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Abstract. The identification of sub-populations of cells present in a sample, and the comparison of

such sub-populations across samples are among the most frequently performed analyzes of single cell

data. Current tools for these kind of data however fall short in their ability to adequately perform these

tasks. We introduce a novel method, PopCorn (single cell sub-Populations Comparison), allowing for

the identification of sub-populations of cells present within individual experiments while simultane-

ously performing sub-populations mapping across these experiments. PopCorn utilizes several novel

algorithmic solutions enabling the execution of these tasks with unprecedented precision. As such,

PopCorn provides a much needed tool for comparative analysis of populations of single-cells.
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1 Introduction

Recent technological advances have facilitated unprecedented opportunities for studying biological systems

at single-cell level resolution. For example, single-cell RNA sequencing (scRNA-seq) enables the measure-

ment of transcriptomic information of thousands of individual cells in one experiment. Analyses of such data

provide information that was not accessible using bulk sequencing which can only assess average properties

of cell populations. Single cell measurements however can capture the heterogeneity of a population of cells.

In particular, single cell studies allow for the identification of novel cell types, states, and dynamics [1, 2, 3,

4]. The benefits of single cell data however come at the cost of unique computational challenges [5]. These

challenges emerge from the stochasticity of single cell experimental data as well as from the multitude of

questions that are being addressed with this technology.

One of the most prominent uses of the scRNA-seq technology is the identification of sub-populations

of cells present in a sample and comparing such sub-populations across samples [6, 7, 8, 9, 10, 11, 12, 13].

Such information is crucial for understanding the heterogeneity of cells in a sample and for comparative

analyses of samples from different conditions, tissues, and species. While some information about sub-

population structure can be gained from data visualization methods such as the dimensionality reduction

technique tSNE [14], relaying on visualization approaches alone can be highly misleading. To address this

challenge, Butler at al. developed a computational approach enabling the identification of single cell popula-

tions across data sets [15]. This method is based on the Correlated Components Analysis (CCA) followed by

an alignment of the CCA basis vectors between the data sets. The method has been implemented as a part of

the popular software package Seurat [15]. However, while Seurat’s approach provides the first step towards

addressing this important problem, it has several significant limitations. Most notably, it operates under

the assumption that the input samples consist of same sub-populations of cells (albeit possibly in different

proportion) and focuses on identifying the correspondence between these sub-populations. This assump-

tion is reasonable when aiming at aligning two replicas of the same experiment or identifying conserved

sub-populations across highly similar experimental data. Single cell data however is increasingly used in

comparative analysis of more diverse cell populations containing unique sub-populations. To address this

critical gap we developed a new approach, single cell sub-Populations Comparison (PopCorn) that allows

for comparative analysis of two or more single cell populations.

There are two key ideas behind PopCorn that are fundamental for the accuracy of our approach. The

first idea is to identify sub-populations of cells present within individual experiments simultaneously with

performing sub-populations mapping across these experiments rather than identifying the sub-populations
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first and mapping them later. This allows for integrating information across experiments thus reducing noise.

The second key innovation consists of a new approach to identify sub-populations of cells within a given

experiment. Unlike simple clustering approaches, PopCorn utilizes Personalized PageRank vectors [16]

and a quality measure of cohesiveness of a cell population (introduced in Supplementary Materials A) to

construct an auxiliary sub-population co-membership propensity graph to guide the process of identifying

such sub-populations.

We tested the performance of PopCorn in two distinct settings. First, we demonstrated its potential in

identifying and aligning sub-populations from single cell data from human and mouse pancreatic singe cell

data [15]. Next, we applied PopCorn to the task of aligning biological replicates of mouse kidney single cell

data [17]. PopCorn achieved a striking improvement over the existing tool.

Consequently, and as a result of our integrative approach, PopCorn provides novel and unmatched tool

for comparative analysis of single-cells populations.

2 Method

Informally, a sub-population of cells should include cells that have a common expression pattern (consis-

tency) which are distinct from the expression patterns of other cells (separation). However, applying this

principle in the context of single cell experiments is non-trivial. Given the stochastic nature of single cell

experiments, some sub-populations can be well separated in one experiment whereas the separation can be

less pronounced in another - either due to technical issues or due to biological differences between the sam-

ples. In addition, the stochasticity of the experiment introduces noise to the readout of the expression level

of individual genes in individual cells, which might impact the accuracy of the assessment of the similarities

between cells.

The main idea of the PopCorn is based on the simultaneous identification of sub-populations of cells

present within individual experiments with performing sub-populations mapping across experiments. To

this purpose, PopCorn integrates two objective functions aimed at (i) ensuring a meaningful partition of cells

into sub-populations within each individual experiment and (ii) ensuring the consistency of these partitions

across the experiments. To jointly optimize these two objectives, we construct two weighed graphs. The

first graph, also known as sub-population co-membership propensity graph , encodes the propensity of cells

belonging to the same sub-population for any two cells form the same experiment (A in Fig. 1) (we use same

label to denote a graph and its matrix representation). The criterion used for constructing this graph is key

to the efficiency of our method and is described in the next subsection and Supplementary Materials A. The

second graph, a multipartite graph, encodes pairwise similarities of cells from different experiments (B in
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Fig. 1). Following the construction of these two graphs, the final step of the method consists in solving a

k-partition problem that simultaneously takes into account constraints encoded by both graphs.

In the subsequent sections, we outline the main ideas behind our approach while more technical details

are deferred to the supplementary materials. We additionally note that the subsequent sections assume the

existence of q scRNA-seq data sets denoted by D1,D2, ...,Dq where a data set Di covers Ni genes over Mi

cells.

Fig. 1: The work flow of PopCorn. For each experiment i we first construct, matrix Ai representing the propensity of each pairs of
cells to be in the same sub-population (this is achieved by using personalized PageRank method, see Section 2.1 and Supplementary
Materials A). Matrix A summarizes all matrices Ai and is constructed by placing these on the diagonal of A. Next, we construct
matrices Bi, j which encode similarities between pairs of cells form different experiments i and j (see Section 2.2). B is constructed
by placing the similarity matrices for all pairs of experiments off-diagonal as illustrated in the figure. We then perform joint partition
of the graphs represented by matrices A and B by applying semi-definite programming to solve the problem.

2.1 Construction of the sub-population co-membership propensity graph

The objective of sub-population identification is to partition cells into groups while optimizing for consis-

tency within each group and separation between the groups.

To address these challenge, we compute sub-population co-membership propensity graph, Ai, for every

experiment Di. Ai consists of a weighted graph with nodes corresponding to the cells from experiment Di and

edge weight represents the propensity of a given pair of cells to be in one cluster (one sub-population). To

estimate such propensity, each cell ”votes” which other cells should be put in the same sub-population with
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itself. The voting process utilizes a personalized PageRank vector on the expression similarity graph (see (5)

and Supplementary Materials A for a precise definition) for the cells in experiment Di. For any cell, the

ranking of the cells in its personalized PageRank vector utilizes a measure of expression consistency and a

separation to ensure the desired properties for the sub-populations proposed (See Supplementary Materials A

for more details). An edge (l,m) is included in the graph sub-population co-membership propensity graph

Ai if this cells l and m obtained at least one vote to be in the same sub-population. The weight of each edge

equals to the number of votes received by the given pair. Note that partitioning Ai into k sub-graphs provides

a method to uncover the population structure in experiment Di which is of an independent interest. However

if performed in isolation, such sub-population assignment would not benefit from the information contained

in the data from other experiments. Thus graphs Ai are used jointly with the information represented by

graph B that encodes pairwise similarities between cells from different experiments as described below.

2.2 Solving joint sub-population identification and mapping problem

Solving the joint sub-population identification and mapping problem translates into grouping the cells into

a set of clusters such that the resulting partition is optimized for grouping cells of similar expression pattern

within data sets while ensuring cells of the same kind are also aligned across data sets.

To this end, we encode complementary information regarding the sub-population co-membership propen-

sity and the pairwise cell-similarities from different experiments in two graphs A and B respectively.

A corresponds to the union of all graphs Ai as defined in the previous section. Let N = ∑i Ni be the

overall set of cells, arranged such that cells from the same data set have consecutive indices. A ∈ RN×N is

then constructed by assembling the adjacency matrices Ai, i = 1,2, ...,q into a block-diagonal matrix, i.e.

Ai ∈ RNi×Ni are arranged along the diagonal as shown in Fig. 1.

B in turn consists of a q-partite graph recording the similarity between cells across different experiments

based on gene expression. Formally

B =


O1 B12 ... B1q

(B12)T O2 ... B2q

... ... ... ...

(B1q)T (B2q)T ... Oq,

 (1)

where Qi ∈RNi×Ni is an all zero matrix and Bi j ∈RNi×N j measures expression consistency between cell from

different experiments (see definition in (6).) Note that A, B ∈ RN×N have the same dimension.
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Given these two adjacency matrices, we then compute a partition of the cells into k clusters that respects

the connectivity defined by both graphs. To accomplish this, we first normalize both matrices as described

in Supplementary Materials B.1 and define the normalized Laplacian matrix of A and B as LA and LB respec-

tively. To encode the assignment of cells to a sub-population we define an assignment matrix YN×k , where

N is the total number of cells, as follows:

Y [ j,k] =


1 if the jth cell belongs to sub-population k

0 otherwise.
(2)

Note that given the normalized Laplacian matrix LX , where X is either A or B, the problem of finding

the optimal partition into k sub-populations that respects connectivity defined by matrix X is equivalent to

the normalized k-cut problem [18, 19] and can be expressed as

min : tr(Y T LXY )

s.t. Y ∈ Fk,
(3)

where Fk =
{

Y : Y 1k = 1N ,Y T 1N ≥ c,Yi j ∈ {0,1}
}

.

In particular, if X = A, this leads to clustering the scRNA-seq data sets into k different sub-populations,

based solely on experiment specific features (similarity expression pattern between different cells in the

same experiment) without using any information from other experiments. In contrast if X = B we will find

the best alignment between the cells across experiments ignoring sub-population structure withing each

experiment.

Accordingly, a k-partition formulation respecting both matrices can be defined as

min : tr(Y T (LA +λLB)Y )

s.t. Y ∈ Fk.
(4)

were the parameter λ defines a scalar weight relation between the two sets of edges. To find the optimal

solution we use a semi-definite programming (SDP) relaxation approach as described in the Supplementary

Materials B.

2.3 Expression similarity between cells

Expression similarity is defined differently for cells form the same experiment compared to cells from

separate experiments, although both share a first common step: the identification of highly variable genes

5

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/485979doi: bioRxiv preprint 

https://doi.org/10.1101/485979
http://creativecommons.org/licenses/by-nd/4.0/


(HVGs) [20] Ω i in each data set Di and consequent utilization the normalized expression data Σi ∈ R|Ω i|×Ni

of those HVGs to compute expression consistency.

For cells l and m belonging to the ith data set Di, their expression consistency W i
lm is computed using

the cosine similarity as follows:

W i
lm =


cos(θlm) cos(θlm) =

Ei[:, l]T Ei[:,m]

‖Ei[:, l]‖‖Ei[:,m]‖
≥ 0

0 otherwise,

(5)

Here, Ei ∈ RRi×Ni is derived by applying Principle Component Analysis (PCA) to Σi where Ri corresponds

to the number of principle components.

To compute expression consistency between cells across different experiments, the posibility of different

scRNA-seq data sets having different sets of highly variable genes (HVGs) needs to be taken into account.

To account for this variability, we compute the similarity between cells l and m across data sets using co-

expressed HVGs only:

Bi j
lm =


cos(θlm) cos(θlm) =

∑ω Σi[ω, l]Σ j[ω,m]√
∑ω Σi[ω, l]2

√
∑ω Σ j[ω,m]2

≥ 0, ω ∈Ωi∩Ω j

0 otherwise.

(6)

3 Results

3.1 Comparative analysis of single-cell RNA-seq experiments across species

To demonstrate the capabilities of our approach, we first applied PopCorn on two scRNA-seq data sets

from different species and compare its performance to that of Seurat alignment method, a recent developed

method that aims to integrates multiple single cell data sets [15]. In particular, we obtained both, human and

mouse pancreatic cell transcriptomes from GEO Series accession number GSE84133. The human scRNA-

seq data set contains 8,629 cells from 13 cell types whereas the mouse scRNA-seq data set includes 1,886

cells from 11 cell types, 10 of which are shared by both data sets. In addition, the human scRNA-seq data

set has 3 individual cell types that do no appear in mouse scRNA-seq data set. We performed a comparative

analysis on both data sets to identify individual sub-populations which only contain cells from a single data

set, and common sub-populations which include cells from more than one data set. We further utilize the

labels provided in [15] as our gold standard to validate the performance of the comparative analysis. The

results generated by our PopCorn approach are then benchmarked against the results of the Seurat alignment
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Fig. 2: (A) Two t-SNE plots for human and mouse scRNA-seq data sets, respectively. Different colors indicate different cell an-
notations, which can be determined via true labels (Supplementary Materials C). Cells of the same color denote a sub-population
identified by PopCorn. (B) Sankey diagrams of the resulting mapping between identified sub-populations to ground truth labels of
both PopCorn and Seurat. The width of the flow bar is proportional to the Accssp score (the accuracy of a split sub-population) as
defined in Supplementary Materials C.2. The Accssp scores for the majority of the cell types in each identified sub-population are
given at the beginning of the flow bar. As shown, all common sub-populations identified by PopCorn are corresponding common
sub-populations. In addition, PopCorn identifies three individual sub-populations that are annotated to acinar, gamma, and T-cell,
and acinar and T-cell are known to be unique cell populations in the human experiments. In contrast, sub-population #9 of Seurat
incorrectly assigned acinar cells in human and beta cells in mouse into a single population; sub-population #10 of Seurat designated
both activated stellate and quiescent stellate cells in human and mouse into one population but failed to separate them. In addition,
Seurat failed to identify any individual cell populations. (C) Comparison of PopCorn and Seurat on various metric scores that are
defined in Supplementary Materials C.
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method. For a detailed description of the parameter selection regarding both methods, we refer the reader to

Supplementary Materials D.1.

In order to ensure an impartial comparison, we define several metric scores which evaluate the results of

the competing methods from distinct, yet comlementary contexts. The first metric, Rccsp, aims at measuring

how accurate a method can group cells of the same cell type across data sets together and is defined as the

ratio of the number of identified corresponding common sub-populations to the total number of identified

common sub-populations. Next, we evaluate how many common cell types across data sets and individual

cell types can be recovered by a method via Rucct (the ratio of uncovered common cell types to the total

number of common cell types) and Ruict (the ratio of uncovered individual cell types to the total number

of individual cell types). Last but not least, we utilize Accc and Acci to quantify the purity of the identified

common sub-populations and individual sub-populations. Purity in this context refers to the percentage of

the majority cell population in an identified sub-population. The detailed definitions of all metric scores can

be found in Supplementary Materials C.

Fig. 2 A illustrates two t-distributed stochastic neighbor embedding (tSNE) plots that summarize the re-

sults generated by PopCorn for the two benchmark data sets. Although the layouts of the cell sub-populations

in human and mouse are distinctive in appearance, the figure illustrates PopCorn’s ability to identify com-

mon sub-population (sub-population #1 to #10) and individual sub-populations (sub-population #11 to #13).

Fig. 2 B visualizes the content of each identified sub-population discovered by PopCorn and the Seurat

alignment method. The right figure indicates that for sub-population # 9 and sub-population # 10, Seu-

rat assigned cells of different types in human and mouse into one group. Specifically, sub-population # 9

classified human acinar cells and mouse beta cells as one common sub-population. Human acinar cells how-

ever are a unique sub-population that does not have a correspondence population in mouse experiments.

In contrast, our PopCorn method successfully identified the human acinar cells as a unique sub-population

(sub-population # 12 of our in the left figure of Fig. 2). In addition, we observed that sub-population # 10

of Seurat contains both mouse activated stellate and quiescent stellate cells and human activated stellate

and quiescent stellate cells, but fails to designate them into separate sub-populations. PopCorn however

correctly assigned mouse activated stellate and human activated stellate cells into one sub-population (sub-

population # 9 of our PopCorn), and mouse quiescent stellate and human quiescent stellate cells into another

sub-population (sub-population # 10 of our PopCorn). Last but not least, Seurat fails to identify any known

individual sub-populations. However, PopCorn identifies 2 known individual sub-populations (acinar and

T-cell cells). Fig. 2 C compares the results of PopCorn and Seurat on the metrics as defined above and shows

that PopCorn outperforms Seurat on all metrics scores.
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Fig. 3: (A) Sankey diagrams of the results mapping between identified sub-populations to ground turth labels of both PopCorn and
Seurat. The numbers in the background of the center gray area correspond to the respective replica indexes. The width of the flow
bar is proportional to the Accssp score (accuracy of a split sub-population) defined in Supplementary Materials C.2. The Accssp
scores are given in Supplementary Materials D.2. As shown, all common sub-populations identified by PopCorn are corresponding
common sub-populations. In contrast, 5 out of 19 common sub-populations identified by Seurat are non-corresponding common
sub-populations, which assinged cell types of different kinds in individual data sets together. Furthermore, PopCorn uncovered 11
common cell types whereas Seurat uncovered only 6. (B) Comparison between PopCorn and Seurat on mouse kidney single cell
data sets. PopCorn outperforms Seurat on all metrics as described in Supplementary Materials C.

3.2 Comparative analysis of single-cell RNA-seq data sets with multiple replicas

Next, we tested the robustness of PopCorn to perform under the presence of multiple replicas, a crucial

biological imperative to monitor the quality and repeatability of an experiment. Computational approaches

processing the resulting data are expected to be resilient against reasonable technological and biological

variations and to produce consistent results across replicas. To test this, we applied PopCorn and Seurat to

mouse kidney scRNA-seq data recently published in [17] and performed comparative analysis on the four

replicas. The replicas, identified by GEO association numbers GSM2871706, GSM2871707, GSM2871708,

and GSM2871709, contained 2,943 cells, 5,060 cells, 1,383 cells, and 2,704 cells, respectively. Moreover,

the four replicas have 16 cell types in common and no distinctive individual cell types. Finally, and analogous

to the previous analysis procedure, the cell labels provided in [17] were used as ground truth to evaluate the

performance of each method. The parameter selection of both methods can be found in Supplementary

Materials D.1.
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Fig. 3 summarizes the findings of applying the above described test scenario on PopCorn and Seurat and

shows that PopCorn outperforms Seurat on all metric scores. As shown in Fig. 3 A, PopCorn successfully

identifies 18 common sub-populations, all of which are corresponding common sub-populations. In contrast,

Seurat identifies 19 common sub-populations, 5 of which are non-corresponding common sub-populations

erroneously grouping together cells of different types in different replicas. Specifically, sub-population #15

of Seurat incorrectly assigns DCT cells in replica 3 into a group of CD-PC cells from replica 1, 2, and 4

and sub-population #16 groups Macro cells in replica 2 with Fib cells in replicas 3 and 4. In addition, sub-

population #17 contains B-lymph cells in replica 1 and Endo cells in replica 2 while sub-population #18

falsely assigns T-lymph cells in replica 3 and NK cells in replicas 1 and 4 together, and sub-population #19

mistakenly groups Macro cells in replica 1 together with B-lymph cells in replicas 2, 3, and 4. It is also

worth noting that out of the 16 common cell types as stated in [17], PopCorn identified a total of 11 as

evidenced by the number of unique annotations for common sub-populations. In contrast, Seurat was only

able to uncover 6 common cell types (Fig. 3 A, right). This prompted us to further investigate the properties

of the remaining common cell types that were not uncovered by PopCorn. Interestingly, we found these cell

types, Podo, CD-Trans, Novel1, Neutro and Novel2, to have particularly small cell populations of 10, 56,

42, 25, and 10 cells respectively corresponding to 0.1, 0.5, 0.4, 0.2, and 0.1 percent of all cells in 4 replicas.

4 Conclusions

We developed PopCorn, a new method for the identification of sub-populations of cells present within indi-

vidual single cell experiments and mapping of these sub-populations across the experiments. In contrast to

alternative approaches PopCorn performs these two tasks simultaneously by optimizing a function that com-

bines both objectives. When applied to complex biological data the results produced by our approach are

of unprecedented quality, robustness, and reproducibility across replicas that was not available in previous

method. Several innovations developed in this work contributed to this success. First, incorporating the above

mentioned tasks into a single problem statement was crucial for integrating the signal form different exper-

iments while identifying sub-populations within each experiment. Next, the sub-population co-membership

propensity graph introduced here to guide sub-population identification in individual experiments signifi-

cantly aids the reliable identification of groups of similar cells that are well separated from the remaining

populations. Taken together, these two ideas enable highly accurate identification of sub-populations and

superior alignment of cells across populations.

With these qualities, PopCorn has great potential to become a fundamental tool in the analysis of single

cell data.
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5 Availability

A preliminary reference implementation of PopCorn is available upon request.
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Supplementary Materials

A Construction of co-membership propensity graphs

In this section, we introduce how we construct a co-membership propensity graph based on a similarity

matrix. Let us assuming we have a similarity matrix W that is derived by using (5). W can be viewed as the

weighted adjacency matrix for a weighted un-directed graph G(V,E). Wi j encodes the similarity between

node (cell) i and node (cell) j.

For a given node v ∈V , the group H∗v of nodes that tend to be in the same partition with v can be found

by using the personalized PageRank vector of cell v [16]. The personalized PageRank vector p(α,v) of v on

G is the stationary distribution of the random walk on G, in which at every step, the random walker has the

probability of α to restart the random walk at v and otherwise performs a lazy random walk. Mathematically,

p(α,v) is the unique solution to

p(α,v) = αev +(1−α) p(α,v)H (7)

where α ∈ [0,1] is the “teleportation” constant, ev is the indicator vector of v (where es = 1 if s = v and

es = 0 if s 6= v) and H = 1
2

(
I +D−1W

)
is the underlying probability transition matrix of the lazy random

walk. D is a diagonal matrix with the weight sum of each node d(v) = ∑mWvm,∀v ∈ V on its diagonal

Dvv = d(v). We apply the modified local algorithm in [16] to efficiently approximate p̂ = p(α,v). The

algorithm in [16] is for unweighted graphs and we extend the algorithm for weighted graph as shown in

ApproximatePageRank weight(v, α , ε), which unities Pushu(p, r).

Pushu(p, r)
1. Let p′ = p and r′ = r, except for the following changes:

(a) p′(u) = p(u)+αr(u)
(b) r′(u) = (1−α)

2 r(u)
(c) For each v such that (u,v) ∈ E: r′(v) = r(v)+ (1−α)

2
Wuv
d(u)r(u)

2. Return (p′,r′)

Then we sort the nodes based on p̂ and attain an ordered set Hv = {h1,h2, ...,hn} ,hi ∈V , whose elements

satisfy p̂(hi)≥ p̂(hi+1). It is easy to verify that when α > 0.5, so that node v is always on top of the list Hv,

meaning h1 = v. Therefore, we use α = 0.8 through out the paper to make sure that v is in H∗v . Based on the

ordering in Hv, we generate a collection of sets S j =
{

h1,h2, ...,h j
}

for j ∈ {0,1, ..., |Hv|}, which we call
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ApproximatePageRank weight(v, α , ε)
1. Let p = 0 and r = ev.
2. While maxu,h∈V

r(u)Wuh
d(u) ≥ ε:

(a) Choose any node u where r(u)Wuh
d(u) ≥ ε

(b) Apply Pushu at node u, and update p and r
3. Return p with maxu,h∈V

r(u)Wuh
d(u) < ε

sweep sets [16]. We let

H∗v = max
j∈[1,|Hv|]

Ψ(S j)

Φ(S j)
(8)

be the node set including v that has propensity to be well-separated (characterized by Φ(·)) and densely

connected (characterize by Ψ(·)). Ψ(S) is the weighted density between nodes in set S defining as

Ψ(S) =
∑lmWlm

|S|2
,vl,vm ∈ S. (9)

And Φ(S) is the conductance of set S that characterizes separation of S.

Φ(S) =
∂ (S)

min(vol(S),vol(V i)−vol(S))
, (10)

where ∂ (S) = ∑i j Wi j, i ∈ S, j /∈ S and vol(S) = ∑x∈S d(x). H∗v can be represented by an indicator vector

eH∗v =∑s∈H∗v es. After obtain H∗v for every v∈V i, we can compute the adjacency matrix of the co-membership

propensity graph for G as follows

A = ∑
v∈V

eH∗v eT
H∗v . (11)

Based on the method introduced above, we can compute Ai for each single cell data set Di.

B Optimization

B.1 Normalized Laplacian matrix

For adjacency matrix A, the normalized Laplcian matrix of A is defined as LA = I−D−1/2
A ADA−1/2, where

I is an identify matrix and DA is the weighted degree matrix with Dii = ∑ j Ai j on its diagonal. Similarly, the

the normalized Laplcian matrix of B is LB = I−D−1/2
B BDB−1/2.
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B.2 SDP relaxation of (4)

The joint partition problem (4) is a NP-hard problem. In order to efficiently obtain promising results, we

relax the problem into SDP relaxation. Based on previous results [19], we know the following problems

(P1) and (P2) can be relaxed to (SDP1) and (SDP2).

(P1)
min : tr(Y T LAY )

s.t. Y ∈ Fk.
(P2)

min : tr(Y T LBY )

s.t. Y ∈ Fk.

(SDP1)

min : tr(LAZA)

s.t. ZAdiag(D−1/2
B ) = diag(D−1/2

B )

tr(ZA) = k

ZA = ZT
A ,ZA � 0

(ZA)i j ≥ 0,∀i, j

(SDP2)

min : tr(LBZB)

s.t. ZBdiag(D−1/2
B ) = diag(D−1/2

B )

tr(ZB) = k

ZB = ZT
B ,ZB � 0

(ZB)i j ≥ 0,∀i, j

In those SDP relaxations ZA = YAY T
A and ZB = YBY T

B , where YA = D−1
A YA((YA)

T DAYA)
−1/2 and

YB = D−1
B YB((YB)

T DBYB)
−1/2. Comparing (SDP1) and (SDP2), we find that they have exact the same con-

straints except the first ones. We therefore relax the first constraint of (SDP1) and let Z = ZA = ZB and

combine (SDP1) and (SDP2) to obtain our final SDP formulation as follow.

(SDP)

min : tr((LA +λLB̄)Z)

s.t. Zdiag(D−1/2
B ) = diag(D−1/2

B )

tr(Z) = k

Z = ZT ,Z � 0

Zi j ≥ 0,∀i, j,

(14)

Problem (14) can be solved by well-established toolbox and we use cvxpy to solve the relaxed SDP problem.

B.3 Rounding

In general, due to relaxation, the optimal solution of (SDP) is not feasible for (4). Therefore, we need to

recover a closest feasible solution to the original problem (4). We treat row i of Z, the optimal solution of

(SDP), as the feature of cell i. Then we apply k-means to Z 100 times and pick one k-means solution which

yields the minimum objective function value of (4).
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B.4 Preclustering

Since our objective function unitizes a full N×N matrix LA +λLB̄, the memory usage of the algorithm may

be prohibitive for increasing number of data sets. This motivates us to use supercells, which can be obtained

by over-segmentation of the data sets (in our case, hierarchical clustering is used but any other superpixel

identification methods in the image processing filed can be applied). Using NS supercells is equivalent to

constraint Z to be block-constant and thus reduces the size of the SDP to a problem of NS×NS.

C Evaluation metric

C.1 Terminology

Given q data sets
{

D1,D2, ...,Dq
}

, we use C =
{

C1,C2, ...,Cq
}

to present a sub-population that is identified

by a method, where Ci is a split sub-population that only contains cells from data set Di. We call a sub-

population a individual sub-population once C only contains cells from one data set ( Ci 6= Ø and C j =

Ø,∀ j 6= i). When C contains cells from more than just one data set, we call C a common sub-population.

C.2 Annotation of a split sub-population

For a non-empty split sub-population Ci =
{

Ci
1,C

i
2, ...

}
in C, we can annotate each cell Ci

j in Ci by its

ground truth label T i
j . We use T i =

{
T i

1 ,T
i

2 , ...
}

to present the label set of Ci, where T i
j is the ground truth

label for Ci
j. Assuming we have L ground truth label T = {T1,T2, ...,TL}. Then the annotation ICi of the split

sub-population Ci can be found by

ICi = argmax
Tl∈T

1
|Ci|∑j

1(T i
j ∈ Tl), (15)

where 1(·) is an indicator function. 1(T i
j ∈ Tl) = 1 when T i

j ∈ Tl , and 1(T i
j ∈ Tl) = 0 otherwise.

Furthermore, we can define the accuracy Accssp of the split sub-population as follow.

Accssp(Ci) =
1
|Ci|∑j

1(T i
j = ICi), (16)

C.3 Annotation of a common sub-population

After finding the annotation ICi for each non-empty split sub-population Ci in C, we can check whether

they have the same annotations. If all the non-empty split sub-populations in C are annotated to the some

annotation, we consider the common sub-population as a corresponding common sub-population and use

16

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/485979doi: bioRxiv preprint 

https://doi.org/10.1101/485979
http://creativecommons.org/licenses/by-nd/4.0/


IC = ICi to denote the annotation for the corresponding common sub-population, where i is the index of

a non-empty split sub-population in C. Otherwise, if the non-empty split sub-populations are annotated

to different annotations, we consider the common sub-population as a non-corresponding common sub-

population and set IC = NA.

C.4 The ratio Rccsp of the corresponding common sub-population

Rccsp is the ratio of the number of the corresponding common sub-populations that identified by a method to

the number of all identified common sub-populations. For example, if all common sub-populations are cor-

responding common sub-populations, Rccsp = 100%; If all common sub-populations are non-corresponding

common sub-populations, Rccsp = 0%.

Let C = {CI,Cc} be the output of a method, where CI is the set of all individual sub-populations and

Cc is the set of all common sub-populations. The ratio of the corresponding common sub-population Rc is

defined as follow:

Rccsp =
∑C∈Cc 1(IC 6= NA)

|Cc|
(17)

C.5 The ratio Rucct of uncoveblack common cell types

Rucct measures the percentage of the common cell types that can be uncoveblack. Let Tc be the set of ground

truth labels that share by multiple data sets. We know Tc ∈ T,T = {T1,T2, ...,TL} and then Rucct can be

computed as

Rucct =
∑Tl∈Tc 1(Tl ∈ ICc)

|Tc|
, (18)

where ICc = {IC|C ∈ Cc}.

C.6 The ratio Ruict of uncoveblack individual cell types

Ruuct measures the percentage of the individual cell types that can be uncoveblack. Let TI be the set of

ground truth labels that only appear in one data set. We know TI ∈ T,T = {T1,T2, ...,TL} and then Ruict can

be computed as

Ruict =
∑Tl∈TI 1(Tl ∈ ICI)

|TI|
, (19)

where ICI == {IC|C ∈ CI}.
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C.7 The accuracy Accc of identified common sub-populations

Here we use Acccsp to evaluate the purity of a common sub-population. Let C denote a common sub-

population and C̄ =
{

C̄1,C̄2, ...
}

be the common sub-population where C̄i 6= Ø. The accuracy Acccsp of the

common sub-population of C can be computed as

Acccsp(C) =


∑i Accssp(C̄i

c)

|C̄c|
if C is a corresponding common sub-population

0 if C is a non-corresponding common sub-population.

(20)

For the set C of all common sub-populations, the accuracy of C is

Accc(C) =
∑C∈C Acccsp(C)

|C|
. (21)

C.8 The accuracy Acci of identified individual sub-populations

The Accisp score for an individual sub-population CI is

Accisp(CI) = Accssp(CI). (22)

For the set CI of all individual sub-populations, the accuracy of CI is

Acci(CI) =
∑C∈CI Accisp(C)

|CI|
. (23)

D Implementation details

D.1 Parameter settings

For human and mouse pancreatic single cell data sets, we set λ and k (the number of sub-populations), the

only two parameters of PopCorn, to λ = 1 and k = 10,11,12,13,14,15, respectively. We find that when we

set k = 14, our PopCorn only generates 13 clusters, therefore, we use the results of k = 13 as our final results

to compare with Seurat. For Seurat, we use the results they reported in [15] to compare with our PopCorn

results because we use exact the same data sets.

For mouse kidney single cell data sets, we set λ = 3 and k = 19, cause when we set k = 20, PopCorn

only generates 19 sub-populations. For Seurat, we use different number of HVGs (500, 1000, 1500) for the

alignment method. And for the sub-population identification method, Seurat use the modularity maximiza-
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tion method and we set the resolution parameters to 0.8, 1.0, and 1.2. We try all combinations of the above

parameter settings and choose a result that generates the maximum modularity score for comparison.

D.2 Details results for mouse kidney data sets

Here we provide detailed information for Fig. 3.

A

B

Fig. 4: (A) Table for the detailed results for PopCorn on mouse kidney 4 replicas. (B) Table for the detailed results for Seurat on
mouse kidney 4 replicas. Gray shade shows the non-corresponding common sub-populations.
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