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Abstract
Metabolic Control Analysis defines the relationships between the

change in activity of an enzyme and the resulting impacts on metabolic
fluxes and metabolite concentrations at steady state. In many biotech-
nological applications of metabolic engineering, however, the goal is
to alter the product yield. In this case, although metabolism may
be at a pseudo–steady state, the amount of biomass catalysing the
metabolism can be growing exponentially. Here, expressions are de-
rived that relate the change in activity of an enzyme and its flux con-
trol coefficient to the change in yield from an exponentially growing
system. Conversely, the expressions allow estimation of an enzyme’s
flux control coefficient over the pathway generating the product from
measurements of the changes in enzyme activity and yield.

1 Introduction

Metabolic Control Analysis (MCA) (Kacser and Burns; 1973; Heinrich and
Rapoport; 1974; Fell; 1997) was developed as a theory to underpin under-
standing of metabolic control and regulation. For metabolic pathways at
steady state, it characterizes the relationships between an alteration of en-
zyme activity, however caused, and the resulting effects on metabolic fluxes
and metabolite concentrations. It has also been extended to certain time–
dependent phenomena including transitions to a new steady state after a
perturbation (e.g. Acerenza et al.; 1989; Meléndez-Hevia et al.; 1990). In
terms of application to metabolic engineering, a limitation of the theory is
that it is a logarithmic approximation close to the steady state, and loses
accuracy for the large changes in activity induced by over–expression of
enzymes since the control coefficients defined in MCA themselves vary as
enzyme activities change. However, in many of the cases studied experi-
mentally, the value of the flux control coefficient varies as an approximate
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hyperbolic function of the enzyme activity; see Kacser and Burns (1973) and
Fell (1997) for examples. In such cases, Small and Kacser (1993a,b) derived
relationships relating large changes in enzyme activity and the correspond-
ing changes in flux to the values of the conventional flux control coefficients
in the original and perturbed states.

Though the finite change relationships of Small and Kacser (1993a) com-
bined with a knowledge of flux control coefficients can be used to design
metabolic engineering applications, the desired goal is generally not just to
obtain better flux to the target product but to obtain an increase in yield at
the end of the process. In many cases, such as batch fermentations of micro-
bial cells or the filling of seed embryos of brassicas with oil, the metabol-
ically active biomass is increasing exponentially throughout the process,
and though metabolism remains in a pseudo-steady state, the yield is a
time–dependent process and is not directly predicted by the finite change
relationships. Here I develop the equations to describe how engineering an
altered enzyme activity affects the yield and the relationship with the flux
control coefficient.

2 Basic functions and definitions

Exponential growth is defined by the differential equation for the rate of
growth:

dM
dt

= kM (1)

where k is the rate constant and M is the amount (or concentration) of
biomass, or of a product produced in constant proportion to the biomass
in the exponential growth phase. For incorporation into Metabolic Control
Analysis, we note that dM/dt is termed a flux, J, in that context.

The aim of the derivations below is to extend the explicit equations that
describe the impacct of altering an enzyme’s activity on fluxes and concen-
trations of a biochemical system at steady state to the case where the system
is growing exponentially.

A central concern of MCA is to provide an explicit analysis of the impact
of changing an enzyme’s activity, such as with a specific inhibitor or by
altering its expression level, on the steady state values of variables of the
system, such as the metabolic fluxes J. The measure used for this is the flux
control coefficient, defined as:

CJ
E =

∂ ln J
∂ ln E

(2)

where E is the amount or activity of the chosen enzyme E. The logarithmic
formulation implies that CJ

E is normalised so that it indicates the fractional
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change in J for the fractional change in E (or popularly, the percentage
change in J for a 1% change in E).

Since J = kM, for any given value of M we can write:

∂J
∂E

= M
∂k
∂E

Multiplying both sides by E/J and substituting for J on the RHS by kM
gives:

∂ ln J
∂ ln E

=
∂ ln k
∂ ln E

= CJ
E (3)

In other words, as might have been expected, the control coefficient de-
scribing the effect of E on the rate constant k, Ck

E, is identical to the flux
control coefficient.

Finally, note that the definition of the flux control coefficient can be ex-
tended to characterise the effect of a change in enzyme activity on any vari-
able V of the metabolic system at steady state as CV

E .

3 Reponse of a growing system as a function of time

The solution of Eqn. 1 is:
Mt = M0 ekt (4)

where M = M0 at t = 0. Here we want to determine the response of M1 to
a change in activity of a specific enzyme E from a constant starting state of
the system M0. Differentiating with respect to E gives:

∂Mt

∂E
= M0 ekt ∂kt

∂E
= M0t ekt ∂k

∂E

Multiplying by E/k and substituting Mt for M0 ekt gives:

1
k

∂Mt

∂ ln E
= Mtt

∂ ln k
∂ ln E

.

Rearranging gives the final expression for the response RM1
E :

RMt
E =

∂ ln Mt

∂ ln E
= kt

∂ ln k
∂ ln E

= kt Ck
E = kt CJ

E. (5)

This shows that the response of the perturbed system increasingly diverges
from the reference as a function of time, and amplifies the effect of CJ

E for
values of kt > 1. Equivalently, this response coefficient is a measure of the
divergence between the value of Mt in the unperturbed system (Mt,E) and
the perturbed one (Mt,E+δE), both of which are a function of time.
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The actual value of Mt,E+δE after a perturbation of enzyme activity δ E/E
is obtained by first using the response function to compute the resulting
δ ln Mt:

δ ln Mt = RMt
E

δE
E

= kt CJ
E

δ E
E

.

Adding this to the expression for ln Mt from the logarithmic form of Eqn.
4 gives:

ln Mt,E+δE = ln Mt,E + kt CJ
E

δE
E

= ln M0 + kt + kt CJ
E

δE
E

. (6)

Collecting terms and reverting to exponential format gives:

Mt,E+δE = M0 exp
(
kt(1 + CJ

E
δE
E
)
)
. (7)

Also from Eqn. 6, the relative increase mr in Mt, is:

mr =
Mt,E+δE

Mt,E
= exp

(
kt CJ

E
δE
E
)
. (8)

If the doubling time of the system is td, then ktd = ln(2) = 0.693 and so the
expression for the yield after n doubling times is:

Mt,E+δE = M0 exp
(
0.693n(1 + CJ

E
δE
E
)
)
. (9)

4 Alternative derivation

The expression for the perturbed value of Mt,E+δE can also be obtained
more directly without passing via the response coefficient. From Eqn. 3,
we can write that the change in E produces a change in the rate constant k
given by:

δk
k

= CJ
E

δE
E

or
δk = kCJ

E
δE
E

.

The new value of k + δk can be substituted directly in Eqn. 4 to give Eqn. 7.

5 Response to substantial over–expression of an en-
zyme

The expressions derived above are, as is generally the case for MCA, only
strictly valid for small perturbations about the steady state. Typically, ex-
periments on the effects of over–expression of an enzyme involve substan-
tial changes brought about by insertion of additional copies of the gene
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for the enzyme and/or changing its promoter to drive higher levels of ex-
pression. As noted in the Introduction, although there is no general an-
alytical theory that allows exact calculation of the consequences of such
experiments on metabolic fluxes, the consequences of substantial degrees
of over–expression can calculated with the finite difference formula de-
rived by Small and Kacser (1993a,b). This states that if an enzyme is over–
expressed to r times its original activity, the relative increase in flux f will
be given by:

f =
1

1− r−1
r CJ

E

, (10)

where CJ
E is the control coefficient at the original enzyme level.

In the terminology of this paper, for a finite change in E of ∆E, r =
(E + ∆E)/E, and the resulting change in rate constant is (k + ∆k)/k = f .
Substituting f k for k in Eqn. 4 gives:

Mt,E+∆E = M0 exp( f kt). (11)

The equation corresponding to Eqn. 8 becomes:

mr =
Mt,E+∆E

Mt,E
= exp

(
kt ( f − 1)

)
. (12)

The value of mr represents the relative increase in yield of product given
the flux change f induced by over–expression of the enzyme. Note that
although f is a constant factor of increase in the flux between the control
and modified fluxes, the change in yield increases with time, and the com-
bination of Eqns. 10 and 12 allow prediction of the effect on yield of over–
expressing an enzyme of known flux control coefficient.

Conversely, given measured values for M0 and Mt,E, the value of kt can
be calculated from Eqn. 1, and then, given Mt,E+∆E, f can be obtained from
either of the two preceding equations. Finally, if the ratio r of the enzyme
activities in the control and over-expressed lines has been measured, rear-
rangement of Eqn. 10 gives the value of the enzyme’s control coefficient in
the control:

CJ
E =

( f − 1)
f

.
r

(r− 1)
. (13)

Since Eqn. 10 applies equally to enzyme attenuation, the over-expressed
state can be regarded as the reference, with r′ = 1/r and f ′ = 1/ f . Substi-
tuting these values in Eqn. 13 gives:

CJ
E+∆E =

f − 1
r− 1

. (14)

These two equations permit the estimation of an enzyme’s flux control co-
efficient from experiments where the system is expanding exponentially
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and the product yields have been measured at two points along the time
course without direct determination of the metabolic flux.

6 Examples

The potential significant impact of exponential growth on the yield from
an engineered organism can be illustrated by plotting the above functions.
Fig. 1 illustrates the continuous growth of the relative yield with the length
of the exponential phase. By two doubling times, the yield change is al-
ready greater than the flux change induced by enzyme over-expression.
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Figure 1: Relative increase in yield by over-expression.
Curves are calculated for a two-fold over–expression of enzymes with flux
control coefficients of 0.15 (green), 0.3 (blue) and 0.45 (magenta). The cor-
responding relative increases in flux are: 1.08, 1.18 and 1.29 respectively.

However, as with the effect of enzyme over–expression on flux, the
effect on yield becomes less marked as the degree of over–expression in-
creases, as illustrated in Fig. 2, suggesting that it will not usually be worth-
while to pursue very high degrees of enzyme amplification.
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Figure 2: Changes in yield and flux for differenet degrees of over–
expression
Relative changes in flux (dashed lines) and yield at 4 doubling times (solid
lines) are shown for variable degrees of over-expression of enzymes with
flux control coefficients of 0.1 (green) and 0.3 (blue).

7 Conclusions

This work has aimed to utilise insights from MCA to applications in metabolic
engineering. It builds on the earlier work by Small and Kacser (1993a,b)
that related the effects of large changes in enzyme expression on the re-
sulting metabolic flux and extends it to the effects on product yield. The
simplest instance of this will be where the desired product is itself biomass
or a biomass constituent. However, it will also be relevant to products that
are formed in proportion to the biomass (so that the flux to product per
unit biomass remains constant throughout the exponential growth phase).
A potential limitation is that it may be unrealistic to expect to manipulate a
higher flux to product without a negative impact on the underlying growth
rate. This may be possible if the increase in desired product is obtained at
the expense of an unwanted by–product rather than of biomass. However,
if the increase in flux to product does impact on growth rate or length of the
exponential phase, it would be trivial to modify the expressions above to
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use a different kt term for the control and engineered cases, and determine
the resulting trade–off between flux to product and growth on the overall
yield.
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