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Abstract 9 

The World Health Organization considers an Ebola outbreak to have ended once 42 days have 10 

passed since the last possible exposure to a confirmed case. Benefits of a quick end-of-outbreak 11 

declaration, such as reductions in trade/travel restrictions, must be balanced against the chance of 12 

flare-ups from undetected residual cases. We show how epidemiological modelling can be used 13 

to estimate the surveillance level required for decision-makers to be confident that an outbreak is 14 

over. Results from a simple model characterising an Ebola outbreak suggest that a surveillance 15 

sensitivity (i.e. case reporting percentage) of 79% is necessary for 95% confidence that an 16 

outbreak is over after 42 days without symptomatic cases. With weaker surveillance, 17 

unrecognised transmission may still occur: if the surveillance sensitivity is only 40%, then 62 18 

days must be waited for 95% certainty.  By quantifying the certainty in end-of-outbreak 19 

declarations, public health decision-makers can plan and communicate more effectively.   20 
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 25 

Main Text 26 

Introduction 27 

The 2018 Ebola outbreak in Equateur Province, Democratic Republic of the Congo (DRC), was 28 

brought under control following 54 cases between 5th April and 2nd June (1). Another 29 

unconnected outbreak was declared in DRC on 1st August 2018, and that outbreak is still in 30 

progress. It is about to become the second largest in history, with 421 probable and confirmed 31 

cases as of 26th November 2018 (2). Increasingly, decision-makers use forecasts generated using 32 

mathematical models to guide control measures when outbreaks are ongoing (3,4). However, less 33 

attention has been directed towards using mathematical modelling to inform decision-making at 34 

the ends of outbreaks (5).  35 

 36 

Determining when an outbreak of any infectious disease is over is important for decision-makers, 37 

as they need to choose when to relax control measures, scale-back the deployment of personnel 38 

and resources, adjust communication messages to the public, and re-establish confidence in 39 

commercial sectors such as agriculture and tourism. However, the difficulty of end-of-outbreak 40 

decision-making was illustrated during the 2013-16 Ebola epidemic, when the World Health 41 

Organization (WHO) declared Liberia disease-free four times only to have new cases detected 42 

after the first three declarations (Fig 1A). This raises an important question: how confident can 43 

public health decision-makers be when declaring an outbreak over?  44 

 45 

The proportion of cases identified by public health authorities through passive or active case 46 

finding, otherwise called the sensitivity of a surveillance system (6,7), is a critical parameter that 47 
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underlies how confident a decision-maker can be when declaring the end to an outbreak (8). The 48 

surveillance sensitivity is the ratio of the number of infectious cases detected to the total number 49 

of cases (including both cases that are detected and those that go unnoticed), and should not be 50 

confused with the sensitivity of a diagnostic test (i.e. the probability that the diagnostic test 51 

correctly identifies an infected host). Intuitively, there will be a lower confidence that an 52 

outbreak is over if the surveillance system has low sensitivity. However, decision-makers do not 53 

typically make quantitative assessments about the confidence in their end-of-outbreak decisions. 54 

A retrospective modelling study of the MERS-CoV outbreak in South Korea in 2015 concluded 55 

that, with no quantitative end-of-outbreak assessment, decision-makers took longer than 56 

epidemiologically necessary to declare the outbreak over (9), although we note that the 57 

sensitivity of the surveillance system was assumed to be 100% in that study. 58 

 59 

To illustrate how the confidence that an outbreak is over can be estimated, and that the 60 

confidence level can be increased by improving surveillance, we consider the situation of 61 

declaring the end of an Ebola outbreak. The WHO considers an Ebola outbreak to be over once 62 

42 days have passed since the last possible exposure to a confirmed case without any new cases 63 

being detected (10), with this rule most often deployed at the scale of a single country. The 64 

incubation period (the time between an individual becoming infected and displaying 65 

recognisable symptoms) for Ebola has been estimated to be in the range of 2-21 days (11), and so 66 

the period of 42 days is based on two maximal incubation periods. For a disease that is 67 

transmitted directly from person-to-person, the passing of two incubation periods is 68 

epidemiologically relevant because additional between-person transmission is then unlikely. We 69 

use mathematical modelling to show that, if the surveillance sensitivity is 100%, then it is likely 70 
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that an Ebola outbreak is over after 42 days without symptomatic cases. However, we also 71 

demonstrate that, if the surveillance sensitivity is lower, there is an increased chance of 72 

undetected infected cases remaining after 42 days. This leads to a lower confidence that the 73 

outbreak is over after this time period. 74 

 75 

Although we focus on Ebola virus disease here, we note that the question of whether or not an 76 

infectious disease outbreak is over is not only important for diseases of humans, but also those of 77 

animals and plants. Declaring an outbreak over allows disease management interventions to be 78 

lifted, including restrictions on travel (12) and plant trade quarantine (13). The idea that 79 

improved surveillance may lead to increased confidence in an end-of-outbreak declaration is 80 

related to well-established theory regarding conducting surveys to ascertain the absence of a 81 

pathogen (see e.g. (14-19)). In that context, the more hosts are tested and found to be disease-82 

free, the higher the confidence that the entire population is disease-free. This can in turn be used 83 

to generate sample-size requirements to establish freedom from disease to pre-specified 84 

confidence levels. While initial studies in this area – motivated by the desire to limit pathogen 85 

transmission via the animal trade – assumed that the level of disease in the host population was 86 

static, more recent elaborations have included incorporation of dynamic models describing 87 

parasite/pathogen transmission in the host population (see e.g. (20,21)). Statistical disease 88 

freedom studies have not only been applied to animal disease epidemics, but the theory has also 89 

been used in the context of epidemics in populations of plants (22, 23) and humans (24). 90 

 91 

In this paper, rather than considering surveys of the host population at the apparent end of an 92 

outbreak, we show how the confidence in end-of-outbreak assessments can be estimated using 93 
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epidemiological models once the surveillance system sensitivity has been approximated. Our 94 

approach, which can be used when the outbreak in question is still ongoing, provides decision-95 

makers with a practical way to gauge whether current surveillance efforts will be sufficient to 96 

declare the outbreak over with conviction, or whether an intensification of surveillance is 97 

necessary instead. 98 

 99 

Methods 100 

We extended an epidemiological model commonly used for Ebola (the SEIR model, see e.g. 101 

(25,26)) to include imperfect surveillance (Fig 1B). In the resulting model (the SEICR model) 102 

individuals were classified according to whether they were (S)usceptible, (E)xposed, (I)nfectious 103 

and reporting disease, (C)ryptically infectious (i.e. infectious but not reporting disease), or 104 

(R)emoved. The parameters of the model and the baseline values used in our analyses to 105 

illustrate the model behaviour are given in Table 1, although we also tested the robustness of our 106 

results to these values (Fig S1). We ran stochastic simulations of the model, thereby including 107 

randomness in whether or not each outbreak was over when the number of symptomatic 108 

individuals (I) reached zero (for additional details, see the Supplementary Material). 109 

 110 

The surveillance sensitivity was implemented in the model via the proportion, d, of infectious 111 

individuals that reported disease (I) as opposed to remained cryptically infectious (C). When an 112 

individual left the exposed class, they either transitioned into the I class (with probability d) or 113 

into the C class (with probability 1 – d). The parameter d represents a proportion/probability and 114 

therefore lies between zero and one, whereas the surveillance sensitivity is reported as a 115 

percentage. As an example, the value d = 0.1 corresponds to a surveillance sensitivity of 10%. 116 
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For simplicity, we assumed that whether or not an infectious individual reported disease did not 117 

alter their infectiousness or duration of infection, although this simplification could be relaxed 118 

straightforwardly. As described above, the cryptically infectious class represents individuals that 119 

are infectious but do not report disease – this could include asymptomatic carriers that are 120 

infectious (27) or symptomatic individuals not reporting for reasons including a lack of access to 121 

healthcare (8). 122 

 123 

By continuing to run simulations after the number of symptomatic infectious individuals (I) 124 

reached zero, the confidence that an outbreak will be over, defined as the probability that no 125 

undetected infected hosts (E or C) remained in the population, was estimated at different time 126 

periods beyond the removal of the last detected case. 127 

 128 

Results 129 

We inferred the expected number of undetected infected cases once the number of symptomatic 130 

cases reached zero (Fig 1C), considering only outbreaks that successfully invaded the host 131 

population (outbreaks in which more than 20 individuals were ever infected). We estimated the 132 

confidence that the outbreak is over for different time periods beyond the removal of the last 133 

detected case (Fig 1D). For additional results with different model parameters, see the 134 

Supplementary Material. 135 

 136 

Since a period of 42 days has been estimated as twice the maximal incubation period for Ebola, it 137 

is unsurprising that, when the sensitivity of the surveillance system was perfect so that 100% of 138 

infectious cases were detected accurately, the model suggested a high confidence (more than 139 
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97%) that an Ebola outbreak is over after 42 days without symptomatic cases. Additional new 140 

cases could only occur if existing infected individuals remained pre-symptomatic, and this was 141 

very unlikely after this time period. However, when we assumed that the surveillance sensitivity 142 

was only 40%, an estimate made for Ebola surveillance in Liberia (28), the probability that Ebola 143 

cases remained in the population was 16%, leading to only an 84% confidence that the outbreak 144 

was finished (red line in Fig 1D). With such a low surveillance sensitivity, a period of 62 days 145 

with no cases would need to elapse to be 95% confident that an outbreak is over (light green line 146 

in Fig 1D), or 88 days to be 99% confident (dark green line in Fig 1D).  147 

 148 

Most Ebola cases in outbreak areas are reported via infected individuals presenting to a health 149 

facility or Ebola Treatment Unit. Close contacts of confirmed cases are also identified and 150 

usually followed for 21 days, to permit rapid identification if symptoms develop (29). Other case 151 

finding strategies may take place, for example visitations to identify and test suspect cases in 152 

disease hotspot regions or in rural areas where access to healthcare systems might be limited 153 

(30). Since surveillance can potentially be improved, for example by intensifying active case 154 

finding, the quantity of most practical value is the sensitivity of surveillance required for 155 

decision-makers to be confident that Ebola outbreaks are over after 42 days. We therefore 156 

considered the end-of-outbreak confidence for varying levels of the surveillance sensitivity (Fig 157 

1E). To be at least 95% confident that an Ebola outbreak is over after 42 days, surveillance 158 

needed to be at least 79% sensitive (light green line in Fig 1E). For lower surveillance levels, 159 

there is a significant chance (> 5%) of residual infectious cases remaining in the population, and 160 

these might generate outbreak flare-ups. 161 

 162 
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Discussion 163 

We have proposed an approach for decision-makers to estimate their confidence that an Ebola 164 

outbreak is over after 42 days (two maximal incubation periods) have passed with no new cases. 165 

In scenarios with a low surveillance sensitivity, decision-makers may either choose to wait 166 

longer than two incubation periods before declaring the end of an outbreak, take measures to 167 

increase the surveillance sensitivity, or adopt both of these approaches. Communicating that an 168 

outbreak is over following two incubation periods is epidemiologically coherent when the 169 

surveillance level is high, and so decision-makers may prefer to focus efforts on achieving a high 170 

surveillance sensitivity rather than adjusting the guideline period before declaring the end of an 171 

outbreak. However, in contexts that prevent strengthening of disease surveillance, for example if 172 

there is poor security due to armed conflict or other factors, extending the period with no cases 173 

before declaring an outbreak over may be the more pragmatic option. 174 

 175 

Sensitivity measurements are sometimes carried out for evaluation of surveillance systems (31). 176 

Analysis of the percentage of cases being recorded can be conducted using serological surveys 177 

(32) or by comparing multiple data sources (33). When an outbreak is ongoing, however, 178 

measuring the surveillance sensitivity might not be the first priority. For assessing the confidence 179 

in a potential end-of-outbreak declaration, it is most important to measure the surveillance 180 

sensitivity towards the apparent end of the outbreak, and so resources can be directed to this task 181 

after the acute outbreak period has passed. In scenarios in which the surveillance sensitivity is 182 

insufficient for declaring an outbreak over with confidence, remedial actions can be taken such 183 

as strengthening case finding for example via contact tracing (34), closer working with 184 
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community leaderships to establish a case finding and reporting network (35), and/or providing 185 

incentives for successful case reporting (36), among other approaches. 186 

 187 

In this paper, we sought to use a simple approach to demonstrate how the confidence in end-of-188 

outbreak declarations could be assessed, and to show that rigorous surveillance is extremely 189 

important. While accurate case reporting will minimise the chance of incorrect declarations that 190 

Ebola outbreaks are over in future, we note that surveillance during the outbreak alone is not 191 

always sufficient. In the 2013-16 Ebola epidemic in West Africa, additional cases occurred after 192 

regions were declared disease-free due to factors including persistently infected sources (37) and 193 

importation of the virus from other geographical regions (38).  There were suspicions of a flare-194 

up arising from a female survivor, who became infectious after her immune system was 195 

weakened due to pregnancy (39), although this remains unproven (40). There is also evidence 196 

that Ebola survivors might have the potential to drive new cases after long periods following 197 

apparent recovery (41), for example reports of the virus being detected in semen up to 18 months 198 

after symptom onset or isolated in cell culture up to 82 days after symptom onset (42,43). Here, 199 

we only considered potential flare-ups due to unreported cases, and did not explicitly model the 200 

possibility that Ebola survivors, who were assumed to have fully recovered, might drive 201 

additional cases. Recrudescence from survivors could, in theory, be included in assessments of 202 

the risk of outbreak flare-ups after outbreaks are declared over, however this would require 203 

sufficient understanding of the epidemiology of these rare events. While this understanding is 204 

developed, targeted monitoring of survivors beyond the WHO guideline period of 42 days that 205 

we consider here is also important.  This should be supplemented with advice for survivors on 206 

safe practices that will help to avoid additional flare-ups (44). 207 
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 208 

Extending our approach to other disease outbreaks might require elaborations to the underlying 209 

model.  To illustrate the principle that the surveillance sensitivity affects the confidence in end-210 

of-outbreak declarations, we modelled surveillance as simply as possible – by assuming that a 211 

proportion of infectious hosts report disease, but that reporting did not impact on the underlying 212 

transmission process. In practice, individuals that report disease are more likely to be subject to 213 

interventions that reduce infectiousness or shorten their infectious period, such as isolation or 214 

treatment. This could straightforwardly be built into the framework that we have presented. We 215 

also use a single parameter to denote the surveillance sensitivity, whereas in practice a 216 

surveillance program is likely to encompass many aspects, including both passive and active case 217 

finding strategies, that could be built explicitly into an epidemiological model. One of the 218 

benefits of our approach is that, in contrast to methods relying on surveys to prove disease 219 

absence, our analysis can be conducted in advance of the apparent end of the outbreak to see 220 

whether or not surveillance needs to be intensified. However, it might be possible to combine our 221 

approach with surveys to establish the end of an outbreak, and to make use of statistical methods 222 

for estimating the number of hosts to survey so that the probability of the population being 223 

disease-free exceeds a pre-specified threshold (14-24). 224 

 225 

Other extensions could include modelling the risk of importation of disease from other 226 

geographical locations (13), accounting for temporal or spatial variation in the surveillance 227 

sensitivity (8), or allowing for the possibility of introductions of immunologically naïve hosts 228 

resulting from population displacement (45).  Additional refinement would be needed to estimate 229 

the confidence in end-of-outbreak declarations when diseases that persist at low endemic levels 230 
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in a population have returned below an outbreak threshold prevalence, an important 231 

consideration for outbreaks of diseases such as cholera and yellow fever. Nonetheless, we have 232 

demonstrated that measurement of the sensitivity of surveillance can help decision-makers 233 

estimate their confidence that an outbreak has ended.  Moreover, after measuring the 234 

performance of disease surveillance systems, the confidence that an outbreak has ended can be 235 

increased by optimising the surveillance system. 236 

 237 

Communicating the confidence in end-of-outbreak decisions, as our framework permits, is 238 

helpful for decision-makers and the public, and it will increase trust in public health 239 

organisations such as WHO. Measurements of the surveillance sensitivity during outbreaks are 240 

not always routinely taken, but we think that by providing a useful way to use measures of 241 

surveillance system performance, decision-makers will be motivated to implement what should 242 

be considered as good practice. We encourage the use of quantitative approaches, such as the one 243 

we describe here, to inform decisions regarding the continuation of disease control measures, 244 

appropriate use of resources, and communication of public health messages to the public towards 245 

the end of an outbreak. 246 

 247 

Figure caption 248 

Fig. 1. The confidence in end-of-outbreak declarations following the apparent end of an Ebola outbreak. 249 
A) Schematic showing the sequence of events in Liberia at the end of the 2013-16 Ebola epidemic, in 250 
which the outbreak was incorrectly declared over three times. B) Schematic of the compartmental model 251 
used in our analyses. C) The number of hidden cases (E or C) remaining in simulated Ebola outbreaks at 252 
the first timepoint at which the number of symptomatic cases (I) reaches zero. D) The confidence in end-253 
of-outbreak declarations (i.e. the probability that no undetected infections (E or C) remain in the 254 
population), for different time periods after removal of the “final” symptomatic case (blue) at the ends of 255 
major outbreaks (outbreaks in which more than 20 individuals are ever infected). The current WHO 256 
guideline period of 42 days leads to a confidence of 0.84 that the outbreak is over (red), whereas periods 257 
of 62 or 88 days correspond to confidences of 0.95 (light green) and 0.99 (dark green), respectively. E) 258 
The confidence in end-of-outbreak declarations made 42 days after removal of the “final” symptomatic 259 
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case, for different values of the surveillance sensitivity (blue). For an end-of-outbreak confidence of 0.95 260 
after 42 days without symptomatic cases, a surveillance sensitivity of 79% is required (light green). The 261 
results in panels C and D were obtained using 10,000 simulations of the model, and the results in panel E 262 
were obtained using 10,000 simulations of the model for each possible value of the surveillance 263 
sensitivity. 264 

 265 

Table 1 266 

Epidemiological 

parameter 
Meaning 

Baseline value 

(used except where 

stated) 
Justification 

� Infection rate 2.7 � 10
-6

 day
-1 

Chosen such that 

�� � 2 (see e.g. 

(46,47)) 
1 �⁄  Incubation period 12.27 days (48) 
1 	⁄  Infectious period 7.37 days (48) 


 
Effective population 

size 
100,000 

For consistency of 

mean final size of 

simulated epidemics 

with 2013-16 Ebola 

epidemic 

� 
Proportion of 

infectious hosts 

reporting disease 
0.4 (28) 

 267 
Table 1. Epidemiological parameters of the SEICR model, along with the default values used in our analyses (except 268 
where stated in the relevant figure captions) and references supporting the values used. We also tested the robustness 269 
of our results to the values of N, d and � (Fig S1). For more details about the model and its parameterisation, see 270 
Supplementary Material. 271 

 272 

 273 
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