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Abstract

The purpose of perception is to drive action - during tasting, for instance, every stimu-
lus necessarily drives either swallowing or ejecting (“gapes”). Taste responses in the rodent
primary gustatory cortex (GC) span this sensorimotor divide, progressing through a series
of firing rate epochs that culminate in the emergence of palatability-related firing. Popu-
lation analyses reveal palatability-related activity to appear through sudden and coherent
ensemble transitions that, despite occuring between 0.5s and 1.5s on individual trials,
reliably precede gaping onset by 200-300ms. Here, we tested whether these transitions ac-
tually drive gaping, delivering 0.5s perturbations of GC at various points in tasting trials.
Perturbations significantly delayed gaping, but only when they arrived before palatability
coding. Thus, perturbation had no impact on trials in which the transition had already
occurred, but the identical perturbation delayed gaping on trials in which it hadn’t. Our
results suggest a distributed attractor network model of taste processing, and a dynamical
role for cortex in driving motor behavior.
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1 Introduction

One of the primary roles of sensory processing is to drive action, in order that the source
of sensory information can be either acquired or avoided (Prinz (1997), Wolpert and Kawato
(1998), Wolpert and Ghahramani (2000)). Implicit in this statement is a suggestion that sensory
and motor processing are tightly coupled (Wolpert et al. (1995), Huston and Jayaraman (2011)).
The gustatory system is a perfect model to study this proposal, because animals necessarily
respond to tastes with discriminative behavioral responses as they decide to swallow or expel
the sensory stimulus in the mouth (Grill and Norgren (1978a), Katz and Sadacca (2011), Li
et al. (2016)).

Previous studies of the rodent gustatory system have revealed that sensory-motor coupling
is inherent in the temporal dynamics of gustatory cortical (GC) activity in response to taste
stimuli. GC neurons respond to taste presentation with a sequence of firing-rate “epochs”, two
of which are taste-specific: neural firing in the first epoch carries information regarding the
physio-chemical identity of the taste stimulus and in the second correlates with palatability, a
variable intimately linked with the animal’s decision to ingest or expel the taste (Katz et al.
(2001), Fontanini and Katz (2006), Grossman et al. (2008), Piette et al. (2012), Sadacca et al.
(2012)). Furthermore, ensemble analyses reveal that the transition between these two epochs
happens suddenly and coherently across neurons (Jones et al. (2007), Sadacca et al. (2016)).
The transition time, though highly variable in latency (between 0.5-1.5s post stimulus), is a
strong predictor of the onset of the animal’s consumption-related orofacial behavior (Sadacca
et al. (2016)) - even when the timing of this behavior is manipulated by learning (Moran
and Katz (2014)) or cueing (Li et al. (2016)). GC neural ensembles appear to “hop” from
one attractor state to another during taste processing, with the hop representing both the
reaching of a swallow/expel decision and the emission of a motor signal to brainstem circuits
that generate orofacial behavior (Miller and Katz (2010), Miller (2016)).

A direct prediction of this temporally dynamic model of gustatory processing, and most
specifically of the suggestion that the transition between firing-rate epochs is of particular
importance, is that well-timed perturbations of GC activity will affect the time course of a
rat’s taste-reactive ingestion-egestion processing. This prediction recently received indirect
support when it was shown that optogenetic inhibition of the entire GC taste response (Li
et al. (2016)) modestly changes the probability of rejection behaviors in response to aversive
tastes (“gapes”, Grill and Norgren (1978a), Li et al. (2016)).

Such gross and broad perturbation of gustatory processing is an inadequate test of this very
specific prediction, however: for one thing, multi-second inactivation likely has secondary effects
that confound interpretation, particularly when dealing with an outcome variable (ability to
gape) that is known to depend on an interconnected network of brain regions of which GC is
a single node (Smith and St John (1999), Riley and King (2013), Samuelsen and Fontanini
(2016)); in addition, it is impossible to disambiguate any epoch- or event-specific effects on
consumption behavior using such lengthy manipulations of activity. A much more definitive
test would involve using optogenetics to inhibit GC taste responses for short periods of time in
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specific processing epochs as awake rats processed and responded to a range of tastes.
Here we report the results of this precise experiment. We recorded the activity of GC ensem-

bles while simultaneously inhibiting the firing of these neurons using optogenetics (specifically,
with virus-delivered ArchT) for brief (0.5s) periods before, during or after the “hop” to the
palatability- and decision-related attractor state. Our results provide strong support for the
hypothesized importance of the transition time itself, and suggests that important pre-transition
taste processing is performed in GC itself. These results provide a glimpse into the attractor-
like dynamics underlying cortical taste processing - perturbations only have an impact before
the system settles into the palatability and decision-related “stable” state. GC is likely just one
participatory node in these attractor dynamics and it seems that behavioral control shifts to
brainstem circuits once this stable state has been reached.
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2 Materials and Methods

2.1 Experimental design

2.1.1 Subjects

Adult, female Long-Evans rats (n=5; 275-300g at time of virus injection; 300-350g at time of
electrode implantation) served as subjects in our study (in our hands, female Long-Evans rats
have proven more docile than males, but we have observed no sex differences in the basic cortical
dynamics of taste responding). The rats were housed in individual cages in a temperature and
humidity controlled environment under a 12:12h light:dark cycle. All rats were given ad libitum
access to food and water before experiments started. Rats were weighed daily and observed to
never drop below 80% of their pre-surgery weight. All experimental methods were in compliance
with National Institutes of Health guidelines and were approved in advance by the Brandeis
University Institutional Animal Care and Use Committee.

We also performed a set of control analyses of data taken from 10 adult, female Long-Evans
rats, previously published in Sadacca et al. (2016) and Li et al. (2016).

2.1.2 Virus injections

We injected adeno-associated virus (AAV9) coding for ArchT and green fluorescent protein
(AAV9-CAG-ArchT-GFP, 2.5×1011 particles per mL) into the GC of rats. This AAV serotype
has been shown to effectively spread to and infect all cell types (Aschauer et al. (2013)) in
regions including GC (Maier et al. (2015); Li et al. (2016)). Rats were first anesthetized using a
ketamine/xylazine mixture (1mL ketamine, 0.05 mL xylazine/kg body weight) delivered via an
intra-peritoneal injection. Supplemental anesthetic injections were given as needed. The head
was shaved, cleaned with an iodine solution and 70% ethanol, and positioned into the stereotax.
We then excised the scalp and cleaned and leveled the top of the skull. Small craniotomies were
drilled bilaterally over the location of GC (anteroposterior +1.4mm from bregma, mediolateral
±5mm from bregma; Paxinos and Watson (2007)), the meningeal tissues were gently excised,
and virus was infused.

Prior to injecting the infusate, we suspended the virus particles in a solution of phosphate-
buffered saline (PBS) and Oregon Green 488 (Invitrogen). We then lowered a glass micro-
pipette (tip diameter: 10-20µm) filled with this solution into the centers of the craniotomies,
and performed a sequence of 3 injections bilaterally into GC: at 4.9, 4.7 and 4.5mm ventral
to dura; virus was injected in a series of discrete pulses (44 pulses/location, with 25nL per
pulse, 7s between consecutive pulses = 1.1µL total volume injected per depth) controlled by a
Nanoject III microinjector (Drummond Scientific). Following each unilateral set of injections,
the micropipette remained in place for 5 min, after which it was smoothly removed over the
course of 1 minute so that fluid would not spread back up the micro-pipette track. Craniotomies
were sealed using a silicone sealant (Kwik-Sil, WPI).

Following injections, the scalp was sutured and the rat was given analgesic (meloxicam
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0.04mg/kg), saline and antibiotic (Pro-Pen-G 150,000U/kg) injections. Similar antibiotic and
analgesic injections were delivered 24 and 48 hours later. Rats were then allowed to recover for
4-6 weeks, in order to ensure adequate infection and subsequent expression of optical channels
(ArchT) and GFP.

2.1.3 Opto-trode, intra-oral cannula and EMG electrode implantation

4-6 weeks after virus infusion surgery, rats were again anesthetized, and implanted with bi-
lateral GC opto-trode bundles. Each bundle consisted of either 30 or 32 recording microwires
(0.0015inch formvar-coated nichrome wire; AM Systems) and 1 optical fiber (0.22 numerical
aperture, 200µm core, inserted through a 2.5mm multimode stainless-steel ferrule; Thorlabs).
The microwire bundle was glued to a custom-made electrode-interface board (San Francisco
Circuits) and connected to a 32 channel Omnetics connector. In the case of the 30 microwire
bundles, the final two pins were connected to 2 electromyography (EMG) electrodes (PFA-
coated stainless steel wire; AM Systems) implanted into the digastric muscle under the jaw.
Finally, the microwires and optical fiber were connected to a custom-built 3D printed micro-
drive that allowed the entire assembly to be moved ventrally after implantation. The microwire
tips were located 0.5mm ventral to the tip of the optical fiber - this maximized the likelihood
that the electrodes recorded the activity of neurons that were illuminated by the laser. For
more information on the implanted apparati and associated electronics, see Katz et al. (2001),
Sadacca et al. (2016) and Li et al. (2016), as well as the Katz Lab webpage.

The implantation surgery started similar to the virus injections: after anesthetizing the
animal, we shaved and cleaned the scalp and situated the head in the stereotax. After excising
the scalp and leveling the skull, we drilled 5 self-tapping screws into the skull for supporting
and grounding the opto-trode bundles. The silicone seal was removed from the craniotomies, as
were any tissues that had grown in since the prior surgery. We then slowly (over 5-10 minutes)
lowered the opto-trode bundles to a depth of 4.3mm from the dura mater (0.2mm above the
most dorsal location of virus injection). The ground wires were wound tightly around the skull
screws and the bundles were cemented in place with dental acrylic. The optical fiber was looped
so that the ferrule could be cemented away from the microdrive - this configuration reduced the
stress on the microdrive when the animal was later plugged in to the experimental apparatus.

Once the opto-trode assembly was cemented in place, the rat was removed from the stereotax
and implanted with a single (right-side) intra-oral cannula (IOC) for controlled delivery of
tastants on the tongue. IOCs were made with thin polyethylene tubing and inserted in the
space between the first maxillary molar and the lip, through the masseter muscle and inside
the zygomatic arch, and out through the opening in the scalp (Phillips and Norgren (1970);
Katz et al. (2001)) The IOC was topped with a plastic connector that could be attached to the
taste delivery apparatus, and cemented in place with dental acrylic.

The EMG electrodes were channeled down the left side of the face (opposite from the IOC);
after the overlying skin had been teased away from the belly of the digastric muscle, one end
of each EMG electrode was tied to a suture needle, which was then inserted into the muscle,

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 3, 2018. ; https://doi.org/10.1101/486043doi: bioRxiv preprint 

https://sites.google.com/a/brandeis.edu/katzlab/technology
https://doi.org/10.1101/486043


such that the electrode could be pulled into the desired position (for more details, see Loeb and
Gans (1986); Travers and Norgren (1986); Dinardo and Travers (1994); Li et al. (2016)). The
electrode wires were trimmed and held in place with vetbond tissue adhesive (3M) and the skin
covering the anterior digastric was sutured back into place. Finally, a modified falcon tube was
glued to the front of the headcap as a protective cap, and bacitracin ointment was applied all
around the base of the headcap and over the wound under the jaw.

Following the surgeries, rats were given analgesic (Buprenophine 0.05mg/kg), saline, and
antibiotic (Pro-Pen-G 150,000U/kg) injections. Similar antibiotic, saline and analgesic injec-
tions were delivered 24, 48 and 72 hours later, and bacitracin ointment was reapplied. The rats
were handled every day and allowed to recover to 90% of their pre-surgery weight (at least 7
days after surgery) before being introduced to the experimental apparatus.

2.1.4 Habituation

Following recovery from the opto-trode implantation surgery, we habituated the rats to passive
water deliveries for 3 days before any experiments started. In these daily habituation sessions,
we attached the rats to the electrophysiology acquisition system, laser patch cables and taste
delivery apparatus, and infused 100 pulses of distilled water (∼40µL per pulse; 15s inter-pulse
interval) into the animal’s oral cavity through the IOC. Starting with the second habituation
day, we also placed rats on a mild water restriction schedule - 20mL of water (not including the
4mL delivered during habituation sessions themselves) per day. This water restriction schedule
was maintained for the duration of the study (∼7 days per animal).

Opto-trode bundles were driven deeper after each session using the microdrive built into
the assembly; by the end of the habituation period, the distance traveled was 0.2mm, such that
the tips of the electrodes lay within the region of GC infected with the virus.

2.1.5 Passive taste administration and laser stimulus delivery

We used 2 concentrations of palatable sucrose (30mM: Dilute Sucrose (Dil Suc), 300mM: Con-
centrated Sucrose (Conc Suc)) and of aversive quinine-HCl (0.1mM: Dilute Quinine-HCl (Dil
Qui), 1mM: Concentrated Quinine-HCl (Conc Qui)) dissolved in distilled water as the stimuli
in our experiments. Concentrated sucrose and quinine are rich in palatability-related valence
and evoke strong orofacial responses; the dilute stimuli are of similar but less extreme palata-
bility – a fact that aided in the analysis of palatability-related neural firing (Li et al. (2016); see
also below). The taste delivery apparatus consisted of gently pressurized tubes containing taste
solutions; the tubes converged upon a manifold of finer polyamide tubes that could be inserted
into (to 0.5 mm past the end of) the IOC, thus eliminating any chance of mixing. The manifold
could be locked securely into the dental acrylic cap. The tastes were then delivered under slight
nitrogen pressure - this taste delivery protocol has been consistently shown to ensure reliable
tongue coverage at short latencies (Katz et al. (2001); Sadacca et al. (2016); Li et al. (2016)).

We conducted 2 types of optogenetic perturbations in this study: 1) some sessions included
trials with a "long" perturbation, with the laser turned on for the period of 0-2.5s post taste
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delivery; and 2) other sessions included trials with one of several "short" perturbations, for
which the laser was turned on for 0.5s at either 0, 0.7 or 1.4s post taste delivery. We used a
532nm, DPSS laser (Laserglow Technologies), connected to the implanted ferrules using stan-
dard FC/PC patch cables (Thorlabs), for all optogenetic perturbations. The strength of the
laser input was calibrated, prior to opto-trode implantation, to yield an illumination power of
40mW at the tip of the optical fiber. This output power perturbs all ArchT infected neurons
in a 1mm3 sphere below the tip of the fiber in vivo (Han et al. (2011); Yizhar et al. (2011))
- a sphere that encompasses about 33% of GC in the caudal-rostral axis (Kosar et al. (1986);
Maier et al. (2015); Li et al. (2016)). These parameters have previously been shown to reduce
the activity of ArchT+ cortical neurons with minimal latency and damage (Maier et al. (2015);
Li et al. (2016); Flores et al. (2018)).

We ran 1 experimental session per day per rat - only 1 type of optogenetic perturbation
(either long or short) was done in each session. We interleaved the length of the optogenetic
perturbation across sessions, so that a rat that experienced 2.5s perturbations in one session
got 0.5s perturbations the following day. Taste and laser delivery were controlled through a
Raspberry Pi computer.

Sessions with 2.5s perturbations consisted of 8 sets of trials (2 sets per taste - one with
the lasers on and one with no laser). Each set included 15 trials, for a total of 120 trials per
session. Similarly, sessions with 0.5s perturbations included 16 sets of trials (4 sets per taste
- one with lasers on from 0.0-0.5s, one with lasers on from 0.7-1.2s, one with lasers on from
1.4-1.9s, and one with no lasers). To keep the total number of trials per session from ballooning
(a basic concern in taste research is the awake animal’s finite appetite), each set included only 8
trials (total, 128 trials per session). Again, we moved the opto-trode bundle 0.075mm ventrally
(deeper into GC) prior to each session, to ensure that we obtained fresh units in every session.

Trials were delivered in pseudo-random order. Each involved delivery of ∼40µL of fluid
through the IOC, for a total volume of 5mL per session.

2.1.6 Acquisition of electrophysiological data

We collected voltage samples from the implanted neural and EMG electrodes at 30kSamples/s
using 32 channel analog-to-digital converter chips (RHD2132) from Intan Technologies. These
chips are capable of recording voltage signals over a wide range of frequencies (0.1Hz-20kHz)
and amplitudes (microvolts to millivolts), thereby enabling us to record neural and EMG signals
through the same hardware system. The experimental chamber was ensconced in a Faraday
cage that shielded recordings from external electrostatic and electromagnetic influences.

2.1.7 Histology and evaluation of GFP expression

In preparation for histology, rats were deeply anesthetized with an overdose of the ketamine/xylazine
mixture, after which DC current (7µA for 7s) was passed through selected microwires, marking
the area below the electrode tips. We perfused the rats through the heart with 0.9% saline
followed by 10% formalin and harvested the brain. The brain tissue was incubated in a fixing
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mixture of 30% sucrose and 10% formalin for 7 days before GC was sectioned into 50µm coronal
slices.

We rinsed the slices 3 times with 1X-PBS over 15 minutes and permeabilized them in a
0.3% Triton X-100+1% normal Donkey serum+1X-PBS blocking solution for 2 hours at room
temperature. We replaced the blocking solution with primary antibody solution (1:500 anti-
GFP-rabbit IgG; Life Technologies) for 12 hours at 4◦C. After incubation with the primary
antibody, the slices were rinsed with 1X-PBS 3 times over 15 minutes followed by incubation
with the secondary antibody incubation of (1:200 Alexa Flour 488 donkey anti-rabbit IgG
(H+L); Life Technologies) for 12 hours at 4◦C. After a final set of rinses with 1X-PBS (3 times
over 15 minutes), we mounted the slices on charged glass slides and cover-slipped them with
Fluoromount Aqueous Mounting Medium. Slices were imaged with a Keyence fluorescence
microscope to confirm successful virus infection and opto-trode location for each animal.

The spread of AAV in GC was evaluated via the expression of GFP, as done previously
(Maier et al. (2015); Li et al. (2016); Flores et al. (2018)).

2.2 Data analysis

Most statistical analyses were performed using Bayesian methods implemented in the PyMC3
probabilistic programming package (Salvatier et al. (2016)). The Bayesian framework entails
the construction of flexible models of the data-generating process, and allows inference of the
posterior distribution of the model parameters in light of the data actually observed (McElreath
(2015)). We performed inference in these probabilistic models using the No-U-Turn-Sampler
(NUTS; Hoffman and Gelman (2014)), a Markov Chain Monte Carlo (MCMC) algorithm that
draws samples from the posterior efficiently. We confirmed the convergence of the sampling
process by running multiple sampling chains per analysis and computing the Gelman-Rubin R̂
statistic (Gelman et al. (2011)) - R̂ close to 1 (we allow values from 0.99 to 1.01) indicates that
the sampling runs have converged and produced samples from the same posterior distribution.
Finally, the results of the analyses are reported as 95% credible intervals for all inferred pa-
rameters. Credible intervals serve inherently as significance tests - for instance, a 95% credible
interval that does not overlap 0 indicates statistical significance at the 5% level.

2.2.1 Single unit isolation

We designed a spike sorting toolbox in Python for electrophysiological data recorded using the
Intan system. In brief, we followed a semi-supervised spike sorting strategy: the voltage data
was filtered between 300-3000Hz and a Gaussian Mixture Model (GMM) identified potential
clusters which were refined manually. For more details on our spike sorting methods and its
efficacy in isolating single units, please consult Mukherjee et al. (2017). Our spike sorting code
is freely available at blech_clust.
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2.2.2 Impact of optogenetics on neural firing

We built a hierarchical Poisson generalized linear model (GLM) for the spiking of a single neuron
to evaluate the impact of optogenetic perturbations on firing. Hierarchical GLMs provide precise
estimates of condition-specific model parameters, especially when they are expected to vary
around condition-agnostic means. In our case, the model parameters are the mean firing rates
for every taste and optogenetic condition, that are in turn composed of taste- and optogenetic-
specific effects (“random effects") and means across tastes and optogenetic conditions (“fixed
effects"). Coupled with the Poisson distribution’s suitability for count (here spikes) data, this
model can accurately estimate the change in neural firing induced by optogenetic perturbations.

For each neuron n in our dataset, we aggregated its spikes on trial i of taste T in optogenetic
condition O. There were 4 levels for T corresponding to the tastes in our dataset: Dil Suc, Conc
Suc, Dil Qui and Conc Qui. The number of levels for O depended on the type of optogenetic
perturbation being delivered in the session. In the 2.5s perturbation sessions, O had two levels,
corresponding to the laser off (control) and on trials respectively. The 0.5s perturbation sessions,
on the other hand, had 3 types of perturbations - starting at 0s, 0.7s or 1.4s after taste delivery.
The 0.5s sessions, therefore, had 6 levels for O: a “laser off-laser on” pair for each of the 3 types
of perturbations. Our model posits that the aggregate number of spikes Sn,i,T,O is Poisson-
distributed with a mean (firingn,T,O) that depends on the taste (µT ), optogenetic condition
(µO) and an interaction between the taste and optogenetic condition (µT,O). As described above,
owing to the hierarchical structure of the model, each of these effects is further composed of a
fixed effect and a random effect. Using weakly informative Gaussian and Half-Cauchy priors
for the mean and variance parameters respectively, our model formally says:

Fixed effects: F1, F2, F3 ∼ N (0, 10)

Variances: σ1, σ2, σ3 ∼ HalfCauchy(1)

Taste-specific means: µT ∼ N (F1, σ1)

Optogenetics-specific means: µO ∼ N (F2, σ2)

Taste-and-optogenetics-specific means: µT,O ∼ N (F3, σ3)

Mean firing rate (with log link): log(firingn,T,O) = µT + µO + µT,O

Observed number of spikes: Sn,i,T,O ∼ Poisson(firingn,T,O)

(1)

As explained in the introduction to the data analysis section, we used MCMC to sample the
posterior distribution of firingn,T,O for every taste and optogenetics condition. We performed
this analysis for every neuron in our dataset and finally calculated the impact of optogenetics
on firing as the difference in firingn,T,O between laser off (control) and their corresponding
laser on trials. If the 95% confidence interval for these differences in firingn,T,O for a neuron
did not overlap 0, we concluded that the optogenetics significantly impacted the firing of this
neuron.
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2.2.3 Correlation of single neuron firing with palatability ranks

We analyzed the time course of palatability-related information in the activity of single neurons
by regressing their firing rates on the palatability ranks of the tastes (Dil Suc: 3, Conc Suc:4,
Dil Qui: 2, Conc Qui: 1; higher is more palatable). In order to estimate the firing rates of
neurons, we aggregated the spikes of each neuron, on a trial-by-trial basis, in 250ms bins moved
by 25ms steps. We divided the aggregate number of spikes by the width of the bins (250ms) to
obtain the near-instantaneous firing rate of each neuron across time on individual trials.

These firing rates, of course, are likely to be very different between neurons. Furthermore,
palatability-related firing may come in multiple forms - the correlation between firing rate and
palatability ranks might be positive or negative (assuming that it isn’t essentially 0) for different
neurons, and be deemed similarly palatability-related. We therefore needed to perform a 2-
stage transform on neural firing before we could analyze the neurons together in our regression
analysis. The first step was standardization - we transformed the firing rate of every neuron in
each time bin by subtracting the trial-averaged firing rate of the neuron in that time bin and
scaling by its standard deviation across trials (to get z-scores), ensuring that the firing rates
of all neurons were on a comparable scale. Next, we multiplied the standardized firing rate
of each neuron by the sign of the time-averaged Spearman correlation coefficient between its
firing and the palatability ranks. This ensured that the sign of the relationship of neural firing
with palatability was the same for all neurons in our dataset, but left the magnitude of that
relationship unaffected.

Our statistical model treats the standardized firing rate firingt,P,i of a neuron at time
bin t on trial i of a taste with palatability rank P as Gaussian-distributed with a mean µt,P

that depends linearly on P . We defined the palatability index in time bin t, βPalatability,t, as
the change in µt,P induced by a unit change in P . βPalatability,t is, therefore, the slope of the
line that explains µt,P in terms of P , an estimate of the strength of the firing-palatability
relationship. Using weakly informative Gaussian and Half-Cauchy priors for the mean and
variance parameters respectively, our model formally says:

Prior on palatability index: βPalatability,t ∼ N (0, 1)

Prior on observation noise: σ ∼ HalfCauchy(1)

Mean firing rate: µt,P = βPalatability,t × P

Firing rate: firingt,P,i ∼ N (µt,P , σ)

(2)

We used MCMC to infer the posterior distribution of βPalatability,t across all neurons in our
dataset (refer to the introduction of the data analysis section for more details on the use of
Bayesian inference in our analysis). The firing rate transformations defined previously put
the activity of all neurons on a comparable scale and allowed us to infer a single posterior
distribution of βPalatability,t across all the neurons in our dataset. We repeated this regression
for each time bin t from 0.25s before to 1.5s after taste delivery, obtaining posterior estimates
of βPalatability,t specific to each time bin. Finally, we normalized βPalatability,t by subtracting
its average baseline value (from 0.25 to 0s before tastes). We report the baseline-normalized
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βPalatability,t as the palatability index βPalatability.

2.2.4 Characterizing the time course of the palatability index

Similar to Sadacca et al. (2016), we modeled the time course of the posterior mean of the single
neuron palatability firing index, βPalatability, with a logistic sigmoid. The difference between the
lower and upper asymptotes of the S-shaped logistic function fits the total rise in βPalatability

across time, while its slope describes the rate of this rise. As βPalatability was already normalized
to its average pre-stimulus value, we set the lower asymptote of the logistic function to 0. With
weakly informative Gaussian priors (restricted to positive values) on the upper asymptote (L),
slope (k) and inflection time (t0, ms post taste delivery) of the logistic sigmoid, our model is
as follows:

Prior on upper asymptote: L ∼

N (0, 0.1) L > 0

0 otherwise

Prior on slope: k ∼

N (1, 1.0) k > 0

0 otherwise

Prior on inflection time: t0 ∼

N (675ms, 75ms) t0 > 0

0 otherwise

Prior on observation noise: σ ∼ HalfCauchy(1)

Mean palatability index: βPalatability(t) ∼ N (
L

1 + e−k(t−t0)
, σ)

(3)

We defined the peak of the palatability firing index, tpeak, as the time (post taste deliv-
ery) when βPalatability reached 95% of its maximum value, L. We transformed the posterior
distributions of L, k and t0 to get tpeak (inferred using MCMC) as follows:

tpeak =
ln 95

5

k
+ t0 =

ln 19

k
+ t0 (4)

2.2.5 Modeling and changepoint identification in ensemble firing data

As described in the Introduction (and Discussion), previous analyses reveal that GC population
activity in response to a taste consists of a sequence of 3 coherent, suddenly-appearing ensemble
states (Katz et al. (2001), Sadacca et al. (2016), Li et al. (2016)) in which firing rates code, in
turn, for taste presence, taste identity, and taste palatability; the transition into this last state
has particular relevance for the prediction of palatability-related behavior in single trials, and
is the subject of this study. While identifying these sequences typically requires several passes
through a dataset made up of many identical (i.e., unperturbed) trials, the good deal of work
already done on the nature of these states (see also Jones et al. (2007) and Moran and Katz
(2014)) renders it possible (for the purposes of the current study) to more concretely define this
process as involving sudden coherent changes of ensemble firing into states, listed in their order
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of occurrence, in which the recorded ensemble has the following properties (also see Figure 6):

1. Detection state: The same distribution of population activity for all the tastes, indi-
cating taste presence on the tongue.

2. Identity state: 2 distinct distributions of population activity, for the 2 taste identities
in our experiments (Suc and Qui).

3. Palatability state: 4 distinct distributions of population activity, for the 4 taste palata-
bilities in our experiments (Dil Suc, Conc Suc, Dil Qui and Conc Qui).

With this characterization we were able to design a relatively simple changepoint model
that allowed us to detect these coherent transitions in population activity in individual trials.
We first prepared the data for the changepoint model by aggregating the spikes of each neuron
in each trial into 10ms non-overlapping bins, indexing each neuron recorded in a session with
a scalar i running from 0 to the number of neurons in the session N . We then converted the
aggregate spiking data to a categorical format by marking each time bin by the index S of the
neuron that spiked in that bin, with S = 0 corresponding to no spikes from any neuron. If more
than one neuron spiked in a time bin - a highly uncommon occurrence, given the relatively low
firing rates of GC neurons and the small (10 ms) bins being used - we randomly selected one
of the spiking neurons for assignment to that bin (Jones et al. (2007); Sadacca et al. (2016)).

With the (processed) categorical spiking data in hand, we now designed a changepoint model
to describe the ensemble firing in each of the 3 states (listed above) as categorical distributions
with N+1 emissions, with 1, 2 and 4 such distributions corresponding to the detection, identity
and palatability states respectively. We analyzed 1.5s of ensemble activity post taste delivery
from each of the 4 optogenetic conditions in the 0.5s perturbation sessions. For the control
(laser off) trials, this corresponded to 0-1.5s of firing after taste delivery. On the perturbed
trials, we ignored the 0.5s of activity when the lasers were on - for example, we analyzed 0.5-2.0s
of firing post tastes when the lasers were on from 0-0.5s. In the resultant 1.5s of activity, we
assumed that the change from detection to the identity state, CI , happens anywhere in the
interval [0.2s, 0.6s] (except the 0-0.5s perturbation trials, where the identity state can start
earlier at 0.1s). The second changepoint, CP , from identity to palatability firing was assumed
to occur anywhere in the interval [CI+0.2s, 1.3s] (except the 0.7-1.2s perturbation trials, where
the palatability state can start earlier at CI+0.1s). This is equivalent to placing uniform priors
over the intervals that define CI and CP , and corresponds to the timing of sudden, coherent
firing rate transitions in GC ensembles (Jones et al. (2007), Sadacca et al. (2016)).

CI and CP are, therefore, latent variables of the changepoint model that control the prob-
abilities of the emissions actually observed. The Expectation-Maximization (EM) algorithm is
a widely used approach to perform inference in such models with latent variables - for stability
and speed issues, however, we used a “hard-assignment” version of EM to fit the changepoint
model (Bishop (2016)). Starting with a randomly chosen set of initial emission probabilities
αD, αI and αP for the categorical emissions that define the detection, identity and palatability

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 3, 2018. ; https://doi.org/10.1101/486043doi: bioRxiv preprint 

https://doi.org/10.1101/486043


states respectively, the EM algorithm for our changepoint model repeatedly cycled between 2
steps:

1. “Hard” E-step: Pick the combination of the latent variables, CI and CP , that has
maximum posterior probability given the observed categorical spikes S and the ensemble
firing probabilities αD, αI and αP . We directly pick the mode of the joint posterior
distribution of CI and CP in our hard-assignment version of the E-step instead of taking
their expectations/means.

2. M-step: Set the categorical firing probabilities for each state to values that maximize the
likelihood of the data given the (CI , CP ) pair picked in the E-step. This is proportional
to the number of emissions of each neuron in that state. For example, with St as the
emission observed at time t, the likelihood-maximizing emission probabilities of neuron
n can be calculated as:

In detection state: αD,n =

CI∑
t=1

1(St = n)

N∑
n=1

t=CI∑
t=1

1(St = n)

In identity state: αI,n =

CP∑
t=CI

1(St = n)

N∑
n=1

CP∑
t=CI

1(St = n)

In palatability state: αP,n =

1.5s∑
t=CP

1(St = n)

N∑
n=1

1.5s∑
t=CP

1(St = n)

(5)

where 1 is the unit function that is 1 when St = n and 0 otherwise.

In order to deal with the possibility that EM can get stuck at sub-optimal local maxima of log
likelihood, we ran the algorithm from 100 different random initializations of the α parameters.
We monitored the log likelihood of the data given the model parameters and ran the algorithm
to a convergence threshold of 10−8 (or a maximum of 300 iterations). Finally, we picked the
run with the maximum log likelihood at convergence and reported the changepoints (and their
posterior probabilities given S and α) found on this run.

2.2.6 Measuring aversive orofacial behaviors (gapes)

Bitter (e.g., Quinine) tastes cause rats to produce an orofacial behavior known as “gaping”, the
purpose of which is to maneuver the offending substances to the front of the mouth for possible
egestion. As such, gapes index the fact that the neural processing of the bitter taste has in
a certain sense reached completion - the rat has “decided” that it does not want to ingest the
taste. The occurrence of gapes can be measured in a number of ways, the most common of
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which is via human coding of video recordings - in the best of circumstances, gapes are readily
visible as large yawn-like movements.

Of course, the best of circumstances often fail to occur in rats free to move and rear.
This fact, and the difficulty of getting precise measures of gape onset time from a visual record,
renders video coding of gapes suboptimal for our purposes. Much more objective and less noise-
ridden is evaluation of jaw electromyography (EMG), in which individual gapes are recognizable
as particularly large-amplitude and large-duration electrical bursts (Figure 4A1-A2). We have
previously built a quadratic classifier to detect these bursts in ongoing anterior digastric EMG
signals, achieving 75% accuracy (Li et al. (2016)).

Even this approach has somewhat troubling limitations, however, as its limited accuracy
indicates. This limited accuracy stems from the facts that: 1) not all high-amplitude jaw
movements are gapes; and 2) gapes vary widely in amplitude, and in fact some are small enough
to appear similar in size to many other mouth movements (see Figure 4A1-A2). In practice,
both types of variability leave the classifier subject to false positives that must be somehow
recognized and removed - the former most notably at the beginning of trials (when the taste
hits the tongue, causing 1-2 relatively large-amplitude licks), and the latter in responses to
Sucrose (among other situations).

One solution to these problems involves making simultaneous recordings from multiple jaw
muscles, but pilot experiments left us concerned that such drastic infiltration of the jaw can
compromise normal movement, which would make interpreting our results difficult. Instead, we
decided to take advantage of another, more robust feature of gaping: the fact that gapes occur
in 4-6 Hz “bouts” of anterior digastric activity (Travers and Norgren (1986), Li et al. (2016)).
While identifying gaping bouts as time periods during which this rhythmicity dominates the
EMG signal is also imperfect - it is probabilistic and involves smoothing across time - it solves
most of the problems described above.

We instantiated just such an procedure here, applying a Bayesian spectrum analysis that
estimates the posterior probability that a 4-6Hz rhythm underlies a short time series of EMG
activity (see below for technical details). By this analysis, the probability of gaping to any
taste is modestly elevated at trial onset (because of the initial large-amplitude licks), but it
quickly drops to effectively zero for Sucrose, contributing nothing to the overall calculation of
when gaping begins. On Quinine trials, in contrast, the probability accords well with gape
bouts (Figure 4B1-B2), rising precipitously and reliably just prior to the first gape (detected
in a subset of data with both video recordings and the quadratic classifier, Figure 4D).

Finally, as both the probability and onset of gaping behavior differs between Dil and Conc
Qui (Grill and Norgren (1978a), Travers and Norgren (1986)), we defined the overall average
gaping latency as the difference between the two individual time distributions of gaping prob-
ability, which can be statistically assessed as the Kullback-Leibler (KL) divergence (again, see
technical details below). Not only does this procedure calculate the onset of aversive orofacial
behavior in terms of when the two (differently) aversive tastes in our battery can be distin-
guished on EMG, it provides a natural threshold for this comparison. By pitting the two Qui
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concentrations against each other, this method gets rid of most of the nonspecific gape-like
EMG activity (mentioned above) which is of similar magnitude on both Dil and Conc Qui
trials and does not contribute to the gape onset calculation. Contrary to previous methods,
which (usually) removed trials where gapes could not be reliably detected from further analysis,
this algorithm combines EMG data from all the trials available and avoids statistical compar-
isons between conditions with very different sample sizes. Thus, at the cost of being unable to
precisely detect the specific timing of later gapes in a bout, this procedure provides a robust
estimate of the average timing of the first gape.

Bayesian spectrum analysis (BSA) of EMG recordings As detailed previously, we
recorded voltage signals from 2 unipolar EMG electrodes implanted in the anterior digastric
muscle at 30kSamples/s. We used the difference in the voltage recorded by the 2 electrodes
as the EMG signal - this procedure helps to cancel out any large artifacts produced by the
animal’s movements and is equivalent to using a differential amplifier (as done in Li et al.
(2016)). We down-sampled the EMG signal to 1000Hz by averaging the voltage values in
sets of 30, and highpass filtered the down-sampled signal above 300Hz (Travers and Norgren
(1986); Li et al. (2016)) using a 2nd order Butterworth filter. The absolute value/magnitude of
the filtered EMG signal was then lowpass filtered (again using a Butterworth filter of order 2)
below 15Hz, effectively capturing the envelope of variation of the EMG signal. This cutoff of
15Hz is sufficient for identifying orofacial behaviors, all of which occur at frequencies smaller
than 10Hz (Grill and Norgren (1978a); Li et al. (2016)).

We subjected the envelope of the EMG signal to Bayesian spectrum analysis (BSA). BSA
involves the construction of a probabilistic model of the generation of periodic signals from
the superposition of sinusoids of different frequencies. We divided the signal on each trial
into bins of width 300ms, with a step size of 1ms. We assumed that the EMG signal in each
bin is produced by a sinusoid of a single frequency (plus noise) - in a probabilistic setting,
this assumption implies the same model as a discrete-time Fourier transform. Contrary to
the Fourier transform, however, BSA infers the posterior distribution of frequencies given the
data. BSA has been shown to provide posterior estimates of frequencies that are an order of
magnitude more precise than the Fourier transform (Bretthorst (2013); Granqvist et al. (2011)).
We used the BaSAR R package for BSA (Granqvist et al. (2012)) and calculated the posterior
probabilities of frequencies from 1Hz to 10Hz in 20 steps for each 300ms wide bin of data.

Identifying the mean onset of aversive orofacial behavior Rats respond to intra-oral
deliveries of Qui in the concentration range used in our experiments (10−4 to 10−3M) with
an initial set of non-specific investigative licks that are followed by large, jaw-opening mouth
movements called gapes (Grill and Norgren (1978a), Figure 4A1-A2). Gapes primarily involve
activity of the anterior digastric muscle at 4-6Hz (Grill and Norgren (1978a), Li et al. (2016))
- we, therefore, used the probability of movements at 4-6Hz in the digastric EMG signal (from
BSA, see previous section) as the probability of gaping (PrGape). This spectral measure of
PrGape has a strong correspondence with a previously-defined (and above-discussed quadratic
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classifier that tags individual mouth movements as gapes (Li et al. (2016)). On individual Qui
trials (Figure 4B1-B2), PrGape from BSA is high (close to 1.0) when the quadratic classifier tags
mouth movements as gapes. In addition, the average probability of gaping (PrGape) from BSA
(Figure 4C1-C2) is very similar to an across-trial, peri-stimulus average of the gapes picked
by the quadratic classifier. In contrast to the quadratic classifier, however, the BSA measure
of PrGape is based entirely on the spectral content of the EMG signal. It, therefore, does not
require the construction of a sufficiently complex classifier function (with a large enough set of
experimenter-tagged examples to train the classifier) to pick out individual gapes. This also
ensures that BSA considers bouts of movements together while calculating PrGape, making it
robust against isolated large amplitude movements early in the animal’s orofacial response.
These initial movements were often found to be large licks on video and limited the accuracy
of the quadratic classifier in Li et al. (2016) to 75%.

The probability of the transition from the rats’ initial investigative licks to gapes depends
on the concentration of Qui delivered: 10−3M (Conc Qui) elicits gapes on more than twice the
number of trials as 10−4M (Dil Qui) (Grill and Norgren (1978a), Li et al. (2016)). Comparison
of PrGape on Dil and Conc Qui trials, thus, provides a natural way to calculate the mean onset
of gaping across all the Qui trials in an experimental condition. We expect the distribution
of PrGape on Dil Qui trials to be similar to that on Conc Qui trials in the investigative licking
phase. Once gaping starts, however, we expect a large difference in the distributions of PrGape

on Dil and Conc Qui trials. PrGape on Dil Qui trials, therefore, acts like a baseline for PrGape

on Conc Qui trials: we conclude that gapes have started only when PrGape of Conc Qui begins
to differ significantly from this baseline.

We used Beta distributions to describe PrGape on Dil and Conc Qui trials. The Beta dis-
tribution is commonly used to model the probability parameter of a Bernoulli (1/0) process1.
Gaping being a Bernoulli process, the Beta distribution is an appropriate choice for model-
ing PrGape. We defined one such Beta distribution in each time bin for Dil and Conc Qui
separately, parametrized by the number of trials where the animal was gaping (PrGape >

0.5) or not (PrGape < 0.5). The Kullback-Leibler divergence of these Beta distributions
(DKL(Conc Qui||Dil Qui))2 provides a natural way to quantify the difference between PrGape on
Dil and Conc Qui trials and shows a sharp jump ∼1s post taste delivery (Figure 4E), consistent
with the timing of the transition from investigative licks to gapes (Grill and Norgren (1978a),
Travers and Norgren (1986), Li et al. (2016)). Finally, we calculated the cumulative sum of
DKL(Conc Qui||Dil Qui) across time: the jump corresponding to the mean onset of gaping is
expressed as a change in slope of the cumulative sum. We fit two straight lines to the cumu-
lative sum to capture this change in slope: the intersection of the two lines defines the mean
timing of the onset of gaping (Figure 4F).

1The Beta distribution for the parameter p of a Bernoulli process is expressed in terms of its concentration
parameters, α and β. α = observed number of 1s and β = observed number of 0s.

2The KL divergence between two Beta distributions with concentration parameters (α1, β1) and (α2, β2) can

be written as: DKL = log Γ(
j=2∑
j=1

αj)−
j=2∑
j=1

log Γ(αj)−log Γ(
j=2∑
j=1

βj)+
j=2∑
j=1

log Γ(βj)+
j=2∑
j=1

(αj−βj)(ψ(αj)−ψ(
j=2∑
j=1

αj)),

where Γ and ψ are the gamma and digamma functions respectively.
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3 Results

3.1 Experimental paradigm and data overview

Figure 1A depicts the preparation used for our experients - IOCs for taste delivery, bilateral GC
opto-trodes for recording of neural ensemble activity and delivery of laser light, and EMG elec-
trodes in the anterior digastric (jaw) muscle for simultaneous assaying of consumption-related
mouth movements. Four weeks prior to the surgery in which we installed these assemblies, we
had injected AAV carrying the optogenetic silencer ArchT (along with green fluorescent protein
- GFP) into GC. The latter allowed us to confirm (post-mortem) the expression of ArchT in
GC neurons by immunohistochemical verification of the GFP tag (Figure 1B).

The rats received intra-oral deliveries of 30mM sucrose (Dil Suc), 300mM sucrose (Conc
Suc), 0.1mM Quinine-HCl (Dil Qui) and 1mM Quinine-HCl (Conc Qui). On 3

4
of the deliveries

(i.e., trials), we inhibited GC neurons for 0.5s, beginning either at 0s, 0.7s or 1.4s post taste
delivery (Figure 1C). These three perturbation windows tile the period containing the temporal
epochs that characterize GC taste responses (Katz et al. (2001), Sadacca et al. (2012), Sadacca
et al. (2016)): more specifically, the earliest (0-0.5s) and latest (1.4-1.9s) inhibitions affect GC
neurons before and after the range of likely transition times into palatability-related firing,
which typically occur just before or during the middle (0.7-1.2s) perturbations. In a separate
set of experimental sessions (performed using the same rats), we inhibited GC across the entire
duration of the taste responses (0-2.5s post stimulus) (Figure 1C) as a control comparison for
the brief 0.5s perturbations.

We recorded the activity of 244 GC single units across 10 experimental sessions (24.4 ±
13 units/session) of 0.5s inhibition. We recorded the activity of an additional 73 GC single
units in 5 experimental sessions (14.6± 4.7 units/session) of 2.5s inhibition. The two types of
experimental sessions were counterbalanced, such that 3 of the 5 rats received 2.5s inhibition
sessions first, and 2 received 0.5s inhibition sessions first. No differences with order were noted.

The AAV-ArchT construct used in this study has been shown to infect neurons of multi-
ple types (e.g., pyramidal neurons and interneurons) in an unbiased manner (Aschauer et al.
(2013)). Our optogenetic inhibition protocol, therefore, can be thought of as a general pertur-
bation of the dynamics of GC neurons in response to tastes - a general perturbation that would
be expected (perhaps paradoxically) to enhance the firing of some neurons through network-
level effects (like disinhibition, via suppression of the firing of inhibitory neurons, Allen et al.
(2015)). This expectation was borne out in the data: the firing of most of the recorded GC
units (146/244, 60%, example unit in Figure 2A1-A4) was significantly suppressed when the
laser was switched on for 0.5s, but the firing of an additional 20% (49/244) was significantly
enhanced.

The same pattern of results was observed when the duration of optogenetic inactivation
was increased to 2.5s: the firing of 82% of GC neurons (60/73, example unit in Figure 2B1-
B2) was inhibited, and the activity of 15% (11/73) was enhanced. The fact that 2.5s of laser
stimulation appeared to inhibit a larger percentage of neurons is likely an artifact of analysis
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methods: suppression of the low firing-rates (3-10Hz) that dominate GC taste responses (Katz
et al. (2001), Jones et al. (2007)) can be difficult to detect, particularly in short windows;
consistent with this, we observed that the highest likelihood of detecting suppression in 0.5s
perturbation sessions occurred when that perturbation was delivered in the middle of taste
processing (0.7-1.2s, Figure 2C) - at the time of peak firing rate modulations. With 2.5s of
inactivation, which covered the entirety of GC taste responses, we naturally had the power to
detect suppression in a larger fraction of neurons (Figure 2D).

Although this specific optogenetic protocol cannot be used to answer cell-type/microcircuit-
specific questions, its network-wide effects are ideal for testing the dynamical systems nature of
taste processing in GC (the purpose of the current work): GC taste responses evolve through a
sequence of temporal epochs (Katz et al. (2001)) which have the hallmarks of emergent, quasi-
stable states of a system that can be speculatively described, at a high level, as an attractor
network (Jones et al. (2007), Miller and Katz (2010), Sadacca et al. (2016)). Our optogenetic
protocol brings about a massive perturbation of the network activity characterizing these stable
states; by mapping the state dependence of the effects of these perturbations, we are able to
directly test the proposed existence of these attractor states.

3.2 Early perturbations delay single neuron palatability responses

while late perturbations do not

We first assessed the impact of optogenetic perturbation on the palatability-related content
of GC taste responses that had been smoothed (using 250ms-wide windows moved in 25ms
steps) and standardized to be on a uniform scale (see Materials and Methods for details). The
set of responses (1 per taste) were regressed against the palatability ranks of the taste stimuli
(Conc Suc:1, Dil Suc:2, Dil Qui:3, Conc Qui:4) to obtain a palatability index, βPalatability. This
Bayesian regression analysis gives access to the entire posterior distribution of βPalatability at
every time point; we can, therefore, conclude that βPalatability is significantly different from 0
if the 95% credible interval of its posterior distribution does not overlap 0 (marked by dots in
Figure 3A). We used logistic sigmoid functions to better characterize the time evolution of the
posterior mean of βPalatability (shown with dashed lines in Figure 3A). We defined the size and
latency (time to attain 95% of maximum size) of the upper asymptote of the logistic fit as the
magnitude and latency of the peak of βPalatability respectively.

As expected, the 2.5s perturbation had devastating impact on palatability responses of
neurons in the affected GC network (Figure 3A). In line with previous studies (Sadacca et al.
(2016)), βPalatability climbed to an asymptote ∼0.8s after taste delivery when the lasers remained
off. However, on trials where the lasers were switched on at the time of taste delivery and left
on for 2.5s, βPalatability never rose significantly from 0. Note that the latency to peak palatability
firing seems comparable in the two conditions (blue bars in Figure 3B), but that the magnitude
of the peak is effectively 0 when GC neurons are being perturbed (red bars in Figure 3B). The
long perturbation, therefore, appears to impact the entirety of the GC taste response.

The impact of brief (0.5s) perturbations on the palatability content of GC taste responses
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was smaller in magnitude, but could be quite dramatic with regard to peak timing, depending on
when the perturbation occurred (Figure 3C). In these sessions, just as in the 2.5s perturbation
sessions, βPalatability peaked ∼0.8s after taste delivery when the lasers were left off. Furthermore,
neither the timing nor the magnitude of this peak were significantly affected by perturbation
of GC neurons in the later part of the taste response (1.4-1.9s, after palatability-related firing
had mostly emerged). In contrast, if activity was perturbed for the first 0.5s of the GC taste
response, the palatability content of this response did not reach asymptote until ∼1.3s, a lag of
almost 0.5s compared to the control condition (laser-off trials). Surprisingly, despite delaying
the peak of βPalatability, the early perturbation did not affect its later emergence - if anything,
the magnitude of the peak was larger in this condition (red bars in Figure 3C). The 0-0.5s
perturbation, thus, appears to produce a transient shift out of the attractor dynamics of the GC
taste response followed by relaxation back into the stable state at the end of the perturbation.
The variability in the relaxation process itself (like overshooting the stable point, depending
on the speed of relaxation) could easily explain the apparent increase in the magnitude of the
peak palatability index in this condition.

Finally, 0.5s perturbations delivered in the middle of the taste response (0.7-1.2s) had a
powerful impact on GC palatability-related firing: the magnitude of the peak of βPalatability

was significantly lower in this condition (red bars in Figure 3C); the latency of this peak,
meanwhile, was (like that produced by earlier perturbations) about 0.5s later than no-laser
trials. The former effect was unsurprising, as this particular perturbation overlaps the heart
of palatability related activity in GC neurons (Katz et al. (2001), Sadacca et al. (2016)). The
impact of this GC perturbation was short-lived, however, and did not prevent the palatability
content of GC responses to rise to a late asymptote once the lasers were switched off.

3.3 GC perturbation delays the onset of aversive orofacial behavior

We monitored our rats’ mouth movements via electromyography (EMG). Specifically, we im-
planted EMG electrodes in the anterior digastric muscle; as a jaw moving muscle, the anterior
digastric plays a major role in driving “gapes”, the rhythmic orofacial behavior that serves to
move aversive tastants to the front of the mouth in preparation for expelling. Far less accessi-
ble tongue muscles underlie mouth movements that support behaviors (such as “lateral tongue
protrusions”) that help the rat prepare to ingest appetitive tastants (Grill and Norgren (1978a),
Travers and Norgren (1986), Li et al. (2016)). For that reason, we focus solely on gapes in this
study.

Individual mouth movements can be recognized as bursts of anterior digastric EMG activity
(Figure 4A1-A2). However, the variability in the amplitudes and durations of these EMG bursts
limits their usefulness in separating gapes from other large mouth movements. We, therefore,
made use of a more robust feature of gaping – the fact that gapes occur in 4-6Hz bouts of
several large mouth movements (Travers and Norgren (1986), Li et al. (2016)). We analyzed
the spectral content of the envelope of the EMG signal using Bayesian spectrum analysis (BSA;
see Materials and Methods for a detailed discussion) and measured the probability of gaping
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as the total posterior probability of 4-6Hz movements.
On individual Qui trials (Figure 4B1-B2), this estimate of the probability of gaping has

strong correspondence with the onset latency of gaping bouts identified by a classifier trained
on individual bursts of EMG activity (Li et al. (2016)); the trial-averaged probability of gaping
calculated by BSA and the classifier are also similar, for both trial types in which gaping
occurred (Dil and Conc Qui trials, Figure 4C1-C2). Finally, the fact that the probability of
gaping jumps precipitously right before the first gape (as identified both on video and by burst-
based classification, Figure 4D) confirms this algorithm’s reliability in identifying periods of
gaping in the EMG signal (see Materials and Methods for more details).

With this information in hand, we were able to investigate the effects that perturbations of
GC activity have on the animals’ rejection of aversive Qui, first showing that gaping on average
begins ∼0.9 sec after Qui delivery, when analysis is restricted to the 25% of trials in which the
laser was off (i.e., trials in which GC neurons were not perturbed, (Figure 5)A). This latency
is consonant with a great deal of research using video analysis (Grill and Norgren (1978a))
or classic burst-oriented analysis of EMG (Travers and Norgren (1986)). Furthermore, this
estimate matches that observed in control rats (published in Sadacca et al. (2016) and Li et al.
(2016)) that received neither laser nor ArchT expression - thus we are able to conclude that,
at least with regard to the driving of gaping, 0.5 sec of optogenetic inactivation does not have
an impact on GC that alters later trials.

While previous work has shown that this onset of gaping closely follows the appearance
of palatability-related firing in GC (which happens suddenly and coherently across neurons in
single trials, see below and Sadacca et al. (2016)), GC does not seem involved in controlling the
mechanics of individual gapes when they occur (Grill and Norgren (1978b), Li et al. (2016)).
We therefore predicted that GC perturbations occurring well after the time of palatability
appearance would have minimal impact on gaping behavior. In fact, our data show that rats
gaped normally, with gape bouts beginning at approximately the same time as in control (no
laser) trials, if perturbations arrived late in the trial (1.4-1.9s, Figure 5B). Further analysis
(not shown) confirmed that this late perturbation failed to end gaping bouts that had already
begun. GC, therefore, appears not to be required for the maintenance of gaping.

In contrast, GC plays a clear role in the initiation of gaping. GC perturbations timed to
occur before (0-0.5s) the emergence of palatability information in GC activity, for instance,
delayed gaping onset by approximately 0.25s on average (Figure 5B). This delay cannot be
explained in terms of removal of early gaping (which seldom occurred as early as 0.5s after
taste delivery) - an analysis of control (no laser) trials showed that removing latencies of less
than 0.5s did not change the mean onset time of gaping significantly. The much more likely
explanation is that GC inhibition (which is inevitably partial, see Discussion) perturbs the
ongoing process that leads to the release of a “decision to gape” signal visible in GC (Sadacca
et al. (2016)); these data therefore confirm the involvement of GC in this process.

Similarly, GC perturbations timed to occur squarely around the time of the neural state
change associated with behavior (0.7-1.2s; see Sadacca et al. (2016)) delayed the onset of gaping
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until just less than 1.2s after taste administration - approximately 0.25s after gaping on control
trials and in control sessions. Not only was this impact of brief optogenetic perturbation
significant, it was every bit as large as that observed with whole-trial (i.e., 2.5s) perturbations,
which delayed the appearance of gaping by ∼0.2s without significantly altering the overall
fraction of trials on which gapes occurred (data not shown). These long perturbations are not
discussed further, because they had the additional unintended consequence of impacting gaping
behavior on control trials (see Figure 5A and Discussion). That is, a range of brief disruptions
of GC activity occurring in the first 1.2s of quinine processing had strong and similar impacts
on the triggering of aversive orofacial behavior.

3.4 GC perturbation affected orofacial behavior only if it was deliv-

ered before the onset of palatability-related ensemble activity

We have previously demonstrated that changes in firing rates of GC neurons - changes that
appear gradual in trial-averaged analysis - occur as sudden transitions between (primarily two)
ensemble firing rate “states” (Jones et al. (2007)). Furthermore, not only are the temporal dy-
namics of GC taste responses better described in terms of transitions between these two states;
in addition, the onset time of the latter state, which is laden with information about stimulus
palatability and appears, on an average, around the time when single neuron palatability-
related firing peaks (∼1s post stimulus, Figure 3), is highly predictive of the latency of gaping
on single trials (Sadacca et al. (2016)). Trial averaging smears the firing data into a gradual
“ramp” because these transitions happen at wildly different latencies on different trials.

We timed our 0.7-1.2s perturbations to overlap with the transition into this palatability-
related ensemble activity state; due to the afore-described variable timing of this transition,
however, there are likely to be a subset of trials in which the ensemble state emerged before the
perturbation started at 0.7s. This fact affords us an opportunity: we predicted that the 0.7-1.2s
perturbation would impact gaping latency differently depending on whether the transition into
the late ensemble activity state had already occurred in that trial (and, by extension, that the
trial-averaged results in Figure 5B occlude our ability to see multiple effects).

While we have previously used Hidden Markov Models (HMMs) to detect ensemble activity
patterns in GC population responses to tastes (Jones et al. (2007), Moran and Katz (2014),
Sadacca et al. (2016)), this analysis is not amenable to the data in our study - the optogenetic
perturbations mean that HMMs do not have access to uninterrupted sequences of GC activity
and cannot converge to stable fits. Instead, we took advantage of the insights gained from our
previous publications (Katz et al. (2001), Fontanini and Katz (2006), Jones et al. (2007), Gross-
man et al. (2008)) to help us build a change-point model of GC population activity; specifically,
the model consisted of 2 activity change-points, the latter of which led into palatability-related
firing. This model constrained the general HMM framework in a way that allowed us to esti-
mate whether the transition into the behavior-related state had occurred prior to the onset of
optogenetic perturbation (i.e., 0.7s, see Figure 6 and Materials and Methods for details).

The distributions of transition times (identified by the change-point model) into the palatability-
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related ensemble state when GC neurons were perturbed from 0.7s to 1.2s post stimulus are
shown in Figure 7A for all Qui trials. As firing rates were suppressed during the perturbation,
we did not attempt to identify change-points when the lasers were on. The model found that
the palatability state emerged before the lasers were switched on at 0.7s on 55% of the trials
(92/168); on the remaining 45% of trials (76/168), the palatability change-point could be iden-
tified only after the laser was switched off at 1.2s. We confirmed that the early observed change
points were in fact transitions into the palatability-related ensemble state: regression analyses
revealed significant palatability information present before 0.7s in trial-averaged single neuron
firing (Figure 7B) for trials in which the ensemble state transition occurred prior to laser onset
time; this information was notably lacking in the remaining trials.

Finally, we divided these trials into two groups on the basis of the timing of this neural pop-
ulation transition and found, in line with our expectations, that identical 0.7-1.2s perturbations
had distinctly different effects on the onset of gaping for the two groups of trials (Figure 7C).
Perturbations that arrived before the ensemble transition delayed the onset of gaping by more
than ∼0.5s - that is, the average onset of gaping across this group of trials was > 0.2s after the
end of GC inhibition. This does not simply represent a truncation of the control distribution
of gaping latencies: we looked at gapes in control trials (both within brief inactivation sessions
and in sessions with no laser); even when we restricted ourselves to studying only the trials
in which gaping latency was later than 1.2s (the laser off time), the average gaping latency
(∼1.3s, i.e, about 0.4s later than no-laser trials) was still significantly less then that observed
in the subset of trials in which the ensemble transition failed to precede 0.7-1.2 GC inhibition.
In fact, only about 20% of no-laser trials lacked gaping-related EMG activity till as late as the
average latency in this particular group of laser-on trials.

Gaping in trials in which the ensemble transition to the high-palatability state preceded
the onset of GC inhibition at 0.7 occurred significantly earlier (Figure 7C). Contrary to our
expectation, however, gaping was somewhat delayed compared to the no-laser condition even in
these trials. As the ensemble state transition necessarily happens by 0.7s on these trials (i.e., far
earlier than the average transition time on control trials), we expected that the onset of gaping
would be similarly expedited. This was not the result that we obtained. We considered several
possible explanations for this result (see Discussion), the most reasonable of which seemed
the possibility that ensemble transitions are likely non-instantaneous (and/or that their onsets
are only noisily estimated by our change-point algorithm); if so, it is possible that transitions
identified as occurring at (or just before) 0.7s might actually not be completed until after GC
inhibition has begun, and that gaping on those trials is substantially delayed.

We tested this hypothesis, and found that indeed the delay in the onset of gaping can
be entirely attributed to the trials where the ensemble state transition is calculated to occur
between 0.65 and 0.7s. That is, the onset of gaping in trials in which the ensemble transition
happened at 0.65s or earlier occurred more than 300ms earlier than in control trials. This result
clearly shows that the onset of palatability-related population activity in GC marks a discrete
shift in taste processing; if the laser perturbation begins even 50ms after this state transition,
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it fails to impact the timing of aversive orofacial responses.
Thus, our results, taken together, demonstrate not only that the result of brief optogenetic

inhibition of GC depends on when within a single trial that inhibition occurs. In addition, they
show that: 1) the ensemble transition in taste-related firing that predicts behavior is in fact the
specific time at which the decision to gape is released; and 2) given the trial-to-trial variability
in the issuance of this decision, the result of reliably-timed brief optogenetic inhibition of GC
will vary from trial to trial - the impact of neural perturbation depends on precisely what state
the brain has achieved prior to that perturbation.
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4 Discussion

Perception and action are inextricably linked in cortical taste responses. Neurons in gustatory
cortex (GC), the primary sensory cortical area for taste, exhibit temporally dynamic responses
that gradually (across 2.5s post stimulus) shift from reflecting stimulus identity to predicting
a rat’s consumption decision in trial-averaged analyses (Katz et al. (2001), Fontanini and Katz
(2006)). Upon being subjected to ensemble analysis, these gradual changes in firing rate epochs
are revealed to be discrete and coherent transitions between population activity “states” (Jones
et al. (2007)) - transitions that are so variably timed that stimulus-aligned averages effectively
blur them out. Despite their highly variable latencies, these ensemble firing states reliably
precede the onset of ingestion-egestion mouth movements by ∼0.2-0.3s (Sadacca et al. (2016),
Li et al. (2016)) - predicting not only the nature but the latency of these movements in single
trials.

Here we show that the variably timed activity states of GC neural ensembles are not merely
“efferent copy” reflections of processes occurring elsewhere, but instead indicate processing
that is intrinsic to GC. We find that brief (0.5s) optogenetic perturbations of GC neurons
impact the timing of the animal’s decision to ingest or expel the taste in the mouth - but
only if the perturbations begin before the neural ensemble has shifted to palatability-related
firing. Thus, a unique moment in time (the shift of population activity to reflect stimulus
palatability) that is enormously variable from trial-to-trial reflects a tipping point in taste
processing; cortical disruptions have no impact beyond this tipping point, as the control of the
ongoing movements themselves shifts elsewhere (presumably to brainstem pattern-generators
that produce ingestion-egestion mouth movements soon after).

A massively interconnected network of brain regions underlies or reflects taste processing
- apart from GC, this network includes the central and basolateral nuclei of the amygdala
(CeA and BLA, Nishijo et al. (1998), Grossman et al. (2008), Fontanini et al. (2009), Sadacca
et al. (2012)), hippocampus (Stone et al. (2005), Ho et al. (2011)), lateral hypothalamus (LH,
Yamamoto et al. (1989), Li et al. (2013)), the nucleus of the solitary tract (NTS, Di Lorenzo
and Lemon (2000)) and bed nucleus of the stria terminalis (BNST, Norgren (1976), Li and
Cho (2006)). Several of these brain regions send direct descending feedback to the brainstem,
influencing both its activity (Di Lorenzo (2000), , Cho et al. (2003), Li et al. (2005), Baez-
Santiago et al. (2016)) and generation of orofacial movements (Zhang and Sasamoto (1990),
Shammah-Lagnado et al. (1992), Travers et al. (1997), Berridge and Valenstein (1991)). Given
this widely distributed network of processing nodes, it is to be expected that perturbation (or
disruption over long periods of time) of one (or a few) of the participatory nodes will initiate
homeostatic mechanisms that guard against the degradation of behavior; thus, it is unsurprising
that ablation (King et al. (2015)) or disruption of GC (Li et al. (2016)) has, at best, modest
effects on orofacial behavior - in fact, the basic gaping response to quinine is produced even
in decerebrate rats (Grill and Norgren (1978b)). Nonetheless, we find that brief perturbations
of GC do significantly alter these behaviors, proving that far more than the minimal circuit is
involved in triggering them in situ.
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Longer disruptions of GC activity appear to have spillover effects that can confound the
interpretation of their behavioral impact - our 2.5s long optogenetic perturbations delayed the
onset of gaping even on control (no laser) trials. Such spillover effects may reflect cellular or
network-level processes, but they cannot be attributed to cell death caused by the perturbation:
in our case, this optogenetic protocol has been shown to have no observable impact on cell
integrity in GC, even for perturbations much longer than 2.5s (Maier et al. (2015), Flores
et al. (2018)); furthermore, the same rats in later sessions produce normally-timed orofacial
responses on the control trials, despite the fact that gaping latencies were as altered by 0.5s
GC perturbations within those sessions as they were by 2.5s GC perturbations. We suggest
that such network-level effects on behavior reveal the widespread nature of taste processing,
and the status of GC as just one (important) participatory node.

Despite affecting just one node of this large network of brain regions, our brief perturbations
of GC uncover a temporally-specific role of cortex in driving (in a modulatory domain) orofacial
behavior - a role that could not be discerned through wholesale disruption of activity. Our 0.5s
perturbations reveal that GC contributes to the instigation of a gaping bout, but that GC
plays no role in the maintenance of gaping once it begins. These data point at a dynamic
flow of processing control within the larger taste network: modulatory signals propagate out
of GC (signals that likely develop under the guidance of basolateral amygdala; Piette et al.
(2012)) to influence the start of the motor program, which is then implemented and controlled
by brainstem circuits. At its heart, the role of cortex in this model of taste processing has deep
similarities to the role of neuromodulatory systems in the circuits underlying Aplysia feeding
(Dacks and Weiss (2013)), leech swimming (Crisp and Mesce (2004)), control of gastric rhythms
in the lobster and crab (Marder and Bucher (2007)), and rat whisking (Hattox et al. (2003));
in each, temporal aspects of rhythmic motor programs produced autonomously by a pattern
generating circuit are influenced by descending signals.

The discreteness, coherence and inter-trial variability of GC ensemble activity states has
attractor network-like features (Amit (1992), Hopfield (1982)). For one, attractor networks
with multiple quasi-stable states can reproduce the sudden switches of activity seen in GC
ensembles (Miller and Katz (2010)). In addition, the transition durations and state lifetime
statistics of GC population dynamics are more in line with a dynamically switching attractor
model than linear models of firing rate evolution (Jones et al. (2007), Sadacca et al. (2016)).
Finally, nonlinear attractor-based circuits that exploit the noise inherent in neural processing
more optimally perform the decision to ingest or expel a taste, which rats need no training to
perform, than do linear integrating circuits (Miller and Katz (2013)). Our optogenetic protocol,
with its mix of inhibitory and excitatory effects, presumably introduces a transient disruption
in such attractor dynamics; such a perturbation is strong enough to transiently “knock” the
network out of its quasi-stable sequence of states, but only if it hasn’t already settled into the
eventual, decision-related stable state.

The finding that the involvement of GC in the gape instigation process appears to last
almost precisely 50ms past the calculated transition times can be attributed to one (or many)
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of several reasons. Firstly, transitions between quasi-stable states of GC processing, however
discrete, are certainly not instantaneous - the time constants of neural firing ensure that there is
some finite (albeit small) amount of time across which the ensemble makes the “jump” from one
state of activity to another. In addtion, it is worth noting that both HMMs and change-point
analysis techniques provide only a noisy estimate of state transition times, even if the transitions
themselves were instantaneous. Finally, the change-point analysis model, by neglecting neural
activity while the perturbation is happening, artifactually detects change-points close to the
laser onset time on some of the trials, even if palatability firing actually began after the lasers
were switched off. All of these factors likely play into the delay in gaping latency observed in
the small subset of trials (28/168, 16%, Figure 7) with 0.7-1.2s perturbations where the lasers
were switched on within 50ms of palatability change-point; while many of these trials reflect
the non-instantaneous nature of transitions in ensemble activity patterns, (at least) some have
artifactual change-points before laser onset without palatability firing actually emerging at that
time.

In this study, we focused exclusively on gapes, the orofacial responses that rats make to
expel aversive tastes from the oral cavity. Pilot attempts to implant EMG electrodes in deeper
muscles that control licks (lateral tongue protrusions, LTPs) in response to palatable tastes
resulted in unacceptable levels of distress for the animals. Although there are suggestions that
gapes and LTPs can be produced by separate cortical mechanisms (Peng et al. (2015)), we
consider that possibility unlikely for several reasons: 1) GC ensembles reflect the palatability
of both appetitive and aversive tastes (Figure 3, Katz et al. (2001)) - even if palatability is
modified by learning (Moran and Katz (2014)); 2) the latency and inter-trial variability of
the onset of palatability-related ensemble activity is similar for palatable and aversive tastes
(Sadacca et al. (2016)); and 3) there is considerable overlap in the brainstem circuits that
underlie gapes and LTPs (Travers et al. (2000), Chen and Travers (2003), Venugopal et al.
(2007), Moore et al. (2014)), resulting in similar latencies in the onset of LTPs and gapes after
taste delivery (Travers and Norgren (1986)). These lines of evidence are consistent with the
suggestion that cortex plays similar roles in the initiation of LTPs and gapes, which leads us to
speculate that the transition of GC population activity to reflect stimulus palatability marks a
shift in processing control, irrespective of the palatability of the tastant.

In summary, the balance of our results demonstrate a dynamic role for cortex in the pro-
cessing of tastes; because this role involves ensemble activity states with variable trial-to-trial
latencies, it cannot be discerned using standard analyses that average across trials. They reveal
the importance of a unique moment in time that, despite being massively variable from trial to
trial, denotes a reliable shift of processing control out of cortical circuits - a modulatory signal
emerging (at least partly) from cortical circuits that is passed (presumably) to a brainstem cen-
tral pattern generator. These results point at an attractor-like network of activity, potentially
spread across interconnected brain regions, underlying the animal’s decision to ingest or expel
the tastant in the mouth - perturbations to this network can disrupt its functioning transiently,
but only if it has not yet settled into the final, behaviorally-relevant stable state.
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Figure 1: Experimental paradigm. A: Rats underwent surgeries for virus injections and im-
plantation of opto-trodes and EMG electrodes. Post recovery from surgeries, they were given
intra-oral infusions of Dil Suc (30mM Sucrose), Conc Suc (300mM Sucrose), Dil Qui (0.1mM
Quinine-HCl) and Conc Qui (1mM Quinine-HCl) while GC neurons were inhibited by shining
green (532nm) laser light on ArchT expressing GC neurons. B: Coronal slice from one of the
animals in the study. ArchT expression (visualized by the GFP tag) is localized in GC. A
lesion left by the tip of the opto-trode is visible in the middle of the GFP expressing region.
C: Inhibition protocol used in the study. We delivered two types of optogenetic perturbations,
short (0.5s) or long (2.5s), in separate experimental sessions.
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Figure 2: Impact of ArchT-mediated inhibition on GC neurons. A1-A4: Spiking rasters of an
example unit in the 0.5s perturbation condition. Activity is robustly suppressed during laser
stimulation. B1-B2: Spiking rasters of an example unit in the 2.5s perturbation condition
showing clear inhibition during laser stimulation. C: Histogram of the change in firing rate
(as a fraction of the rate on control trials) produced by 0.5s perturbations. The majority of
neurons show robust suppression when perturbed; a small group of neurons increase their firing
rate in response to perturbation, presumably due to network-level effects. The largest fraction
of suppressed neurons are seen when perturbation is delivered in the middle of the GC taste
response, from 0.7s to 1.2s post stimulus. D: Histogram of the change in firing rate (as a
fraction of the rate on control trials) produced by 2.5s perturbation. Almost all neurons are
affected by the perturbation: the large majority are suppressed, but a small minority show
elevated firing rates in response to perturbation.
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Figure 3: Impact of optogenetic perturbations on palatability relatedness of the firing of GC
neurons. A: Coefficients obtained from the regression of trial-averaged firing rates on palatabil-
ity ranks of the taste stimuli. The solid lines depict the mean regression coefficient across time
while coefficients significantly different from 0 at the 5% level are marked by dots. The dashed
lines are logistic sigmoid fits to the mean regression coefficient in each condition. Disruption
of GC firing for 2.5s wipes out the entirety of the palatability response, which never differs
significantly from 0. B: The post stimulus latency (blue bars) and magnitude (red bars) of
the peak (95% of the asymptote) of the sigmoid fits in A. Error bars denote 95% Bayesian
credible intervals and indicate statistical significance at the 5% level if they are not overlap-
ping. On control (laser off) trials, GC neurons asymptote to peak palatability firing ∼ 0.8s post
stimulus. The 2.5s perturbation, by disrupting the palatability response completely, is fit by a
flat sigmoid whose peak magnitude overlaps 0. C: The post stimulus latency (blue bars) and
magnitude (red bars) of the peak (95% of the asymptote) of the sigmoid fits in the 0.5s per-
turbation condition. Error bars denote 95% Bayesian credible intervals and indicate statistical
significance at the 5% level if they are not overlapping. On laser off trials, GC representation
of palatability peaks ∼ 0.8s after taste delivery, identical to the 2.5s perturbation control trials
in B. Perturbations early (0-0.5s) and in the middle of the taste response (0.7-1.2s) delay the
peak of palatability firing by ∼ 0.5s; the magnitude of this peak, however, is the smallest for
the middle perturbation. Perturbations late in the taste trial (1.4-1.9s), after palatability firing
is mostly over, expectedly have no impact and align with the control trials.
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Figure 4: Bayesian spectrum analysis (BSA) of anterior digastric EMG recordings. Probability
of gaping is calculated as the total posterior probability of 4-6Hz movements. A1-A2: Two
representative Conc Qui trials. The animal’s mouth movements can be seen as bursts of EMG
activity (blue) following taste delivery - the onset of gaping, as detected on video, is marked.
The envelope of the EMG signal (black line) was subjected to spectrum analysis. B1-B2: Two
representative Conc Qui trials. The probability of gaping from BSA (black line) matches up
with individual gapes (grey notches) picked by a previously published quadratic classifier that
achieved 75% accuracy. C1-C2: BSA (solid line) and the quadratic classifier (dotted line)
produce similar estimates of trial-averaged probability of gaping in response to Dil Qui (C1)
and Conc Qui (C2) on a set of control (laser off) trials. D: The probability of gaping from
BSA rises reliably just before the first gape. Gaping probability was averaged across trials
aligned by the time of the first gape, detected either on video (black) or by the quadratic
classifier (grey). The black dashed line (0 on the x axis) indicates the occurrence of the first
gape. E: KL divergence between the probability of gaping to Conc and Dil Qui (higher values
indicate larger differences in their gaping distributions, same trials as in B). As expected, the
distributions of gaping probability on Conc and Dil Qui trials are initially similar (while non-
specific investigative licks happen) and diverge out at ∼1s post stimulus once gaping begins.
F: The cumulative sum of the KL divergence in E across time. The jump in KL divergence
around the mean onset time of gaping is seen as a change in slope of its cumulative sum. We
fit two straight lines to the cumulative sum and pick their intersection as the mean onset of
gaping across this set of trials.
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Figure 5: Onset times of 4-6Hz aversive orofacial behaviors (gapes). The bars depict the mean
gape onset times while the extent of their 95% Bayesian credible intervals are shown by the
error bars. Non-overlapping error bars depict statistical significance at the 5% level. A: Onset
of aversive orofacial behaviors in the control trials. The 2.5s controls show a delayed onset,
likely due to spillover effects from the long optogenetic perturbation. B: Onset of aversive
orofacial behaviors in the experimental trials. Perturbations early (0-0.5s) and in the middle
(0.7-1.2s) of the taste response bring about a similar delay in the onset of gaping as the 2.5s
perturbation. Gaping is unaffected if GC neurons are disrupted late in the trial (1.4-1.9s)
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Figure 6: Switchpoint model of GC ensemble responses to tastes. GC population responses
were assumed to consist of 3 states as follows: 1) Detection: a brief, initial state of nonspecific
responses with identical population distributions of activity for each tastant in our battery; 2)
Identity: responses related to the chemical identity of the taste stimulus with 2 population
firing rate distributions, one each for Suc and Qui; 3) Palatability: population firing rich in
palatability and consumption-decision related information with 4 population distributions of
activity, one for each of the 4 tastants in our stimulus battery. The model assumed that the
transitions between these states could not occur during the optogenetic perturbation of GC.
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BA C

Figure 7: Impact of 0.7-1.2s perturbation on neural activity and aversive orofacial behavior. A1:
Distribution of time of transition to the palatability-related ensemble state on Dil Qui trials.
The transitions cannot happen during the perturbation, from 0.7s to 1.2s. A2: Distribution of
time of transition to the palatability-related ensemble state on Conc Qui trials. The transitions
cannot happen during the perturbation, from 0.7s to 1.2s. B: Coefficients from the regression
of trial-averaged firing rates of GC neurons on palatability ranks of the taste stimuli. The lines
depict the mean regression coefficient across time while coefficients significantly different from 0
at the 5% level are marked by dots. The coefficients are significantly different from 0 only on the
trials where the palatability-related ensemble state appeared before the perturbation started.
C: Onset of aversive orofacial behavior when GC is perturbed from 0.7s to 1.2s post stimulus.
The onset of gaping is delayed if the perturbation begins before palatability information has
appeared in ensemble activity. A subset of trials, with palatability transition times in the
50ms prior to 0.7s, appear to produce a delay in gaping behavior despite the emergence of the
ensemble state before the start of the optogenetic perturbation. Dropping these trials from
the analysis revealed the gaping happens earlier than on control trials if GC ensembles shift to
palatability firing before the lasers are switched on.
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