressing this questions is complicated by a methodological peculiarity of the 

estimation of amplitude coupling that has recently been pointed out (Palva et al., 2018). 

If erroneous coupling due to field-spread is suppressed by orthogonalization (Brookes et 

al., 2012; Hipp et al., 2012), measures of amplitude coupling are also partially sensitive 

to phase coupling (Palva et al., 2018). In other words, the measured amplitude-coupling 

reflects a mixture of the genuine amplitude-coupling of interest and spurious amplitude-

coupling due to phase-coupling. 

Thus, we approached our central question in two steps. First, we tested if there is a 

genuine component to the cortical amplitude-coupling measured with MEG, beyond the 

spurious amplitude-coupling induced by phase-coupling. Second, we addressed our 

main question how phase- and genuine amplitude-coupling relate. To this end, we 

systematically compared the cortical correlation structure of both coupling modes across 

the human brain. 

2. Results 

We quantified brain-wide neuronal phase- and amplitude-coupling from resting-state 

MEG measurements in 95 healthy participants. We applied source-reconstruction (Van 

Veen et al., 1997) to systematically characterize neuronal coupling at the cortical source 

level. Field spread (or signal leakage) can induce spurious coupling of sensor- and 

source-level MEG/EEG signals. Thus, we employed two coupling measures discounting 

signal leakage. For phase-coupling, we applied the weighted phase lag index (wPLI; 
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Nolte et al., 2004; Vinck et al., 2011), which shows the best reliability of volume-

conduction free phase-coupling measures (Colclough et al., 2016) and showed the same 

coupling patterns as the imaginary coherence or the phase lag index (see Fig. S2 for a 

comparison of the wPLI with these phase-coupling measures). For amplitude coupling, 

we employed pair-wise signal orthogonalization before estimating amplitude envelope-

correlations (Fig. 1A) (Brookes et al., 2012; Hipp et al., 2012).  

It has recently been shown that signal orthogonalization does not perfectly discount 

volume conduction in the presence of genuine phase coupling with non-zero phase 

delays (Palva et al., 2018). Intuitively, this is because, in the presence of signal leakage, 

such phase coupling systematically rotates the estimate of the signal to which one aims 

to orthogonalize, which results in sub-optimal orthogonalization and spurious amplitude-

correlations (Fig. 1B). To test if the empirically measured amplitude-coupling patterns 

reflect this spurious amplitude coupling due to phase coupling, we directly estimated the 

spurious amplitude coupling with numerical simulations based on empirical parameters 

(see 2.6). In brief, for each subject, we simulated pairs of cortical signals with no 

amplitude coupling, with their measured phase coupling (wPLI) at a 90 º phase shift, and 

their estimated signal leakage (resolution matrix). With this approach we computed the 

expected patterns of spurious amplitude coupling under the assumption of no genuine 

amplitude coupling. 
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Figure 1. Principle of signal leakage reduction for amplitude relations 

(A) Illustration of band-limited time series from two sources X (red, upper panel) and Y (blue, 

middle panel) with their envelopes (thick lines). The green thick line resembles the envelope of 

signal Y orthogonalized on signal X. (B) illustrates how the orthogonalization can induce specious 

amplitude coupling in the presence of phase coupling and signal leakage. We orthogonalize the 

measures signal Ymeas onto the measured signal Xmeas. In the presence of signals leakage, both 

measured signals reflect a mix of the genuine signals Xgen and Ygen. For non-zero phase coupling 

between Xgen and Ygen, Xmeas is rotated away from Xgen. This causes sub-optimal signal 

orthogonalization. 

 

2.1 Seed-Based Connectivity Analysis 

As a first step, we performed a seed-based analysis (Fig. 2). We computed cortex-wide 

phase- (Fig. 2C) and amplitude-coupling (Fig. 2A) patterns of neural activity at 16 Hz for 

several early sensory and higher order cortical regions. As early sensory regions we 

chose primary auditory (A1) and somatosensory cortex (S1), which show strong inter-

hemispheric connectivity and robust amplitude-coupling patterns at 16 Hz (Hipp et al., 

2012; Mehrkanoon et al., 2014; Siems et al., 2016). For each seed, subject and both 

coupling modes, we z-scored the raw coupling measures and tested for z-scores larger 

than zero across subjects (one-sided t-test, FDR-corrected). This revealed which 

connections showed significant above-average coupling, discounting global offsets of 

coupling measures (Hipp et al., 2012).  
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Figure 2. Seed based analysis for early sensory and higher order cortices at 16Hz 

Seed-based correlation structure (z-scores) of the left auditory (left A1, top panel), left 

somatosensory (left S1, middle panel), and the medial prefrontal cortex (MPFC, bottom panel) for 

measured amplitude-coupling (A), spurious amplitude-coupling due to phase-coupling (B) and 

phase coupling (C). Coupling z-scores are tested against zero and statistically masked (p<0.05, 

FDR corrected). Color scale ranges from the 2nd to the 98th percentile of significant values, scaled 

within each panel. White dots indicate seed regions. The white dashed line in the top left panel 

highlights the central sulcus (see 4.3 for exact seed coordinates). 

 

For both sensory seeds (A1 and S1), amplitude coupling was strongest to regions 

surrounding the seed region and to the homologous area in the other hemisphere (Fig. 2 

left & right). Phase coupling did not show this pattern, but only above-average 

connectivity surrounding the seed.  

Our findings for a higher order seed region confirmed these results. We investigated 

phase and amplitude coupling for the medial prefrontal cortex (MPFC, Fig. 2 bottom 

row), which shows a complex connectivity structure for amplitude coupling at 16 Hz 
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(Hipp et al., 2012; Siems et al., 2016). We found that amplitude coupling of MPFC 

peaked bilaterally in the dorsal prefrontal and lateral parietal cortices. In contrast, phase 

coupling only peaked surrounding the seed region.  

The spurious amplitude-coupling (Fig. 2B) did not resemble the complex spatial structure 

of the measured amplitude coupling patterns. In contrast, it showed a stereotypical and 

robust pattern of above-average connectivity only to sources near the seed, decreasing 

with distance independent of the seed location. 

2.2 Genuine amplitude coupling 

To quantitatively address our first question, i.e. if the measured amplitude coupling 

(ACmeas) reflects genuine amplitude coupling, we systematically assessed the similarity 

of the cortical patterns of spurious (PACspur) and measured amplitude coupling (PACmeas) 

across frequencies (Fig. 3). A high correlation would indicate that the measured 

amplitude coupling could largely be explained by spurious amplitude-coupling. 

Conversely, the fraction of non-explained amplitude coupling will be attributed to genuine 

amplitude coupling. 

For each frequency and both measures, we computed the coupling between all cortical 

regions, i.e. we computed the full connectivity matrices of the cortex-wide measured and 

spurious amplitude coupling. We then correlated the patterns of spurious and measured 

amplitude coupling for each cortical seed region (3 examples from the 457 sources in 

one frequency are shown in Fig. 2). In other words, we correlated each column of the 

connectivity matrices between measures. Averaged across all seed regions, this 

revealed a positive correlation that markedly peaked from 8-32 Hz and above 90 Hz with 

median correlation coefficients below 0.1 (Fig. 3A, yellow line).  
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Figure 3. Correlation between measured and spurious amplitude-coupling patterns 

(A) Frequency resolved correlation between measured and spurious amplitude-coupling patterns. 

Lines indicate median attenuation corrected (blue) and uncorrected (yellow) correlation. Shaded 

areas indicate the 5-95% and 25-75% inter-percentile range over space. (B) Fraction of cortical 

locations that show significant (p<0.05, FDR-corrected) genuine amplitude coupling, i.e. a 

correlation between measured and spurious amplitude coupling, corrected for pattern reliabilities, 

is significantly smaller than 1 (see 4.9). (C) Reliability, i.e. correlation, of measured amplitude-

coupling patterns within (green) and between (red) subjects. Shaded areas indicate the 25-75% 

interquartile range. (D) Reliability of spurious amplitude-coupling patterns between subjects. (E) 

Reliability of phase-coupling patterns within (green) and between (red) subjects. The gray bars 

below the lines indicates significantly larger reliability within as compare to between subjects 

(p<0.05, FDR-corrected). 

 

At first sight, the low correlation between measured and spurious amplitude-coupling 

patterns suggests that there is indeed genuine amplitude coupling. However, it is 

important to realize that the correlation between two metrics does not only reflect their 

true underlying correlation, but also the metrics’ reliability (Bergholm et al., 2010; Hipp et 
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al., 2012; Siems et al., 2016; Spearman, 1904). A low reliability of two measures, e.g. 

due to strong noise, leads to a low measured correlation even if the true underlying 

correlation between the two measures is high (Supplementary Fig. 1, dashed lines). 

Thus, the observed low and frequency specific correlation between spurious and 

measured amplitude-coupling patterns may merely reflect the low and frequency specific 

reliability of either measure, and thus, does not allow for directly inferring genuine 

amplitude coupling.  

We applied attenuation correction of correlations (Hipp and Siegel, 2015; Siems et al., 

2016; Spearman, 1904) to account for the effect of signal reliability. Attenuation 

corrected correlations quantify how strong a correlation would be for perfectly reliable 

signals (Fig. S1). We employed the between-subject correlation of the measured and 

spurious amplitude coupling-patterns as a proxy for each measure’s reliability (Hipp and 

Siegel, 2015; Siems et al., 2016). For the measured amplitude coupling, between-

subject reliability peaked around 16 Hz (Fig. 3C) compatible with previous findings (Hipp 

and Siegel, 2015; Siems et al., 2016). For the spurious amplitude-coupling, reliability 

increased monotonically with frequency (Fig. 3D), which likely reflects the decreasing 

spatial resolution of beamforming filters with increasing frequency. 

We corrected the correlation between measured and spurious amplitude-coupling 

patterns for these reliabilities by pooled division (see 4.8). This correction had a marked 

effect (Fig. 3A, blue line). As predicted, the overall correlation between measured and 

spurious amplitude-coupling patterns increased. The median attenuation corrected 

correlation was around 0.5 for frequencies above 5Hz and further increased for lower 

frequencies. This suggests that, for frequencies above 5 Hz, on average more than 70 % 

of the variance in the measured amplitude-coupling patterns was due to genuine 

amplitude coupling. This result was largely independent of the phase shift between 

signals employed for estimating the spurious amplitude-coupling. Also for phase shifts 
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smaller than 90 º, across all investigated frequencies, the attenuation corrected 

correlation between measured and spurious amplitude-coupling patterns was 

substantially smaller than 1 (Fig. S3).  

The positive correlation between spurious and measured amplitude-coupling patterns 

may not only reflect non-optimal orthogonalization, but also a true similarity between 

these patterns. Nearby sites may show genuinely higher amplitude correlations similar to 

the pattern of the spurious amplitude-coupling that reflects nearby field-spread and local 

phase-coupling (compare Fig. 2C). In contrast, more complex patterns in amplitude 

coupling display a non-monotonous distance relation (for example Fig. 2 MPFC). To 

investigate the dependency on cortical distance, we split each seed correlation-pattern in 

four distance quartiles and repeated our analysis separately, for each quartile (Fig. 4). 

As hypothesized, we found that the similarity between spurious and measured 

amplitude-coupling patterns was highest for the closest connections. For longer 

distances, the correlation decreased indicating a stronger dissimilarity between spurious 

and measured amplitude-coupling patterns. 
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Figure 4. Correlation between measured and spurious amplitude-coupling patterns for 

separate coupling distances 

(A) Frequency resolved un-corrected correlation between measured and spurious amplitude-

coupling patterns for four coupling-distance quartiles. For the correlation between both measures, 

the patterns (columns of the correlation matrix) were split into four quartiles depending on the 

distance of each source from the seed. Lines indicate median correlation. Shaded areas indicate 

the 25-75% interquartile range over space. (B) Frequency resolved attenuation-corrected 

correlation between measured and spurious amplitude-coupling patterns for four coupling-

distance quartiles. 

 

We next sought to statistically assess if there was any genuine amplitude coupling, i.e. if 

the attenuation corrected correlations between measured and spurious amplitude-

coupling patterns were indeed significantly smaller than 1. Attenuation corrected 

correlation is an unbiased estimate (Figure S1). Thus, we applied a leave-one-out 

jackknifing procedure and false-discovery rate correction (Benjamini and Hochberg, 
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1995). Across the entire spectrum, we found that on average more than 50% of the seed 

patterns showed significant (p < 0.05 corrected) genuine amplitude coupling (Fig. 3B). 

The amount of significant differences peaked around 22Hz with more than 90% of seed 

patterns with a correlation significantly smaller than 1. It should be noted that, in contrast 

to the attenuation corrected correlation itself, this statistic is confounded by the 

measurement reliability. Areas with high reliability show less variability across subjects, 

and hence, increased statistical power. Thus, the attenuation corrected correlation itself 

(Fig. 3A), rather than its statistic, should be used to quantitatively assess the 

dependency between measured and spurious amplitude-coupling patterns. 

The cortical distribution of these attenuation corrected correlations indicates, which 

areas show the lowest dependency between measured and spurious amplitude coupling 

patterns, and thus, potentially the strongest genuine amplitude coupling (Fig. 5A, see 

Figure S5 for statistical masking). This cortical distribution showed a complex pattern 

across frequencies. A cluster analysis revealed four major patterns (Fig. 5B and C, 

lowest BIC for 4 clusters):  

From about 4 to 32 Hz (cluster 2 & 3) genuine amplitude coupling peaked in the lateral 

and posterior prefrontal cortex and around the temporal pole (Fig. 5A & S4A). Cluster 3 

(7-27 Hz) showed peak genuine amplitude coupling in medial prefrontal and orbitofrontal 

cortex (Fig. 5A & S4A). For low frequencies (1-3 Hz) and around 45 Hz, patterns 

appeared scattered with strongest genuine amplitude coupling ventrolateral prefrontal 

areas. For high frequencies (> 64 Hz, cluster 4), genuine amplitude coupling primarily 

peaked in basal and lateral parietal areas. For all investigated frequencies, early visual 

areas showed the strongest similarity between measured and spurious amplitude-

coupling patterns. 
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Figure 5. Spatial distribution of genuine amplitude coupling 

(A) Spectrally and spatially resolved fraction of variance in the measured amplitude coupling that 

cannot be explained by spurious amplitude-coupling due to phase-coupling and is thus attributed 

to genuine amplitude coupling (attenuation corrected). The color scale indicates the amount of 

genuine variance, i.e. 1-r2 of the attenuation corrected correlation between measured and 

spurious amplitude-coupling. The white dashed line in the top left panel indicates the central 

sulcus. See Figure S5 for statistical masking. (B) Cross-frequency correlation of attenuation 

corrected correlation patterns. The colored bar on top of the matrix indicates the frequency 

specific clustering of patterns (Gaussian mixture model with 4 clusters for minimal BIC, see 4.11). 

(C) 2D multidimensional scaling representation of cortical patterns in (A) based on the Euclidean 

distance between patterns (see 4.11). Points are colored according to the clustering of patterns. 

 

In sum, these results indicate that the measured amplitude coupling is indeed different 

from the spurious coupling introduced by phase coupling and volume conduction. 

Furthermore, for most of the brain and frequencies, genuine amplitude coupling likely 

accounts for 70 % and more of the variance in cortical amplitude coupling patterns.  
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2.3 Comparing genuine amplitude-coupling and phase-coupling networks 

Establishing a genuine component in amplitude-coupling patterns, allowed us to address 

our second question, i.e. if there are differences between amplitude- and phase-coupling 

patterns. Although attenuation correction estimates the amount of variance due to 

genuine amplitude coupling, we cannot directly extract genuine amplitude-coupling 

patterns. This precludes a direct comparison between genuine amplitude-coupling and 

phase-coupling patterns. However, we can indirectly infer differences between these 

patterns using a geometric heuristic. For this, we conceptualize the connectivity patterns 

as vectors within a high-dimensional space (Fig. 6). Here, their co-linearity describes 

their similarity, i.e. correlation. We assume that the spurious amplitude-coupling patterns 

(PACspur) are a positively weighted sum of the phase coupling (PPC) and field spread (PM) 

patterns (Fig. 6A). Thus, PACspur is situated in the hyper-area between PPC and PM. Under 

the Null-hypothesis that we want to test, the genuine amplitude-coupling pattern (PACgen) 

is identical to the phase-coupling pattern (Fig. 6B). As the measured amplitude coupling 

pattern (PACmeas) is assumed to be a positively weighted summation of the spurious and 

genuine amplitude coupling patterns, under the Null hypothesis, PACmeas is situated in the 

hyper-area between the spurious amplitude-coupling patterns and the phase-coupling 

patterns (Fig. 6B). Hence, if the measured amplitude coupling is outside this Null-

hypothesis area, we accept the alternative hypothesis that genuine amplitude-coupling 

patterns and phase-coupling patterns are not identical (Fig. 6C). PASmeas is outside the 

Null-hypothesis area either if the PACspur-PPC correlation is stronger than the PACmeas-PPC 

correlation (condition 1) or if the PACspur-PPC correlation is stronger than the PACmeas-

PACspur (condition 2) (Fig. 6C). To test these conditions, we computed attenuation 

corrected correlations between PACspur-PPC, PACmeas-PPC and PACmeas-PACspur, and applied 

leave-one-out Jackknifing to test for significant differences (FDR-corrected).  
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Figure 6. Schematic comparison of phase-coupling and genuine amplitude-coupling 

patterns 

Different phase-coupling and genuine amplitude-coupling patterns can be inferred if either one of 

two critical conditions are met. This is illustrated here by conceptualizing the cortical patterns, 

which for the present data are 457-dimensional vectors, as two-dimensional vectors with unit 

length. The co-linearity between vectors corresponds to the correlation of these patterns. (A) The 

mixing pattern (PM) (field spread) and the phase coupling pattern (PPC) are empirically measured. 

The pattern of the spurious amplitude-coupling (PACspur) corresponds to a weighted average of 

PPC and PM. (B) The measured pattern of amplitude coupling (PACmeas) is a weighted average of 

the pattern of genuine amplitude coupling (PACgen) and the spurious amplitude-coupling (PACspur). 

Under the Null-hypothesis that genuine amplitude coupling and phase coupling patterns are 

identical, PACmeas is situated in the hyper-area between PACspur and PPC (H0-area). (C) If PACmeas is 

outside the H0-area, we accept the alternative hypothesis that PACgen and PPC are different. PACgen 

is outside the H0-area if condition 1 (light blue) or condition 2 (dark blue) is met. 

 

We found that, for large parts of the brain and for all frequencies, there were significant 

differences between cortical phase- and amplitude-coupling patterns (Fig. 7). For all 

frequencies, amplitude and phase coupling differed for at least 50% and up to 80% of 

the cortex with significant genuine amplitude coupling patterns (Fig. 7B).  
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Figure 7. Differences between genuine amplitude-coupling patterns and phase-coupling 

patterns 

(A) Cortical distribution of regions that show significant differences between genuine amplitude-

coupling and phase-coupling patterns by fulfilling either condition 1 (light blue), condition 2 (dark 

blue) or both (purple). (B) Fraction of cortical regions that show significant differences between 

genuine amplitude-coupling and phase-coupling patterns. Same color-scheme as in (A). In 

addition, the gray line indicates the fraction of regions that fulfill either condition 1 or 2 (see 4.10 

for details). 

 

These results establish a clear distinction between amplitude- and phase coupling on the 

network level. The dissociation between conditions 1 and 2 provided further insights into 

the nature of this distinction. For almost all carrier frequencies above 2 Hz, condition 2 

was met more often than condition 1 alone (Fig. 7A and B). For condition 2, the genuine 

amplitude-coupling pattern (PACgen) is further away from the field-spread pattern (PM) 

than the phase coupling pattern (PPC). Thus, in areas were only condition 2 is met, more 

complex amplitude coupling patterns may predominate. This included bilateral 
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extrastriate visual areas around 11 Hz, bilateral parietal and pericentral areas at 22 Hz, 

and the left pericentral and posterior temporal areas at 45 Hz. Overall, our results 

indicate a wide-spread dissociation between genuine amplitude- and phase coupling 

patterns. 

3. Discussion 

Our results provide, to our knowledge, the first systematic comparison of cortical phase- 

and amplitude-coupling patterns in the human brain. We found differences between both 

coupling modes that are widely distributed across frequencies and the entire cortex. By 

combining empirical measurements and simulations we show that these differences are 

not caused by known methodological biases, but instead reflect a genuine neuronal 

dissociation. The observed differences suggest that cortical phase- and amplitude-

coupling patterns do not solely display redundant network information. This suggests 

that distinct neural mechanisms at least partly underlie these two coupling modes in the 

human brain. Furthermore, our results highlight and clarify the compound nature of 

amplitude coupling measures applied to orthogonalized signals.  

3.1 Discounting confounding factors 

Our analyses discount two critical factors that confound the estimation of neuronal 

coupling patterns and their comparison. First, we employed amplitude correlations of 

orthogonalized signals (Brookes et al., 2012; Hipp et al., 2012) and the weighted phase-

lag index (Vinck et al., 2011). Using these coupling measures ensured that the 

measured coupling did not reflect spurious coupling due to field-spread.  

Second, for the comparison between coupling modes, we employed attenuation 

correction of correlations (Spearman, 1904). This approach allows to correct for the 

attenuation of measured correlation caused by sub-optimal measurement reliability. 
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Attenuation correction of correlations is a powerful analytical approach that has been 

successfully employed before to compare MEG with fMRI (Hipp and Siegel, 2015) and 

MEG with EEG (Siems et al., 2016). Importantly, reliability in the present study refers to 

the stability of coupling patterns across subjects, which effectively takes into account all 

sources of variance across subjects, including measurement and finite-sampling noise, 

noise caused by neural activity not of interest, and inter-subject variability. The employed 

approach corrects for all these sources of variance, which attenuate measured 

correlations and may thus induce spurious spectral and spatial specificity.  

Indeed, our results indicate that the raw correlation between measured and spurious 

amplitude-coupling patterns is strongly affected by measurement reliability. Attenuation 

correction suggests that the peaked raw correlation around 16 Hz merely reflects the 

strength of intrinsic cortical rhythms around this frequency, rather than a frequency 

specific relation of the measured and spurious amplitude-coupling patterns. The same 

arguments hold for the comparison between amplitude- and phase-coupling (Zhigalov et 

al., 2017).  

3.2 Phase-coupling sensitivity of orthogonalized amplitude correlation 

Our results provide a critical reassessment of well-established amplitude-coupling 

measures of orthogonalized signals (Brookes et al., 2012; Hipp et al., 2012). It has 

recently been pointed out that, in the presence of field-spread, these measures are 

sensitive to phase coupling with non-zero phase lag (Palva et al., 2018). Here, we 

combined the simulation approach put forward by Palva and colleagues (2018) with 

empirical measurements to systematically evaluate the sensitivity of these measures to 

phase coupling across the human cortex.  

The extent to which phase coupling can induce spurious amplitude-coupling measures 

critically depends on the amount of field-spread. In agreement with this notion, we found 
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that in particular short distance connections show spurious amplitude coupling (Fig. 2 & 

Fig. 4). On a brain wide scale, this appears as a stereotypical pattern of connectivity 

decreasing with distance from the seed regions, independent of seed location or 

frequency. 

3.3 Determining genuine amplitude coupling 

The bias of orthogonalized amplitude coupling measures left open the possibility that the 

described amplitude coupling patterns (Brookes et al., 2012; Hipp et al., 2012) merely 

reflect phase coupling in combination with field spread. Our results provide several lines 

of evidence against this hypothesis. 

First, the spurious amplitude-correlation showed a stereotypical pattern of connectivity 

decreasing with distance, whereas the measured amplitude-coupling patterns showed 

complex and multimodal distributions (Fig. 2). The distance-resolved comparison further 

supports the notion of more complex measured amplitude coupling patterns than 

expected for a mere bias (Fig. 4). Second, the between subject reliability of coupling 

patterns clearly dissociated measured and spurious amplitude coupling (Fig. 3C and D). 

Third, for a large portion of the cortex and frequencies, the correlation of spurious and 

measured amplitude-coupling patterns was significantly smaller than 1 (Fig. 3B). On 

average, only 30 % of the variance in amplitude coupling patterns could be explained by 

spurious amplitude-coupling (only 10% for long connections, Fig. 4B). Finally, the 

correlation of spurious and measured amplitude-coupling patterns showed a frequency 

specific cortical distribution (Fig. 5), which is not expected for a stereotypic measurement 

bias. 

In summary, our results show that the amplitude correlation of orthogonalized signals is 

indeed a compound measure of connectivity, that, in particular for short distances, also 

reflects phase-coupling. Nevertheless, our results suggest that, beyond spurious 
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amplitude-coupling induced by phase-coupling, the observed amplitude coupling 

patterns are to a large extent driven by genuine amplitude coupling. 

3.4 Relation between phase- and amplitude coupling 

Which factors may cause the observed differences between phase- and amplitude 

coupling patterns (Fig. 7)?  

First, different non-linearities between coupling modes may induce differences. The 

same underlying neuronal interaction or common input may have different effects on 

both coupling modes, thus reducing their correlation. However, in contrast to our present 

results this effect should be spectrally and spatially unspecific. Thus, such non-linearities 

cannot entirely explain our findings.  

Second, phase- and amplitude-coupling may be differentially affected by non-neuronal 

artifacts. A particularly strong artifact for frequencies above about 30 Hz is muscle 

activity. Even if M/EEG data is preprocessed to minimize muscle artifacts, as done here 

(Larson-Prior et al., 2013), residual muscle activity is often detectable in frontal and 

temporal regions (Hipp and Siegel, 2013; Siems et al., 2016). Notably, we found strong 

differences between phase- and amplitude coupling at very high frequencies in these 

regions (Fig. 7A). This suggests that the two coupling modes may be differentially 

susceptible to muscle activity. Indeed, specifically the reliability of phase coupling 

increased at high frequencies (Fig. 3E), which may further indicate stronger susceptibility 

to muscle artifacts for this coupling mode.  

Third, imperfections of the employed simulations and thus of the estimated spurious 

amplitude-coupling may lead to an underestimation of the similarity of phase and 

genuine amplitude-coupling patterns (see also 3.6 below). 

Finally, distinct neuronal mechanisms may underlie both coupling modes. On the one 

hand, for example, neuromodulation may co-modulate the strength of rhythms in 
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different brain regions. Or, as recently proposed, slow fluctuations of extracellular 

potassium concentrations and structural connectivity may drive long-range power co-

fluctuations (Krishnan et al., 2018). These mechanisms may induce amplitude coupling 

on a slow temporal scale without necessarily causing phase coupling on a fast temporal 

scale. On the other hand, synaptic interactions triggered by intrinsic activity or sensory 

inputs may induce phase-coupling between areas without driving identical amplitude co-

modulations. 

Despite the observed significant differences between coupling modes, our results are 

also compatible with similarities between their cortical patterns (compare Fig. 2). Such 

similarities may result from one or more common underlying neural mechanism. 

Synaptic interactions between neuronal populations may induce both, coupling of 

phases and amplitudes of these neuronal populations. Similarly, common input to 

neuronal populations will co-modulate and thus couple both, phases and amplitudes 

(Tewarie et al., 2018). Alternatively, also causal relations between both coupling modes 

may result in correlations. For example, as discussed next, phase-locking may enhance 

neuronal interactions, and thereby, enhance amplitude coupling (Fries, 2015; 

Womelsdorf et al., 2007).  

3.5 Functional role of coupling modes 

Phase-coupling of neuronal population may regulate their interactions by aligning 

rhythmic excitability fluctuations and rhythmic inputs (Fries, 2015). Similarly, amplitude-

coupling may modulate interactions by temporally aligning processing associated with 

low or high oscillatory amplitudes across brain regions (Siegel et al., 2012; von Nicolai et 

al., 2014). While the observed differences between coupling modes may reflect such 

functional roles, the present results hold independent from such potential functions. In 

fact, even if phase- or amplitude coupling merely reflect neural interactions without a 
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causal mechanistic role, our results show that these coupling modes provide partially 

dissociated and thus non-redundant information about neuronal interactions. This 

suggests that both coupling modes provide complimentary information on large-scale 

neuronal interactions during cognitive processes and on their alteration in 

neuropsychiatric diseases. 

3.6 Limitations  

Our results are based on specific parameter choices for the simulations used to estimate 

the spurious amplitude-coupling. This entails in particular a constant phase-shift and 

Gaussian distribution of cortical signals. Deviations from these assumptions will lead to 

sub-optimal estimation of both, the spurious and genuine amplitude coupling patterns.  

Non-constant phase-shifts may induce patterns of the spurious amplitude coupling that 

are not reflected in the present simulation. The signal distribution may have an effect on 

two levels. First, non-Gaussian signals will lead to sub-optimal orthogonalization 

(Brookes et al., 2014, 2012; Hipp et al., 2012). Second, the spurious amplitude coupling 

of non-Gaussian signals will deviate from the simulated estimates based on Gaussian 

signals. Thus, optimal estimation of the spurious and genuine amplitude coupling 

requires reliable empirical assessment of cortical phase-shift, likely using invasive 

approaches, and a further systematic assessment of the effect of signal distributions.  

3.7 Future directions 

Our results provide a critical first step to unravel the relationship between neuronal 

phase- and amplitude-coupling. Further invasive studies are needed to investigate this 

relationship and the underlying mechanisms on the cellular and circuit level, as well as to 

link the present results to spiking activity of individual neurons. Additionally, the 

investigation of non-linear and cross-frequency relationships, i.e. between phase- and 

amplitude-coupling across different frequencies (Brookes et al., 2016; Diekelmann and 
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Born, 2010; Mandke et al., 2018; Schroeder and Lakatos, 2009; Tewarie et al., 2016; 

von Nicolai et al., 2014; Womelsdorf et al., 2007) as well as the application of directed 

interaction measures (Hillebrand et al., 2016; Lobier et al., 2014; Vinck et al., 2015) may 

allow identifying generic links between coupling modes. 

 
4. Methods and Materials 
4.1 Subjects and dataset 

We analyzed resting-state MEG measurements from 95 subjects included in the publicly 

available human connectome project (HCP) S900 release. Participants were healthy 

adults in the age range between 22-35 (n22-25 = 18, n26-30 = 40, n31-35 = 37). The sample 

included 45 females. The resting-state measurements included three six-minute blocks 

with short breaks in between measurements. Data were recorded with a whole-head 

Magnes 3600 scanner (4D Neuroimaging, San Diego, CA, USA) situated in a 

magnetically shielded room (for further details see: Larson-Prior et al., 2013). 

Additionally, subjects were scanned on a Siemens 3T Skyra to acquire structural T1-

weighted magnetic resonance images (MRI) with 0.7mm isotropic resolution (Van Essen 

et al., 2013). 

4.2 Data preprocessing 

We used the preprocessed data as provided by the HCP pipeline (Larson-Prior et al., 

2013). This includes removal of noisy and bad channels, bad data segments and 

physiological artifacts by the iterative application of temporal and spatial independent 

component analysis (ICA) (Larson-Prior et al., 2013; Mantini et al., 2011).  

4.3 Physical forward model and source modeling 

MEG sensors were aligned to the individual anatomy using FieldTrip (Oostenveld et al., 

2010). We segmented the individual T1-weighted images and generated a single shell 

head model to compute the physical forward model (Nolte, 2003). We computed the 
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forward model for 457 equally spaced (~1.2cm distance) source points spanning the 

cortex at 0.7 cm depth below the pial surface (Hipp and Siegel, 2015). This source shell 

was generated in MNI-space and non-linearly transformed to individual headspace. 

Source coordinates, head model and MEG channels were co-registered on the basis of 

three head localization coils. 

The sensor-level MEG data was projected to source space using linear beamforming 

(Gross et al., 2001; Van Veen et al., 1997). This spatial filtering approach reconstructs 

activity of the sources of interest with unit gain while maximally suppressing 

contributions from other sources.  

Coordinates for the seed-based connectivity analyses were adopted from Hipp et al. 

(2012). For every seed, the source location of the 457 shell positions with minimum 

Euclidean distance from the seed coordinates was chosen: left auditory cortex (lAC) [-

54, -22, 10]; left somatosensory cortex (lSSC) [42, -26, 54]; medial prefrontal cortex 

(MPFC) [-3, 39, -2] (all MNI coordinates). 

4.4 Spectral analysis 

Time-frequency estimates of the time-domain MEG signal were generated using Morlet’s 

wavelets (Goupillaud et al., 1984). The bandwidth of the wavelets was set to 0.5 octaves 

(1 spectral standard deviation) with a temporal step-size of half the temporal standard 

deviation. We derived spectral estimates for frequencies from 1 to 128 Hz in quarter 

octave steps. 

4.5 Coupling measures 

We estimated amplitude coupling using amplitude envelope correlations of 

orthogonalized signals (Hipp et al., 2012). Volume conduction effect were discounted by 

orthogonalizing the two complex signals at each point in time before correlation (Brookes 

et al., 2012; Hipp et al., 2012).  
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Here, the imag operator describes the imaginary part of the signal. The complex signals 

x and y are a function of time and frequency. x’ is the complex conjugate of signal x. 

Discounting volume conduction with orthogonalization is only optimal for data with a 

Gaussian distribution (Brookes et al., 2014). Finally, we computed the Pearson 

correlation between the logarithm of power envelopes of the signals x and yorth. 

As a measure of phase coupling we applied the weighted phase lag index (wPLI; Vinck 

et al., 2011). The wPLI takes only the imaginary part of the cross-spectrum into account 

and normalizes it with the average absolute imaginary contribution within the time series.  

𝑤𝑃𝐿𝐼 =
|𝑚𝑒𝑎𝑛 𝑖𝑚𝑎𝑔 𝐶!,! |

𝑚𝑒𝑎𝑛(|𝑖𝑚𝑎𝑔 𝐶!,! |)
 

𝐶!,! = 𝑥𝑦′ 

Here, Cx,y is the cross-spectrum between the two complex signals x and y defined as the 

product of x and the complex conjugate of y. The imaginary part of the cross-spectrum is 

insensitive to volume conduction since it has no contribution from zero phase lagged 

parts of the signal (Nolte et al., 2004; Vinck et al., 2011). We computed both coupling 

measures for the full correlation matrices for all subjects and frequency bands.  

4.6 Data simulation 

Palva and colleagues (2018) showed that amplitude correlations based on 

orthogonalized signals yield spurious correlations, given a consistent non-zero phase 

delay between signals. We employed the simulation approach put forward by Palva and 

colleagues (2018) as a generative model to estimate these spurious correlations. We 

computed a model for every connection, subject and frequency using empirical values 

for the free parameters. With this approach, we generated complete correlation matrices 

for every subject and frequency to estimate the spatial patterns of spurious amplitude-

coupling. We modeled every two signals x and y 
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𝑥 = 𝐴! 𝑡 𝑒!!!(!) +𝑚𝐴!(𝑡)𝑒!(!! ! !!!,!) 

𝑦 = 𝐴!(𝑡)𝑒!(!! ! !!!,!) +𝑚𝐴! 𝑡 𝑒!!!(!) 

where A(t) and p(t) are vectors representing the amplitude and the phase of the 

sources, respectively. In analogy to volume conduction, the source data is linearly mixed 

by the parameter m. This value is determined from the empirical data as the 

multiplication of the filter matrix Fx,f with the leadfield Ly (the resolution matrix) projected 

onto the first principal dipole direction P1 at x. 

𝑚(𝑓)!,! = 𝐹!,!𝐿!𝑃1! 

For every connection, we computed the model in both directions. We averaged the two 

directions, x on y and y on x, in the final correlation matrices. sx,y is the phase shift 

between the sources. Unfortunately, due to effect of volume conduction, the phase shift 

between two signals cannot be directly estimated from the empirical data. Our aim was 

to reliably estimates the patterns of the spurious amplitude-coupling rather than its 

absolute value. Therefore, we assumed a constant phase shift of 90 º for all 

connections. At 90 º, the absolute value of the spuriously induced amplitude coupling is 

maximal (Palva et al., 2018). As control analyses, we repeated the simulations for phase 

shifts of 45 º and 22.5 º. 

We determined the amplitude A(t) vectors as follows: 

𝐴! 𝑡 = |𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 | 

𝐴! 𝑡 = |𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 | 

where n1(t) and n2(t) are vectors of normally distributed random numbers with data 

length of 300 s, a pink spectrum and a sampling frequency of 400 Hz approximately 

matching the original data (Larson-Prior et al., 2013). The ||	 operator refers to the 

modulus. cA denotes the ground truth amplitude coupling between the sources x and y 

and was set to 0. The function F is the complex wavelet transformation of the vectors at 
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the frequency of interest. The wavelet transformation parameters matched our analysis 

of the empirical data (see above). Analogously, we generated the phase p(t) vectors: 

𝑝! 𝑡 = 𝑎𝑛𝑔𝑙𝑒(𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 ) 

𝑝! 𝑡 = 𝑎𝑛𝑔𝑙𝑒(𝐹 𝑛! 𝑡 + 𝑐!𝑛! 𝑡 ) 

where n3(t) and n4(t) are again 300 s vectors of normally distributed random numbers 

with a pink spectrum at a sampling frequency of 400 Hz. All 4 n-vectors were drawn 

anew for every connection. cp denotes the ground truth phase-coupling and was set to 

the empirical weighted phase lag index for every connection, frequency and subject. 

Finally, we computed the amplitude coupling of the orthogonalized signals x and y (see 

above) to quantify the strength of amplitude coupling (ACspur) that would be expected 

given the empirical parameter and no ground truth amplitude coupling (ca = 0). We 

computed the full correlation matrices for every subject and frequency. We used these 

matrices to investigate the similarity of spatial patterns derived from the simulations 

(ACspur) and the empirically measured amplitude coupling (ACmeas). Importantly, the 

magnitude of a single ACspur connection is not informative, because it depends on the 

empirical phase shift, which is unknown. Thus, under the assumption of a constant 

phase shift, we correlated the spatial patterns PACspur of spurious amplitude coupling with 

the spatial patterns of empirically measured amplitude coupling PACmeas, which discounts 

magnitude offsets and scaling. 

4.7 Reliability estimation 

To compare the reliability, i.e. reproducibility, of functional connectivity measures, we 

correlated the seed patterns within (Fig. 3) and between subjects (Fig. 3, 4 & 7). We 

correlated each column in the correlation matrices pairwise, either between subjects 

(between-subjects reliability relbs) or between recording runs (within-subject reliability	

relws).  
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𝑟𝑒𝑙!",!!,!!,!!,!!,! = 𝑐𝑜𝑟𝑟(𝑃!!,!!,! ,𝑃!!,!!,!) 

𝑟𝑒𝑙!",!!,!!,!!,!!,! = 𝑐𝑜𝑟𝑟(𝑃!!,!!,! ,𝑃!!,!!,!) 

where M1	 and	 M2 denote the different connectivity measures (ACspur, ACmeas, or PC). A 

pattern P describes the connectivity of a given seed with the rest of the source-model, 

i.e. one column of the full correlation matrix. M1	 and	 M2 can be the same (within 

measure) or different (between measure) for the between subject reliability relbs. s1	and	

S2 denote the subjects involved in the computation, where s1	≠	 s2 for the between 

subject reliability relbs. For the within subject reliability, we average the three 

comparisons (r1 with r2, r1 with r3, r2 with r3, r denotes the run) within a subject. For the 

between-subject reliability, we first averaged the correlation matrices acquired in the 

three runs of each subject before correlating between subjects. All reliabilities were 

independently computed as a function of frequency f. We averaged reliabilities across all 

subject-wise comparisons. 

Only reliable signals can be correlated and attenuation correction can only be applied to 

reliable signals. Therefore, we statistically tested for reliabilities larger than zero (one-

sided t-test, df = 94 (n = 95), FDR correction, see below) and excluded connections with 

non-significant reliability. 

4.8 Pattern similarity, inter-measure correlation and attenuation correction 

We correlated the correlation patterns between different metrics, i.e. ACspur vs. ACmeas, 

ACspur vs. PC, ACmeas vs. PC:  

𝑖𝑐!"#$%&,!"#$%&,!,!!,!!,! = 𝑐𝑜𝑟𝑟(𝑃!"#$%&,!,!!,! ,𝑃!"#$%&,!,!!,!) 

𝑖𝑐!"#$%&,!",!,!!,!!,! = 𝑐𝑜𝑟𝑟 𝑃!"#$%&,!,!!,! ,𝑃!",!,!!,!  

𝑖𝑐!",!"#$%&,!,!!,!!,! = 𝑐𝑜𝑟𝑟(𝑃!",!,!!,! ,𝑃!"#$%&,!,!!,!) 

The inter-measure correlation ic between two metrics is defined as the Pearson 

correlation (corr) of the seed connectivity-patterns P at seed i	and frequency f computed 
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between different subjects s1	≠	s2. The seed pattern P is defined as the connectivity of a 

given seed with the remaining 456 source points, i.e. one column in the full correlation 

matrix. We computed the inter-measure correlations ic for all 8930 unique subject 

pairings (952-95), 457 connectivity patterns, 3 metric combinations, and 29 frequencies.  

The measured inter-measure correlations do not only reflect the true underlying similarity 

of patterns but also the reliability with which these patterns are estimated. Measured 

correlation decreases with decreasing pattern reliability even if the true underlying 

pattern correlation remains identical (Supplementary Fig. 1, dashed lines). This effect of 

reliability is known as attenuated correlations (Spearman, 1904). Following Spearman 

(1904), we corrected for this attenuation and normalized the mean inter-measure 

correlation icM1,M2 by the pooled reliabilities within the measures relM1 & relM2.  

𝑖𝑐!!,!!,!,! = 𝑍!!(𝑚𝑒𝑎𝑛! 𝑍 𝑖𝑐!!,!!,!,!!,!!,! ) 

𝑟𝑒𝑙!!,!,! = 𝑍!!(𝑚𝑒𝑎𝑛! 𝑍 𝑟𝑒𝑙!",!!,!!,!!,! ) 

𝑟𝑒𝑙!!,!,! = 𝑍!!(𝑚𝑒𝑎𝑛! 𝑍 𝑟𝑒𝑙!",!!,!!,!!,! ) 

where the mean inter-measure correlation ic for different metric combinations M1/M2	 is 

defined as the mean over all possible subject combinations s with s1	≠	 s2. The same 

averaging is done for the reliabilities within the measures M1 and M2. The function Z 

denotes the Fisher Z-transformation and Z-1 the inverse transformation: 

𝐹𝑖𝑠ℎ𝑒𝑟!𝑠 𝑍 =
1
2
ln

1 + 𝑟
1 − 𝑟

= atan (𝑟)	

𝐹𝑖𝑠ℎ𝑒𝑟!𝑠 𝑍!! = 𝑟 =
𝑒!! − 1
𝑒!! + 1

= tan (𝑍)	

Here, ln describes the natural logarithm, atan the arcus tangent, tan the tangent, e 

Euler’s number and r is the correlation coefficient. Finally, the attenuation corrected 

inter-measure correlation icc is defined as: 
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𝑖𝑐𝑐!!,!!,!,! =
𝑖𝑐!!,!!,!,!

𝑟𝑒𝑙!!,!,! 𝑟𝑒𝑙!!,!,!

 

4.9 Simulation of attenuation corrected correlations 

The attenuation corrected inter-measure correlation is unbiased. I.e., independent of the 

reliability, with which two patterns are measured, their expected attenuation corrected 

correlation is the true underlying correlation of these patterns. This is well illustrated by 

simulations (Fig S1). We simulated two connectivity patterns by drawing (n = 45) from a 

normal distribution and applying the inverse Fisher’s Z transformation. We controlled the 

correlation between the two patterns at r = 1 and r = 0.3 as follows: We applied the 

Cholesky factorization chol to the full desired correlation matrix R of the two patterns Pi 

and multiplied the patterns by the resulting matrix: 

𝑅!.! =
1 0.3
0.3 1  

𝑃!.!,! = 𝑃! ∗ 𝑐ℎ𝑜𝑙(𝑅!.!) 

We only used simulated patterns for which |rP1,P2 - r| < 0.05. We replicated the patterns 

for n = 95 subjects and added inverse Fisher’s Z-transformed normally distributed noise 

independently to every subjects patterns with varying signal-to noise ratios: 0.5, 1, 2. 

Then, we computed the inter-measure correlation between patterns and the attenuation 

corrected correlation patterns and repeat the simulation 10,000 times for every SNR. 

The results are shown in Supplementary Fig. 1. 

4.10 Statistical testing of attenuation corrected correlations 

A perfect attenuation corrected correlation (icc	=	1) indicates that two cortical patterns are 

identical if there was perfect reliability. A value smaller than 1 indicates that there is a 

difference between the two patterns that cannot be explained by reduced reliability. For 

statistical testing of icc against 1, we applied leave-one-out Jackknifing and computed icc 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/485599doi: bioRxiv preprint 

https://doi.org/10.1101/485599
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 33 

pseudo-values for each subject, source and frequency. We tested the generated 

pseudo-value distributions for normality using the Kolmogorov-Smirnov test. We 

performed one-sided t-tests against 1 when appropriate. We corrected the resulting p-

values with false-discovery rate correction within each frequency (Benjamini and 

Hochberg, 1995). 

Notably, statistical testing re-introduces the confound of reliability. While the mean 

pseudo-values of attenuation corrected correlations are independent of reliability, their 

variability across subjects increases with decreasing reliability (see also Fig. S1). This 

confound needs to be taken into account when interpreting the statistical significance.  

4.11 Quantifying the difference between spurious amplitude-coupling, genuine 

amplitude-coupling and phase-coupling patterns 

We addressed two major questions: First, are there measured amplitude-coupling 

patterns that cannot be explained by the spurious amplitude-coupling patterns due to 

phase-coupling? The statistical Null hypothesis for this question is: iccACspur,ACmeas	=	1. I.e., 

the Null-hypothesis is that that the measured and the spurious amplitude-coupling 

patterns are identical if reliabilities are taken into account. We addressed this question 

with the methods presented above (Section 4.8 & 4.10). That part of measured 

amplitude-coupling that cannot be explained by spurious amplitude-coupling we refer to 

as genuine amplitude coupling (ACgen). Thus, the quality of the estimated genuine 

amplitude-coupling depends on the quality of the simulations employed to estimate 

ACspur. 

The second question was: If there is genuine amplitude coupling, is this amplitude 

coupling distinct from phase coupling? The statistical Null hypothesis for this question is: 

iccACgen,PC	=	1. I.e., the Null-hypothesis is that that the genuine amplitude-coupling patterns 

and phase-coupling patterns are identical if reliabilities are taken into account. However, 
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it is impossible to compute iccACgen,PC	because the genuine amplitude coupling patterns 

PACgen cannot be directly assessed. Yet, it is still possible to test the Null-hypothesis using 

a geometric heuristic: We conceptualized all connectivity patterns P as vectors in a high-

dimensional space (Fig. 6), where vector co-linearity describes the correlation of 

patterns. Under the Null hypothesis, the genuine amplitude coupling and phase-coupling 

patterns are correlated, i.e. PACgen and PPC are co-linear. We assume that the measured 

amplitude coupling is a summation of the genuine and the spurious amplitude coupling. 

Thus, under the Null-hypothesis, PACmeas lies in the hyper-area between PACspur and PPC. We 

can now explicate the alternative hypothesis using the co-linearity of these vectors, i.e. 

their correlation, and the hyper-area between PACspur and PPC: Under condition 1, the 

correlation between PACspur and PPC is larger than the correlation between PACmeas and PPC. 

Under condition 2, the correlation between PACspur and PPC is larger than the correlation 

between PACmeas and PACspur (Fig. 6C). If one of these two conditions is fulfilled, we reject 

the Null-hypothesis. Importantly, we used the attenuation corrected correlations 

iccACspur,PC,,	iccACmeas,PC		and iccACmeas,ACspur	  to test conditions 1 and 2. Thus, the tests are not 

confounded by pattern reliabilities. We applied leave-one-out Jackknifing to compute 

three single-subject pseudo-values per source and frequency and performed one-sided 

paired t-tests to identify sources that fulfill at least one of the two conditions:  

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1:  icc!"#$%&,!"!"#$%&,!!" −  icc!!"#$%&,!!"  >  0 

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2:  icc!!"#$%&,!!" −  icc!!"#$%&,!!"#$%&  >  0 

icc!!"#$%&,!!",	icc!!"#$%&,!!", and	icc!!"#$%&,!!"#$%& 	refer to the pseudo-value distributions of 

the correlations at each source and frequency. We conducted a Kolmogorov-Smirnov 

test of normality on the distributions across subjects and conducted a one-sided 

Student’s t-test against zero. We use FDR-correction (p < 0.025 corrected) within each 

frequency to define significance. 
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4.11 Clustering of attenuation corrected patterns 

To assess a possible frequency specificity of attenuation corrected similarity between 

measured and spurious amplitude-coupling patterns, i.e. PACspur and PACmeas, we clustered 

the similarity patterns using Gaussian mixed modeling (compare Fig. 5B). This analysis 

assessed if the differences between the PACspur and PACmeas coupling patterns, i.e. 

iccACspur,ACmeas, are frequency specific. We clustered the frequency specific patterns of 

similarity using 1 to 8 Gaussians in each model and evaluated the trade-off between 

explanatory power and complexity of each model with the Bayesian information criterion 

(BIC). This analysis yielded an optimal model complexity of 4. 

We visualized the clustering results in two ways: First, a cross-frequency correlation of 

iccACspur,ACmeas,f patterns between all frequency pairs (Fig. 5C). This yielded a frequency-

by-frequency correlation between patterns. Second, we used multidimensional scaling 

(MDS) to represent the patterns in two dimensions (Fig. 5D). We employed MDS based 

on the pairwise Euclidean distance between all iccACspur,ACmeas,f patterns.  
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