
Dynamical structure of cortical taste responses revealed1

by precisely-timed optogenetic perturbation2

Narendra Mukherjee ∗1, Joseph Wachukta2, and Donald B Katz †33

1,2,3Program in Neuroscience, Brandeis University4

1,2,3Volen National Center for Complex Systems, Brandeis University5

3Department Of Psychology, Brandeis University6

Abstract7

The purpose of perception is driving action. During tasting, for instance, every stimulus8

must be either swallowed or rejected (the latter via a behavior known as “gaping”). Taste9

responses in the rodent primary gustatory cortex (GC) span this sensorimotor divide,10

progressing through a series of firing epochs that culminate in the emergence of action-11

related firing. Population analyses reveal this emergence to be a sudden, coherent ensemble12

transition that, despite varying in latency between trials, precedes gaping onset by 0.2-0.3s.13

Here, we tested whether this transition drives gaping, delivering 0.5s GC perturbations at14

various time-points in tasting trials. Perturbations significantly delayed gaping, but only15

when they preceded the action-related transition - thus, the same perturbation might have16

an impact or not, depending on the transition latency in that particular trial. Our results17

suggest a distributed attractor network model of taste processing, and a dynamical role18

for cortex in driving motor behavior.19
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1 Introduction20

One of the primary purposes of sensory processing is to drive action, such that the sources21

of sensory information can be either acquired or avoided (Prinz (1997), Wolpert and Kawato22

(1998), Wolpert and Ghahramani (2000)). To the extent that this is true, sensory and motor23

processing should be tightly coupled (Wolpert et al. (1995), Huston and Jayaraman (2011)).24

The gustatory system is an ideal model to study this proposed coupling, because animals25

necessarily respond to tastes with discriminative behaviors - specifically, they must decide to26

either swallow or expel the sensory stimulus in the mouth (Grill and Norgren (1978a), Katz27

and Sadacca (2011), Li et al. (2016)).28

Sensory-motor coupling is visible in the temporal response patterns of rodent gustatory cor-29

tical (GC) neurons to taste stimulus administration. GC neurons respond to taste presentation30

with a sequence of firing-rate “epochs”, two of which are taste-specific: neural firing first carries31

information regarding the physio-chemical identity of the taste stimulus, and then correlates32

with palatability, a variable intimately linked with the animal’s decision to ingest or expel the33

taste (Katz et al. (2001), Fontanini and Katz (2006), Grossman et al. (2008), Piette et al.34

(2012), Sadacca et al. (2012), Maffei et al. (2012), Jezzini et al. (2013); see also Crouzet et al.35

(2015)). Ensemble analyses further reveal that the transition between these two epochs happens36

suddenly and coherently within neural ensembles (Jones et al. (2007), Sadacca et al. (2016)).37

This ensemble transition to palatability coding, though highly variable in latency (between 0.538

and 1.5s post stimulus, depending on the trial), is a strong predictor of the onset of the ani-39

mal’s consumption-related orofacial behavior (Sadacca et al. (2016)), even when the timing of40

this behavior is manipulated by learning (Moran and Katz (2014)) or cueing (Li et al. (2016)).41

That is, GC neural ensembles appear to “hop” from one attractor state to another during taste42

processing (Miller and Katz (2010), Miller (2016)), with the hop representing the reaching of a43

consumption decision - and (potentially) the emission of a motor signal to brainstem circuits44

that generate orofacial behavior.45

A direct prediction of this temporally dynamic model of gustatory sensorimotor processing,46

and most specifically of the suggestion that the transition into the later firing-rate epoch repre-47

sents the emission of a motor command, is that well-timed perturbations of GC activity should48

affect the time course of a rat’s taste-reactive ingestion-egestion behavior. This prediction re-49

cently received indirect support when it was shown that optogenetic inhibition of the entire50

GC taste response (Li et al. (2016)) modestly changes the probability of rejection behaviors in51

response to aversive tastes (“gapes”, Grill and Norgren (1978a), Li et al. (2016)).52

However, such gross perturbations of gustatory processing are an inadequate test of this53

very specific prediction: for one thing, multi-second inactivations likely have secondary effects54

that confound interpretation, particularly regarding an outcome variable (ability to gape) that55

is known to depend on an interconnected network of brain regions (including GC; see Smith56

and St John (1999), Riley and King (2013), Samuelsen and Fontanini (2016)); in addition, it57

is impossible to disambiguate any epoch- or moment-specific effects on consumption behavior58

using whole-response perturbations. A much more definitive test would involve using optoge-59
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netics to inhibit GC taste responses for short periods of time as awake rats process and respond60

to a range of tastes.61

Here we report the results of this precise experiment, performed in awake, tasting rats.62

We recorded the activity of GC ensembles while simultaneously inhibiting the firing of these63

neurons using an optogenetic silencer (specifically, the proton-pump ArchT) for brief (0.5s)64

periods before, during or after the “hop” to the palatability- (i.e., decision-) related state. Our65

results provide strong support for the hypothesized importance of the transition time itself,66

and in addition suggest that important pre-transition taste processing is performed within GC.67

Furthermore, our data provide a glimpse into the attractor-like dynamics underlying the neural68

processing of taste, demonstrating that GC is one participatory node in a larger network with69

attractor dynamics: the fact that GC perturbations only delay the system settling into the70

decision-related “stable” state suggests that this stable state is a function of activity spread71

across multiple regions; in addition, the fact that post-decision perturbations have no impact72

suggests that behavioral control shifts to brainstem circuits once this stable state has been73

reached.74
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2 Materials and Methods75

2.1 Experimental design76

2.1.1 Subjects77

Adult, female Long-Evans rats (n=5; 275-300g at time of virus injection; 300-350g at time of78

electrode implantation) served as subjects in our study (in our hands, female Long-Evans rats79

have proven more docile than males, but we have observed no sex differences in the basic cortical80

dynamics of taste responding). The rats were housed in individual cages in a temperature and81

humidity controlled environment under a 12:12h light:dark cycle. All rats were given ad libitum82

access to food and water before experiments started. Rats were weighed daily and observed to83

never drop below 80% of their pre-surgery weight. All experimental methods were in compliance84

with National Institutes of Health guidelines and were approved in advance by the Brandeis85

University Institutional Animal Care and Use Committee.86

We also performed a set of control analyses on data taken from 10 adult, female Long-Evans87

rats, previously published in Sadacca et al. (2016) and Li et al. (2016).88

2.1.2 Virus injections89

We injected adeno-associated virus (AAV9) coding for ArchT and green fluorescent protein90

(AAV9-CAG-ArchT-GFP, 2.5× 1011 particles per mL) into GC. This AAV serotype has been91

shown to effectively spread to and infect all cell types (Aschauer et al. (2013)) in regions92

including GC (Maier et al. (2015), Li et al. (2016)).93

Rats were first anesthetized using a ketamine/xylazine mixture (1mL ketamine, 0.05 mL94

xylazine/kg body weight) delivered via an intra-peritoneal injection. Supplemental anesthetic95

injections were given as needed. The head was shaved, cleaned with an iodine solution and96

70% ethanol, and positioned into the stereotax. We then excised the scalp and cleaned and97

leveled the top of the skull. Small craniotomies were drilled bilaterally over the location of GC98

(anteroposterior +1.4mm from bregma, mediolateral ±5mm from bregma; Paxinos and Watson99

(2007)), the meningeal tissues were gently excised, and virus was infused.100

We lowered a glass micro-pipette (tip diameter: 10-20µm) filled with the infusate - virus101

particles suspended in a solution of phosphate-buffered saline (PBS) and Oregon Green 488102

(Invitrogen) - into the centers of the craniotomies, and performed a sequence of 3 injections103

bilaterally into GC: at 4.9, 4.7 and 4.5mm ventral to dura, virus was injected in discrete104

pulses (44 pulses/location, with 25nL per pulse, 7s between consecutive pulses = 1.1µL total105

volume injected per depth) controlled by a Nanoject III microinjector (Drummond Scientific).106

Following each unilateral set of injections, the micropipette remained in place for 5 min, after107

which it was smoothly removed over the course of 1 minute so that fluid would not spread back108

up the micro-pipette track. Craniotomies were then sealed with silicone (Kwik-Sil, WPI), the109

scalp was sutured, and the rat was given analgesic (meloxicam 0.04mg/kg), saline and antibiotic110

(Pro-Pen-G 150,000U/kg) injections. Similar antibiotic and analgesic injections were delivered111
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24 and 48 hours later.112

Rats were allowed to recover for 4-6 weeks from this procedure, in order to ensure adequate113

infection and subsequent expression of optical channels (ArchT) and GFP.114

2.1.3 Opto-trode, intra-oral cannula and EMG electrode implantation115

After recovery from virus infusion surgery, rats were again anesthetized, and implanted with116

bilateral GC opto-trode bundles. Each bundle consisted of either 30 or 32 recording microwires117

(0.0015inch formvar-coated nichrome wire; AM Systems) and 1 optical fiber (0.22 numerical118

aperture, 200µm core, inserted through a 2.5mm multimode stainless-steel ferrule; Thorlabs).119

The microwire bundle was glued to a custom-made electrode-interface board (San Francisco120

Circuits) and connected to a 32 channel Omnetics connector. In the case of the 30 microwire121

bundles, the final two pins were connected to 2 electromyography (EMG) electrodes (PFA-122

coated stainless steel wire; AM Systems) implanted into the digastric muscle under the jaw.123

Finally, the microwires and optical fiber were connected to a custom-built 3D printed microdrive124

that allowed the entire assembly to be moved ventrally after implantation. The microwire tips125

were located 0.5mm ventral to the tip of the optical fiber - this maximized the likelihood126

that the electrodes recorded the activity of neurons that were illuminated by the laser. For127

more information on the implanted apparati and associated electronics, see Katz et al. (2001),128

Sadacca et al. (2016) and Li et al. (2016), as well as the Katz Lab webpage.129

Rats were anesthetized, after which we shaved and cleaned the scalp and situated the head130

in the stereotax. After excising the scalp and leveling the skull, we drilled 5 self-tapping screws131

into the skull for supporting and grounding the opto-trode bundles. The silicone seal was132

removed from the craniotomies, as were any tissues that had grown in since the prior surgery.133

We then slowly (over 5-10 minutes) lowered the opto-trode bundles to a depth of 4.3mm from134

the dura mater (0.2mm above the most dorsal location of virus injection). The ground wires135

were wound tightly around the skull screws and the bundles were cemented in place with136

dental acrylic. The optical fiber was looped so that the ferrule could be cemented away from137

the microdrive - this configuration reduced the stress on the microdrive when the animal was138

later plugged in to the experimental apparatus.139

Once the opto-trode assembly was cemented in place, the rat was removed from the stereotax140

and implanted with a single (right-side) intra-oral cannula (IOC) for controlled delivery of141

tastants on the tongue. IOCs were made with thin polyethylene tubing and inserted in the142

space between the first maxillary molar and the lip, through the masseter muscle and inside143

the zygomatic arch, and out through the opening in the scalp (Phillips and Norgren (1970),144

Katz et al. (2001)) The IOC was topped with a plastic connector that could be attached to the145

taste delivery apparatus, and cemented in place with dental acrylic.146

The EMG electrodes were channeled down the left side of the face (opposite from the IOC);147

after the overlying skin had been teased away from the belly of the digastric muscle, one end148

of each EMG electrode was tied to a suture needle, which was then inserted into the muscle,149

such that the electrode could be pulled into the desired position (for more details, see Loeb and150
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Gans (1986); Travers and Norgren (1986); Dinardo and Travers (1994); Li et al. (2016)). The151

electrode wires were trimmed and held in place with vetbond tissue adhesive (3M) and the skin152

covering the anterior digastric was sutured back into place. Finally, a modified falcon tube was153

glued to the front of the headcap as a protective cap, and bacitracin ointment was applied all154

around the base of the headcap and over the wound under the jaw.155

Rats were postoperatively injected with analgesic (Buprenophine 0.05mg/kg), saline, and156

antibiotic (Pro-Pen-G 150,000U/kg). Similar antibiotic, saline and analgesic injections were157

delivered 24, 48 and 72 hours later, and bacitracin ointment was reapplied. The rats were158

handled every day and allowed to recover to 90% of their pre-surgery weight (at least 7 days159

after surgery) before being introduced to the experimental apparatus.160

2.1.4 Habituation161

Following recovery from the opto-trode implantation surgery, we habituated rats to passive162

water deliveries for 3 days before beginning data collection. In these daily habituation sessions,163

we attached the rats to the electrophysiology acquisition system, laser patch cables and taste164

delivery apparatus, and infused 100 pulses of distilled water (∼40µL per pulse; 15s inter-pulse165

interval) into the animal’s oral cavity through the IOC. Starting with the second habituation166

day, we also placed rats on a mild water restriction schedule - 20mL of water (not including the167

4mL delivered during habituation sessions themselves) per day. This water restriction schedule168

was maintained for the duration of the study (∼7 days per animal).169

Opto-trode bundles were driven deeper after each habituation session using the microdrive170

built into the assembly; by the end of the habituation period, the distance traveled was 0.2mm,171

such that the tips of the electrodes lay within the region of GC infected with the virus.172

2.1.5 Passive taste administration and laser stimulus delivery173

We used 2 concentrations of palatable sucrose (30mM: Dilute Sucrose (Dil Suc), 300mM: Con-174

centrated Sucrose (Conc Suc)) and of aversive quinine-HCl (0.1mM: Dilute Quinine-HCl (Dil175

Qui), 1mM: Concentrated Quinine-HCl (Conc Qui)) dissolved in distilled water as the stimuli in176

our experiments. Concentrated sucrose and quinine are rich in palatability-related valence and177

evoke strong orofacial responses; the dilute stimuli are of similar but far less extreme palatabil-178

ity – a fact that aided in the analysis of palatability-related neural firing (Li et al. (2016); see179

also below). The taste delivery apparatus consisted of gently pressurized tubes containing taste180

solutions; the tubes converged upon a manifold of finer polyamide tubes that could be inserted181

into (to 0.5 mm past the end of) the IOC, thus eliminating any chance of mixing. The manifold182

could be locked securely into the dental acrylic cap. The tastes were then delivered under slight183

nitrogen pressure - this taste delivery protocol has been consistently shown to ensure reliable184

tongue coverage at short latencies (Katz et al. (2001), Sadacca et al. (2016), Li et al. (2016)).185

Data were collected during 2 types of optogenetic perturbation sessions: 1) sessions made up186

of “long” perturbation trials in which the laser was turned on for the period of 0-2.5s post taste187

delivery; and 2) sessions made up of “short” perturbation trials in which the laser was turned188
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on for 0.5s at either 0.0, 0.7, or 1.4s post taste delivery. One experimental session was run per189

day. Some rats received only the latter (short-perturbation) session; for those that received190

both, we counterbalanced session type, such that a rat that experienced 2.5s perturbations in191

one session got 0.5s perturbations the following day, and vice versa (see below).192

Sessions with 2.5s perturbations consisted of 8 sets of trials (2 sets per taste - one with193

the lasers on and one with no laser). Each set included 15 trials, for a total of 120 trials per194

session. Similarly, sessions with 0.5s perturbations included 16 sets of trials (4 sets per taste195

- one with lasers on from 0.0-0.5s, one with lasers on from 0.7-1.2s, one with lasers on from196

1.4-1.9s, and one with no lasers). To keep the total number of trials per session from ballooning197

(a basic concern in taste research is the awake animal’s finite appetite), each set included only 8198

trials (total, 128 trials per session). Again, we moved the opto-trode bundle 0.075mm ventrally199

(deeper into GC) prior to each session, to ensure that we obtained fresh units in every session.200

Trials were delivered in pseudo-random order and each involved delivery of ∼40µL of fluid201

through the IOC, for a total volume of 5mL per session.202

We used a 532nm, DPSS laser (Laserglow Technologies), connected to the implanted ferrules203

using standard FC/PC patch cables (Thorlabs), for all optogenetic perturbations. Taste and204

laser delivery were controlled through a Raspberry Pi computer. The strength of the laser input205

was calibrated, prior to opto-trode implantation, to yield an illumination power of 40mW at206

the tip of the optical fiber. This output power perturbs all ArchT infected neurons in a 1mm3
207

sphere below the tip of the fiber in vivo (Han et al. (2011), Yizhar et al. (2011)) - a sphere208

that encompasses about 33% of GC in the caudal-rostral axis (Kosar et al. (1986), Maier et al.209

(2015), Li et al. (2016)). These parameters have previously been shown to reduce the activity210

of ArchT+ cortical neurons with minimal latency and damage (Maier et al. (2015), Li et al.211

(2016), Flores et al. (2018)).212

2.1.6 Acquisition of electrophysiological data213

We collected 30k voltage samples per second from each implanted neural and EMG electrode,214

using a 32-channel analog-to-digital converter chip (RHD2132) from Intan Technologies. These215

chips are capable of recording voltage signals over a wide range of frequencies (0.1Hz-20kHz)216

and amplitudes (microvolts to millivolts), thereby enabling us to record neural and EMG signals217

through the same hardware system. The experimental chamber was ensconced in a Faraday218

cage that shielded recordings from external electrostatic and electromagnetic influences.219

2.1.7 Histology and evaluation of GFP expression220

In preparation for histology, rats were deeply anesthetized with an overdose of the ketamine/xylazine221

mixture, after which DC current (7µA for 7s) was passed through selected microwires, marking222

the area below the electrode tips. We perfused the rats through the heart with 0.9% saline223

followed by 10% formalin and harvested the brain. The brain tissue was incubated in a fixing224

mixture of 30% sucrose and 10% formalin for 7 days before GC was sectioned into 50µm coronal225

slices.226
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We rinsed the slices 3 times with 1X-PBS over 15 minutes and permeabilized them in a227

0.3% Triton X-100+1% normal Donkey serum+1X-PBS blocking solution for 2 hours at room228

temperature. We replaced the blocking solution with primary antibody solution (1:500 anti-229

GFP-rabbit IgG; Life Technologies) for 12 hours at 4◦C. After incubation with the primary230

antibody, the slices were rinsed with 1X-PBS 3 times over 15 minutes followed by incubation231

with the secondary antibody incubation of (1:200 Alexa Flour 488 donkey anti-rabbit IgG232

(H+L); Life Technologies) for 12 hours at 4◦C. After a final set of rinses with 1X-PBS (3 times233

over 15 minutes), we mounted the slices on charged glass slides and cover-slipped them with234

Fluoromount Aqueous Mounting Medium. Slices were imaged with a Keyence fluorescence235

microscope to confirm successful virus infection and opto-trode location for each animal.236

The spread of AAV in GC was evaluated via the expression of GFP, as has been done237

previously (Maier et al. (2015), Li et al. (2016), Flores et al. (2018)).238

2.2 Data analysis239

Most statistical analyses in this paper were performed using Bayesian methods implemented240

in the PyMC3 probabilistic programming package (Salvatier et al. (2016)). Although the far241

more common practice in the literature is to implement analyses similar to ours in a frequen-242

tist/maximum likelihood estimation (MLE) paradigm, the Bayesian approach offers several243

advantages. For one, Bayesian statistics provides a natural way to infer the entire joint pos-244

terior distribution of the model parameters in the light of the data at hand. This allows the245

Bayesian methodology to make robust inferences without being constrained by the sampling-246

related assumptions of parametric frequentist statistics or the lack of statistical power of non-247

parametric frequentist techniques. Relatedly, the flexibility of the Bayesian framework allows248

the construction of statistical models appropriate for the data-generating process that can in-249

clude non-standard (such as multi-modal) parameter distributions. Such models (of which we250

use several in this study) often cannot be accommodated by frequentist approaches at all, even251

if they are “true” descriptions of the underlying generative process. Finally, despite working252

with highly flexible models, Bayesian approaches provide the added advantage of using model253

priors to regularize parameter estimates - we use “weakly informative” priors in our analyses254

that are known to reduce the susceptibility of the inference process to noise by penalizing model255

flexibility (unless supported by the observed data).1 We will describe the properties of each256

statistical model used in our analyses, and our specific prediction(s) for each such model, in257

the sub-sections below.258

Recent advances in statistical computing have made it possible to circumvent the analytical259

challenges that have historically plagued the application of Bayesian techniques to many prac-260

tical problems. In particular, new Markov Chain Monte Carlo (MCMC) techniques have been261

developed to facilitate arriving at an approximation to the posterior distribution of the model262

parameters by drawing samples from it. We performed inference in our Bayesian probabilistic263

1For a detailed comparison of frequentist and Bayesian estimation in statistics and a discussion of weakly
informative priors, please refer to Gelman et al. (2013) and McElreath (2015).
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models using the No-U-Turn-Sampler (NUTS; Hoffman and Gelman (2014)), a state-of-the-art,264

self-tuning Hamiltonian MCMC algorithm that efficiently draws samples from the posterior265

distribution described by the data at hand. The performance of the sampler can be evaluated266

by running several independent sampling chains - a properly tuned sampler that explores the267

parameter space in an unbiased manner and draws samples from the correct posterior distri-268

bution will result in all the chains “converging” to the same distribution. Statistically, this is269

evaluated by computing the Gelman-Rubin R̂ statistic (Gelman et al. (2011)) across all the270

sampling chains. R̂ close to 1 indicates that the sampling runs have converged and produced271

samples from the same posterior distribution (we allow values from 0.99 to 1.01). Each analysis272

finally reports the uncertainty for the inferred parameters as 95% credible intervals - essentially273

the interval that covers 95% of the probability mass under the posterior distribution of the pa-274

rameters. Credible intervals inherently serve as significance tests in this setting - for instance,275

if the 95% credible interval for an estimated parameter does not overlap 0, we can conclude276

that this parameter is different from 0 at the 5% level of significance.277

2.2.1 Single unit isolation278

We followed a semi-supervised spike sorting strategy: intra-cranial voltage data was filtered279

between 300-3000Hz, and a Gaussian Mixture Model (GMM) identified potential clusters which280

were refined manually. For more details on our spike sorting methods and its efficacy in isolating281

single units, please consult Mukherjee et al. (2017). Our spike sorting code is freely available282

at blech_clust.283

2.2.2 Impact of optogenetics on neural firing284

We built a hierarchical Poisson generalized linear model (GLM) for the spiking of a single neuron285

to evaluate the impact of optogenetic perturbations on firing. Hierarchical GLMs provide precise286

estimates of condition-specific model parameters, especially when they are expected to vary287

around condition-agnostic means. In our case, the model parameters are the mean firing rates288

for every taste and optogenetic condition, that are in turn composed of taste- and optogenetic-289

specific effects (“random effects") and means across tastes and optogenetic conditions (“fixed290

effects"). Coupled with the Poisson distribution’s suitability for count (here spikes) data, this291

model can accurately estimate the change in neural firing induced by optogenetic perturbations.292

For each neuron n in our dataset, we aggregated the spikes produced on trial i of taste T in293

optogenetic condition O. There were 4 levels for T corresponding to the tastes in our dataset:294

Dil Suc, Conc Suc, Dil Qui and Conc Qui. The number of levels for O depended on the type295

of optogenetic perturbation being delivered in the session: in the 2.5s perturbation sessions,296

O had two levels, corresponding to the laser off (control) and on trials respectively; the 0.5s297

perturbation sessions had 3 types of perturbation trials - starting at 0s, 0.7s or 1.4s after taste298

delivery - and therefore had 6 levels for O (a “laser off-laser on” pair for each of the 3 types299

of perturbations). Our model posits that the aggregate number of spikes Sn,i,T,O is Poisson-300

distributed with a mean (firingn,T,O) that depends on the taste (µT ), optogenetic condition301
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(µO) and an interaction between the taste and optogenetic condition (µT,O). As described above,302

owing to the hierarchical structure of the model, each of these effects is further composed of a303

fixed effect and a random effect. Using weakly informative Gaussian and Half-Cauchy priors304

for the mean and variance parameters respectively, our model formally says:305

Fixed effects: F1, F2, F3 ∼ N (0, 10)

Variances: σ1, σ2, σ3 ∼ HalfCauchy(1)

Taste-specific means: µT ∼ N (F1, σ1)

Optogenetics-specific means: µO ∼ N (F2, σ2)

Taste-and-optogenetics-specific means: µT,O ∼ N (F3, σ3)

Mean firing rate (with log link): log(firingn,T,O) = µT + µO + µT,O

Observed number of spikes: Sn,i,T,O ∼ Poisson(firingn,T,O)

(1)

As explained in the introduction to the data analysis section, we used MCMC (specifically306

the NUTS sampler) to sample the posterior distribution of firingn,T,O for every taste and307

optogenetics condition. We performed this analysis for every neuron in our dataset and finally308

calculated the impact of optogenetics on firing as the difference in firingn,T,O between laser off309

(control) and their corresponding laser on trials. If the 95% Bayesian credible interval for these310

differences in firingn,T,O for a neuron did not overlap 0, we concluded that the optogenetics311

significantly impacted the firing of this neuron (see the introduction to the data analysis section312

for a discussion of how Bayesian credible intervals inherently serve as significance tests).313

2.2.3 Regression of single neuron firing with palatability ranks314

We analyzed, as we have done previously (Sadacca et al. (2016)), the time course of palatability-315

related information in the activity of single neurons by regressing their firing rates on the316

palatability ranks of the tastes (Dil Suc: 3, Conc Suc:4, Dil Qui: 2, Conc Qui: 1; higher is more317

palatable). In order to estimate the firing rates of neurons, we aggregated the spikes of each318

neuron, on a trial-by-trial basis, in 250ms bins moved by 25ms steps. We divided the aggregate319

number of spikes by the width of the bins (250ms) to obtain the near-instantaneous firing rate320

of each neuron across time on individual trials.321

These firing rates, of course, vary widely between neurons. Furthermore, correlations be-322

tween firing rate and palatability ranks may be significantly positive or significantly negative.323

We therefore needed to perform a 2-stage transform on neural firing before we could analyze324

all neurons as a group in our regression analysis. The first step was standardization - we trans-325

formed the firing rate of each neuron in each time bin by subtracting the trial-averaged firing326

rate of the neuron in that time bin and scaling by its standard deviation across trials (to get327

z-scores), ensuring that the firing rates of all neurons were on a comparable scale. Next, we328

multiplied the standardized firing rate of each neuron by the sign of the time-averaged Spear-329

man correlation coefficient between its firing and the palatability ranks. This ensured that the330

sign of the relationship of neural firing with palatability was the same for all neurons in our331
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dataset, but left the magnitude of that relationship unaffected.332

Our statistical model treats the standardized firing rate firingt,P,i of a neuron at time333

bin t on trial i of a taste with palatability rank P as Gaussian-distributed with a mean µt,P334

that depends linearly on P . We defined the palatability index in time bin t, βPalatability,t, as335

the change in µt,P induced by a unit change in P . βPalatability,t is, therefore, the slope of the336

line that explains µt,P in terms of P , an estimate of the strength of the firing-palatability337

relationship. Using weakly informative Gaussian and Half-Cauchy priors for the mean and338

variance parameters respectively, our model formally says:339

Prior on palatability index: βPalatability,t ∼ N (0, 1)

Prior on observation noise: σ ∼ HalfCauchy(1)

Mean firing rate: µt,P = βPalatability,t × P

Firing rate: firingt,P,i ∼ N (µt,P , σ)

(2)

We used MCMC to infer the posterior distribution of βPalatability,t across all neurons in our340

dataset (again, see above). The firing rate transformations defined previously put the activity of341

all neurons on the same scale and allowed us to infer a single posterior distribution of βPalatability,t342

across all the neurons in our dataset. We repeated this regression for each time bin t from 0.25s343

before to 1.5s after taste delivery, obtaining posterior estimates of βPalatability,t specific to each344

time bin. Finally, we normalized βPalatability,t by subtracting its average baseline value (from345

0.25 to 0s before tastes). We report the baseline-normalized βPalatability,t as the palatability346

index βPalatability.347

2.2.4 Characterizing the time course of the palatability index348

In a manner similar to our previous work (Sadacca et al. (2016)), we modeled the time course349

of the posterior mean of the single neuron palatability firing index, βPalatability, with a logistic350

sigmoid. The difference between the lower and upper asymptotes of the S-shaped logistic351

function fits the total rise in βPalatability across time, while its slope describes the rate of this352

rise. As βPalatability was already normalized to its average pre-stimulus value, we set the lower353

asymptote of the logistic function to 0. With weakly informative Gaussian priors (restricted to354

positive values) on the upper asymptote (L), slope (k) and inflection time (t0, ms post taste355

delivery) of the logistic sigmoid, our model is as follows:356
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Prior on upper asymptote: L ∼

N (0, 0.1) L > 0

0 otherwise

Prior on slope: k ∼

N (1, 1.0) k > 0

0 otherwise

Prior on inflection time: t0 ∼

N (675ms, 75ms) t0 > 0

0 otherwise

Prior on observation noise: σ ∼ HalfCauchy(1)

Mean palatability index: βPalatability(t) ∼ N (
L

1 + e−k(t−t0)
, σ)

(3)

We defined the peak of the palatability firing index, tpeak, as the time (post taste deliv-357

ery) when βPalatability reached 95% of its maximum value, L. We transformed the posterior358

distributions of L, k and t0 to get tpeak (inferred using MCMC) as follows:359

tpeak =
ln 95

5

k
+ t0 =

ln 19

k
+ t0 (4)

2.2.5 Modeling and change-point identification in ensemble firing data360

As described in the Introduction (and Discussion), previous analyses reveal that rat GC pop-361

ulation activity in response to a taste consists of a sequence of 3 coherent, abruptly-appearing362

ensemble states (Katz et al. (2001), Jones et al. (2007), Sadacca et al. (2012), Sadacca et al.363

(2016), Li et al. (2016)) in which firing rates “code”, in turn, taste presence, taste identity,364

and taste palatability; the transition into this last state has particular relevance for the pre-365

diction of palatability-related behavior in single trials, and is the subject of this study. While366

identifying these sequences typically requires several forward and backward passes through a367

dataset made up of many identical (i.e., unperturbed) trials, the work already published on368

the nature of these state sequences (see also Jones et al. (2007) and Moran and Katz (2014))369

renders it possible (for the purposes of the current study) to more concretely define this process370

as involving ensemble firing change points between states having the following properties (also371

see Figure 6):372

1. Detection state: a single distribution of population activity for all the tastes, indicating373

taste presence on the tongue.374

2. Identity state: 2 distinct distributions of population activity, for the 2 taste identities375

in our experiments (Suc and Qui).376

3. Palatability state: 4 distinct distributions of population activity, for the 4 taste palata-377

bilities in our experiments (Dil Suc, Conc Suc, Dil Qui and Conc Qui).378

With this characterization we were able to design a relatively simple change-point model379

that allowed us to detect these coherent transitions in population activity in individual trials.380
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We first prepared the data for the change-point model by aggregating the spikes of each neuron381

in each trial into 10ms non-overlapping bins, indexing each neuron recorded in a session with382

a scalar i running from 0 to the number of neurons in the session N . We then converted the383

aggregate spiking data to a categorical format by marking each time bin by the index S of the384

neuron that spiked in that bin, with S = 0 corresponding to no spikes from any neuron. If more385

than one neuron spiked in a time bin - a highly uncommon occurrence, given the relatively low386

firing rates of GC neurons and the small (10 ms) bins being used - we randomly selected one387

of the spiking neurons for assignment to that bin (Jones et al. (2007); Sadacca et al. (2016)).388

With the (processed) categorical spiking data in hand, we now designed the change-point389

model to describe the ensemble firing in each of the 3 states (listed above) as categorical390

distributions with N + 1 emissions, with 1, 2 and 4 such distributions corresponding to the391

detection, identity and palatability states respectively. Note that the results of this analysis392

are unchanged if we relax the parameters slightly to allow for 4 “state 2” distributions–that is,393

if we allow the Identity State to differ for the different concentrations of Sucrose and Quinine;394

this is probably because while many neurons may code different NaCl concentrations distinctly395

(Sadacca et al. (2012)), for other tastes the vast majority of neurons appear to code quality396

rather than concentration (see, for instance, Fonseca et al. (2018)).397

We analyzed 1.5s of ensemble activity post taste delivery from each of the 4 optogenetic398

conditions in the 0.5s perturbation sessions. For the control (laser off) trials, this corresponded399

to 0-1.5s of firing after taste delivery. On the perturbed trials, we ignored the 0.5s of activity400

when the lasers were on - for example, we analyzed 0.5-2.0s of firing post tastes when the401

lasers were on from 0-0.5s. In the resultant 1.5s of activity, we assumed that the change from402

detection to the identity state, CI , happens anywhere in the interval [0.2s, 0.6s] (except the 0-403

0.5s perturbation trials, where we allowed the identity state to start earlier from 0.1s, to account404

for the possibility that some amount of taste processing happens in GC even while the neurons405

are being perturbed). The second change-point, CP , from identity to palatability firing, was406

assumed to occur anywhere in the interval [CI + 0.2s, 1.3s] (except the 0.7-1.2s perturbation407

trials, where the palatability state can start earlier at CI + 0.1s for the same reason). This is408

equivalent to placing uniform priors over the intervals that define CI and CP , corresponding409

to the timing of sudden, coherent firing rate transitions in GC ensembles (Jones et al. (2007),410

Sadacca et al. (2016)).411

CI and CP are therefore latent variables of the change-point model that control the proba-412

bilities of the emissions actually observed. The Expectation-Maximization (EM) algorithm is413

the most widely used approach to perform inference in such models with latent variables; for414

stability and speed issues, we used a “hard-assignment” version of EM to fit the change-point415

model (Bishop (2016)). Starting with a randomly chosen set of initial emission probabilities416

αD, αI and αP for the categorical emissions that define the detection, identity and palatability417

states respectively, the EM algorithm for our change-point model repeatedly cycled between 2418

steps:419

1. “Hard” E-step: Pick the combination of the latent variables, CI and CP , that has420
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maximum posterior probability given the observed categorical spikes S and the ensemble421

firing probabilities αD, αI and αP . We directly pick the mode of the joint posterior422

distribution of CI and CP in our hard-assignment version of the E-step instead of taking423

their expectations/means.424

2. M-step: Set the categorical firing probabilities for each state to values that maximize the425

likelihood of the data given the (CI , CP ) pair picked in the E-step. This is proportional426

to the number of emissions of each neuron in that state. For example, with St as the427

emission observed at time t, the likelihood-maximizing emission probabilities of neuron428

n can be calculated as:429

In detection state: αD,n =

CI∑
t=1

1(St = n)

N∑
n=1

t=CI∑
t=1

1(St = n)

In identity state: αI,n =

CP∑
t=CI

1(St = n)

N∑
n=1

CP∑
t=CI

1(St = n)

In palatability state: αP,n =

1.5s∑
t=CP

1(St = n)

N∑
n=1

1.5s∑
t=CP

1(St = n)

(5)

where 1 is the unit function that is 1 when St = n and 0 otherwise.430

In order to deal with the possibility that EM can get stuck at sub-optimal local maxima of log431

likelihood, we ran the algorithm from 100 different random initializations of the α parameters.432

We monitored the log likelihood of the data given the model parameters and ran the algorithm433

to a convergence threshold of 10−8 (or a maximum of 300 iterations). Finally, we picked the434

run with the maximum log likelihood at convergence and reported the change-points (and their435

posterior probabilities given S and α) found on this run.436

It is worth noting that an inevitable result of performing such analyses on discontinuous437

data - such as trials in which 0.5s of spiking is missing because of optogenetic inactivation - is a438

certain number of artifactual change-points identified around the start or end of the inactivation439

time (the alternative is artifactually few change-points identified). This issue is handled in the440

Results and Discussion sections.441

2.2.6 Measuring aversive orofacial behaviors (gapes)442

Bitter (e.g., Quinine) tastes cause rats to produce an orofacial behavior known as “gaping”, the443

purpose of which is to maneuver the offending substances to the front of the mouth for egestion.444

As such, gapes index the fact that the neural processing of the bitter taste has (in a certain445

sense) reached completion - the rat has “decided” that it does not want to ingest the taste. The446
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occurrence of gapes can be measured in a number of ways, the most common of which is via447

human coding of video recordings - in the best of circumstances, gapes are readily visible as448

large yawn-like movements.449

Of course, the best of circumstances often fail to occur in rats free to move and rear.450

This fact, and the difficulty of getting precise measures of gape onset time from a visual record,451

renders video coding of gapes suboptimal for our purposes. Much more objective and less noise-452

ridden is evaluation of jaw electromyography (EMG), in which individual gapes are recognizable453

as particularly large-amplitude and large-duration electrical bursts (Figure 4A1-A2). We have454

previously built a quadratic classifier to detect these bursts in ongoing anterior digastric EMG455

signals, achieving 75% accuracy (Li et al. (2016)).456

Even this approach has somewhat troubling limitations, however, as its failure to reach457

close to 100% accuracy indicates. These limitations stem from the facts that: 1) not all high-458

amplitude jaw movements are gapes; and 2) gapes vary widely in amplitude, and in fact some459

are small enough to appear similar in size to many other mouth movements (see Figure 4A1-460

A2). In practice, both types of variability leave the classifier subject to false positives that461

must be somehow recognized and removed - the former most notably at the beginning of trials462

(when the taste hits the tongue, causing 1-2 relatively large-amplitude licks).463

One solution to these problems involves making simultaneous recordings from multiple jaw464

muscles, but pilot experiments left us concerned that such drastic infiltration of the jaw can465

compromise normal movement, which would make interpreting our results difficult. Instead, we466

decided to take advantage of another, more robust feature of gaping: the fact that gapes occur467

in 4-6 Hz “bouts” of anterior digastric activity (Travers and Norgren (1986), Li et al. (2016)).468

While identifying gaping bouts as time periods during which this rhythmicity dominates the469

EMG signal is also imperfect - it is probabilistic and involves smoothing across time - it largely470

solves the problems described above.471

We instantiated just such an procedure here, applying a Bayesian spectrum analysis that472

estimates the posterior probability that a 4-6Hz rhythm underlies a short time series of EMG473

activity (see below for technical details). By this analysis, the probability of gaping to any474

taste is modestly elevated at trial onset (because of the initial large-amplitude licks), but it475

quickly drops to effectively zero for Sucrose, which therefore contributes nothing to the overall476

calculation of when gaping begins. On Quinine trials, in contrast, the probability waxes and477

wanes appropriately with the occurrence of gape bouts (Figure 4B1-B2), rising precipitously478

and reliably just prior to the first gape (detected in a subset of data with both video recordings479

and the quadratic classifier, Figure 4D).480

In important ways, this analysis is analogous to the method of divining palatability-relatedness481

of single-neuron firing described above and used in many previous studies (Fontanini and Katz482

(2006), Sadacca et al. (2012), Li et al. (2013), Sadacca et al. (2016), Li et al. (2016)) - the elec-483

trophysiological signal (in this case, the posterior probability of the range of gaping frequency in484

the EMG signal) varies (i.e., correlates) with the palatability of the proffered taste, and we aver-485

age these correlations to ascertain the palatability-relatedness of the signal at each time point.486

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 9, 2019. ; https://doi.org/10.1101/486043doi: bioRxiv preprint 

https://doi.org/10.1101/486043


Sucrose contributes no information to this signal (because rats do not gape to these sucrose487

concentrations), so the overall average gaping latency is equivalent to the difference between the488

time distributions of gaping probability to Dil and Conc Qui (see Grill and Norgren (1978a),489

Travers and Norgren (1986)), which can be statistically assessed as the Kullback-Leibler (KL)490

divergence (again, see technical details below). Not only does this procedure reveal the onset491

of orofacial behaviors reflecting aversion, it pits the two Qui concentrations against each other492

to get rid of most of the nonspecific gape-like EMG activity (mentioned above) which is of493

similar magnitude on both Dil and Conc Qui trials and does not contribute to the gape onset494

calculation.495

Unlike previously used methods, in which (usually) trials where gapes could not be reliably496

detected were removed from further analysis, this algorithm combines EMG data from all the497

trials available, thereby allowing us to avoid making statistical comparisons between conditions498

with very different sample sizes. At the cost of being unable to precisely detect the specific499

timing of later gapes in a bout, this procedure provides an estimate of the average timing of500

the first gape (both robust and reliable enough for the purposes of the within-session, between-501

condition analyses performed here).502

Bayesian spectrum analysis (BSA) of EMG recordings: As detailed previously, we503

recorded voltage signals from 2 unipolar EMG electrodes implanted in the anterior digastric504

muscle at 30kSamples/s. We used the difference in the voltage recorded by the 2 electrodes as505

the EMG signal - this procedure helps to cancel out any large artifacts produced by the animal’s506

movements and is equivalent to using a differential amplifier (as done in Li et al. (2016)). We507

down-sampled the EMG signal to 1000Hz by averaging the voltage values in sets of 30, and508

highpass filtered the down-sampled signal above 300Hz (Travers and Norgren (1986); Li et al.509

(2016)) using a 2nd order Butterworth filter. The absolute value/magnitude of the filtered510

EMG signal was then lowpass filtered (again using a Butterworth filter of order 2) below 15Hz,511

effectively capturing the envelope of variation of the EMG signal (plotted as the black curve512

in Figure 4A1-A2). This cutoff of 15Hz is sufficient for identifying orofacial behaviors, all of513

which occur at frequencies smaller than 10Hz (Grill and Norgren (1978a); Li et al. (2016)).514

We subjected the envelope of the EMG signal to Bayesian spectrum analysis (BSA). BSA515

involves the construction of a probabilistic model of the generation of periodic signals from516

the superposition of sinusoids of different frequencies. We divided the signal on each trial517

into bins of width 300ms, with a step size of 1ms. We assumed that the EMG signal in each518

bin is produced by a sinusoid of a single frequency (plus noise) - in a probabilistic setting,519

this assumption implies the same model as a discrete-time Fourier transform. Contrary to520

the Fourier transform, however, BSA infers the posterior distribution of frequencies given the521

data. BSA has been shown to provide posterior estimates of frequencies that are an order of522

magnitude more precise than the Fourier transform (Bretthorst (2013); Granqvist et al. (2011)).523

We used the BaSAR R package for BSA (Granqvist et al. (2012)) and calculated the posterior524

probabilities of frequencies from 1Hz to 10Hz in 20 steps for each 300ms wide bin of data.525
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Identifying the mean onset of aversive orofacial behavior: Rats respond to intra-oral526

deliveries of Qui in the concentration range used in our experiments (10−4 to 10−3M) with527

an initial set of non-specific investigative licks that are followed by large, jaw-opening mouth528

movements called gapes (Grill and Norgren (1978a), Figure 4A1-A2). Gapes primarily involve529

activity of the anterior digastric muscle at 4-6Hz (Grill and Norgren (1978a), Li et al. (2016))530

- we, therefore, used the probability of movements at 4-6Hz in the digastric EMG signal (from531

BSA, see previous section) as the probability of gaping (PrGape). This spectral measure of532

PrGape has a strong correspondence with a previously-defined and above-discussed quadratic533

classifier (that tags individual mouth movements as gapes (Li et al. (2016)). On individual Qui534

trials (Figure 4B1-B2), PrGape from BSA is high (close to 1.0) when the quadratic classifier tags535

mouth movements as gapes. In addition, the average probability of gaping (PrGape) from BSA536

(Figure 4C1-C2) is very similar to an across-trial, peri-stimulus average of the gapes picked537

by the quadratic classifier. In contrast to the quadratic classifier, however, the BSA measure538

of PrGape is based entirely on the spectral content of the EMG signal. It, therefore, does not539

require the construction of a sufficiently complex classifier function (with a large enough set of540

experimenter-tagged examples to train the classifier) to pick out individual gapes. This also541

ensures that BSA considers bouts of movements together while calculating PrGape, making it542

robust against isolated large amplitude movements early in the animal’s orofacial response.543

These initial movements were often found to be large licks on video and limited the accuracy544

of the quadratic classifier in Li et al. (2016) to 75%.545

The probability of the transition from the rats’ initial investigative licks to gapes depends546

on the concentration of Qui delivered: 10−3M (Conc Qui) elicits gapes on more than twice the547

number of trials as 10−4M (Dil Qui) (Grill and Norgren (1978a), Li et al. (2016)). Comparison548

of PrGape on Dil and Conc Qui trials, thus, provides a natural way to calculate the mean onset of549

gaping across all the Qui trials in an experimental condition (again, Suc trials add little to this550

analysis, as the probability of 4-6Hz activity drops to 0 within 100-200msec of taste delivery).551

We expect the distribution of PrGape on Dil Qui trials to be similar to that on Conc Qui trials552

in the investigative licking phase. Once gaping starts, however, we expect a large difference in553

the distributions of PrGape on Dil and Conc Qui trials. PrGape on Dil Qui trials, therefore, acts554

like a baseline for PrGape on Conc Qui trials: we conclude that gapes have started only when555

PrGape of Conc Qui begins to differ significantly from this baseline.556

We used Beta distributions to describe PrGape on Dil and Conc Qui trials. The Beta dis-557

tribution is commonly used to model the probability parameter of a Bernoulli (1/0) process2.558

Gaping being a Bernoulli process, the Beta distribution is an appropriate choice for model-559

ing PrGape. We defined one such Beta distribution in each time bin for Dil and Conc Qui560

separately, parametrized by the number of trials where the animal was gaping (PrGape >561

0.5) or not (PrGape < 0.5). The Kullback-Leibler divergence of these Beta distributions562

(DKL(Conc Qui||Dil Qui))3 provides a natural way to quantify the difference between PrGape on563

2The Beta distribution for the parameter p of a Bernoulli process is expressed in terms of its concentration
parameters, α and β. α = observed number of 1s and β = observed number of 0s.

3The KL divergence between two Beta distributions with concentration parameters (α1, β1) and (α2, β2) can

17

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 9, 2019. ; https://doi.org/10.1101/486043doi: bioRxiv preprint 

https://doi.org/10.1101/486043


Dil and Conc Qui trials and shows a sharp jump ∼1s post taste delivery (Figure 4E), consistent564

with the timing of the transition from investigative licks to gapes (Grill and Norgren (1978a),565

Travers and Norgren (1986), Li et al. (2016)). Finally, we calculated the cumulative sum of566

DKL(Conc Qui||Dil Qui) across time: the jump corresponding to the mean onset of gaping is567

expressed as a change in slope of the cumulative sum. We fit two straight lines to the cumu-568

lative sum to capture this change in slope: the intersection of the two lines defines the mean569

timing of the onset of gaping (Figure 4F).570

be written as: DKL = log Γ(
j=2∑
j=1

αj)−
j=2∑
j=1

log Γ(αj)−log Γ(
j=2∑
j=1

βj)+
j=2∑
j=1

log Γ(βj)+
j=2∑
j=1

(αj−βj)(ψ(αj)−ψ(
j=2∑
j=1

αj)),

where Γ and ψ are the gamma and digamma functions respectively.
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3 Results571

3.1 Experimental paradigm and data overview572

Figure 1A depicts the preparation used for our experients - IOCs for taste delivery, bilateral GC573

opto-trodes for recording of neural ensemble activity and delivery of laser light, and EMG elec-574

trodes in the anterior digastric (jaw) muscle for simultaneous assaying of consumption-related575

mouth movements. Four weeks prior to the surgery in which we installed these assemblies,576

we injected AAV carrying the optogenetic silencer ArchT (along with green fluorescent protein577

- GFP) into GC. The GFP allowed us to confirm (post-mortem) infection of GC neurons by578

immunohistochemical verification of the GFP tag (Figure 1B).579

The rats received intra-oral deliveries of 30mM sucrose (Dil Suc), 300mM sucrose (Conc580

Suc), 0.1mM Quinine-HCl (Dil Qui) and 1mM Quinine-HCl (Conc Qui). One set of sessions581

involved “brief perturbation” trials: on 75% of the trials in these sessions, we inhibited GC582

neurons for 0.5s, beginning either at 0s, 0.7s or 1.4s post taste delivery (Figure 1C). These three583

perturbation windows tile the period containing the temporal epochs that characterize GC taste584

responses (Katz et al. (2001), Sadacca et al. (2012), Sadacca et al. (2016). More specifically, the585

earliest (0-0.5s) and latest (1.4-1.9s) inhibitions affect GC neurons before and after the range of586

likely transition times into the behaviorally-relevant state containing palatability-related firing,587

which typically occur just before, during, or just after the middle (0.7-1.2s) perturbations588

(Figure 1C, also see Figure 1D for a basic schematic of coding across the first 2.0s of GC taste589

responses). In a separate set of experimental sessions (performed using a subset of the same590

rats), we inhibited GC across the entire duration of the taste responses (0-2.5s post stimulus)591

(Figure 1C) as a control comparison for the brief 0.5s perturbations.592

We recorded the activity of 244 GC single neurons across 10 sessions (24.4±13 units/session)593

of 0.5s inhibition, and of an additional 73 GC single neurons in 5 sessions (14.6±4.7 units/session)594

of 2.5s inhibition. The two types of experimental sessions were counterbalanced, such that 3 rats595

received 2.5s inhibition sessions first, and 2 received 0.5s inhibition sessions first. No differences596

with order were noted.597

The AAV-ArchT construct used in this study has been shown to infect neurons of multi-598

ple types (e.g., pyramidal neurons and interneurons) in an unbiased manner (Aschauer et al.599

(2013)). Our optogenetic inhibition protocol, therefore, can be thought of as a general per-600

turbation of the dynamics of GC neurons in response to tastes. Note as well that any such601

perturbation (including of individual neuron types) would be expected (perhaps paradoxically)602

to enhance the firing of some neurons through network-level effects (like disinhibition, via sup-603

pression of the firing of inhibitory neurons, Allen et al. (2015)). This expectation was borne604

out in the data: the firing of most of the recorded GC units (146/244, 60%, example unit in605

Figure 2A1-A4) was significantly suppressed when the laser was switched on for 0.5s, but the606

firing of an additional 20% (49/244) was significantly enhanced.607

The same pattern of results was observed when the duration of optogenetic inactivation608

was increased to 2.5s: the firing of 82% of GC neurons (60/73, example unit in Figure 2B1-609
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B2) was inhibited, and the activity of 15% (11/73) was enhanced. The fact that 2.5s of laser610

stimulation appeared to inhibit a larger percentage of neurons is likely an artifact of analysis611

methods: suppression of the low firing-rates (3-10Hz) that dominate GC taste responses (Katz612

et al. (2001), Jones et al. (2007), Samuelsen et al. (2012), Kusumoto-Yoshida et al. (2015),613

Mazzucato et al. (2015)) can be difficult to detect, particularly in short time windows; consistent614

with this, we observed that the highest likelihood of detecting suppression in 0.5s perturbation615

sessions occurred when that perturbation was delivered in the middle of taste processing (0.7-616

1.2s, Figure 2C) - at the time of peak firing rate modulations. With 2.5s of inactivation, which617

covered the entirety of GC taste responses, we naturally had the power to detect suppression618

in a larger fraction of neurons (Figure 2D).619

Although this specific optogenetic protocol cannot be used to answer cell-type/microcircuit-620

specific questions, its network-wide effects are ideal for testing the macroscopic dynamical621

properties of taste processing in GC (the purpose of the current work): GC taste responses622

evolve through a sequence of temporal epochs (Katz et al. (2001), Maffei et al. (2012), Jezzini623

et al. (2013)) which have the hallmarks of emergent, quasi-stable states of a system that can be624

speculatively described, at a high level, as an attractor network (Jones et al. (2007), Miller and625

Katz (2010), Mazzucato et al. (2015), Sadacca et al. (2016)); our optogenetic protocol brings626

about a strong perturbation of the network activity characterizing these stable states, and by627

mapping the state dependence of the effects of these perturbations, we are able to directly test628

the proposed function of these states (and of the transitions between them).629

3.2 Early perturbations delay single-neuron palatability-related re-630

sponses while late perturbations do not631

We first assessed the impact of optogenetic perturbation on neural activity - that is, on the632

palatability-related content of GC taste responses that had been smoothed (using 250ms-wide633

windows moved in 25ms steps) and standardized to be on a uniform scale (see Materials and634

Methods for details). The set of responses (1 per taste) were regressed against the palatability635

ranks of the taste stimuli (Conc Suc:4, Dil Suc:3, Dil Qui:2, Conc Qui:1) to obtain a palatability636

index, βPalatability. Being a Bayesian analysis (consult Materials and Methods for details on637

model setup and inference), this regression gives access to the entire posterior distribution of638

βPalatability at every time point. Knowing the spread of the posterior distribution of βPalatability639

at every time point allows us to more simply perform significance tests: we can conclude that640

βPalatability is different from 0 at the 5% level of significance if the 95% extent of its posterior641

distribution (generally known in Bayesian analyses as the “credible interval”) does not overlap642

0 (such time points are marked by dots in Figure 3A). We used logistic sigmoid functions to643

better characterize the time evolution of the posterior mean of βPalatability (shown with dashed644

lines in Figure 3A), and defined the size and latency (time to attain 95% of maximum size) of645

the upper asymptote of the logistic fit as the magnitude and latency of the peak of βPalatability646

respectively.647

As expected, perturbation for 2.5s had a devastating impact on palatability-related re-648
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sponses of neurons in the affected GC network (Figure 3A). In control (laser-off) trials, as649

in previous studies (Sadacca et al. (2016)), βPalatability climbed to an asymptote ∼0.8s after650

taste delivery. However, on trials where the lasers were switched on at the time of taste de-651

livery and left on for 2.5s, βPalatability never rose significantly from 0. Note that the latency to652

peak palatability firing is comparable in the two conditions (blue bars in Figure 3B), but that653

the magnitude of the peak is close to 0 when GC neurons are being perturbed (red bars in654

Figure 3B).655

The impact of brief (0.5s) perturbations on the palatability content of single-neuron GC656

taste responses was smaller in magnitude, but could be quite dramatic with regard to peak657

timing, depending on when the perturbation occurred (Figure 3C). In these sessions, just as658

in the 2.5s perturbation sessions, βPalatability peaked ∼0.8s after taste delivery when the lasers659

were left off. Furthermore, neither the timing nor magnitude of this peak was significantly660

affected by perturbation of GC neurons in the later part of the taste response (1.4-1.9s, after661

palatability-related firing had emerged).662

In contrast, if activity was perturbed for the first 0.5s of the GC taste response, the palatabil-663

ity content of this response did not reach asymptote until ∼1.3s, a lag of almost 0.5s compared664

to the control condition (laser-off trials). Note that the failure of GC firing to “bounce back”665

immediately after laser-off (which occurred 300-400ms before the time of peak palatability con-666

tent in control trials) implicates GC in the processing of palatability itself (see Discussion).667

Note as well that despite delaying the peak of βPalatability, the early perturbation did not affect668

its later emergence - if anything, the magnitude of the peak was larger in this condition (red669

bars in Figure 3C). The 0-0.5s perturbation thus appears to produce a transient shift out of670

the attractor dynamics responsible for GC taste responses followed by gradual relaxation back671

into the stable state after the end of the perturbation; variability in this process (which can672

overshoot the stable point, depending on the speed of relaxation) could explain the apparent673

increase in the magnitude of the peak palatability index in this condition.674

Finally, 0.5s perturbations delivered in the middle of the taste response (0.7-1.2s) also had675

a powerful impact on GC palatability-related firing: the magnitude of the peak of βPalatability676

was significantly lower in this condition (red bars in Figure 3C); the latency of this peak,677

meanwhile, was (like that produced by earlier perturbations) about 0.5s later than no-laser678

trials. The former effect was unsurprising, as this particular perturbation overlaps the heart of679

palatability-related activity in GC neurons (Katz et al. (2001), Jezzini et al. (2013), Sadacca680

et al. (2016)).681

3.3 GC perturbation delays the onset of aversive orofacial behavior682

We monitored our rats’ mouth movements via electromyography (EMG). Specifically, we im-683

planted EMG electrodes in the anterior digastric muscle; as a jaw moving muscle, the anterior684

digastric plays a major role in the production of “gapes”, the rhythmic orofacial behavior that685

serves to move aversive tastants to the front of the mouth in preparation for expelling. Far less686

accessible tongue muscles underlie mouth movements that support behaviors (such as “lateral687
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tongue protrusions”) that help the rat prepare to ingest appetitive tastants (Grill and Norgren688

(1978a), Travers and Norgren (1986), Li et al. (2016)). For that reason, we focus solely on689

gapes in this study (but see Discussion).690

Individual mouth movements can be recognized as bursts of anterior digastric EMG activity691

(Figure 4A1-A2). However, the variability in the amplitudes and durations of these EMG bursts692

reduces our ability to separate gapes from other large mouth movements. We, therefore, made693

use of a more robustly distinctive feature of gaping – the fact that gapes occur in 4-6Hz bouts694

(Travers and Norgren (1986), Li et al. (2016)). We analyzed the spectral content of the envelope695

of the EMG signal using Bayesian spectrum analysis (BSA; see Materials and Methods for a696

detailed discussion) and measured the probability of gaping as the total posterior probability697

of 4-6Hz movements.698

While easier to calculate and less subject to error, this estimate of the probability of gaping699

has strong correspondence with gaping bouts identified by a classifier trained on individual700

bursts of EMG activity (Li et al. (2016), see Figure 4B1-B2); the trial-averaged probability701

of gaping calculated by BSA and more classic techniques are also similar, for both trial types702

in which gaping occurred (Dil and Conc Qui trials, Figure 4C1-C2). Finally, the fact that703

the probability of gaping jumps precipitously just before the first gape as identified on video704

(Figure 4D) confirms this algorithm’s reliability in identifying periods of gaping in the EMG705

signal (see Materials and Methods for more details).706

With this information in hand, we were able to investigate the effects that perturbations707

of GC activity have on the animals’ rejection of aversive Qui. On average, gaping begins ∼0.9708

sec after Qui delivery in control trials – that is, when analysis is restricted to trials in which709

the laser was off (trials in which GC neurons were not perturbed, (Figure 5A). This latency is710

consonant with that reported in video analysis (Grill and Norgren (1978a)) and classic burst-711

oriented analysis of EMG (Travers and Norgren (1986)). Furthermore, this estimate matches712

that observed in control rats (published in Sadacca et al. (2016) and Li et al. (2016)) that713

received neither laser nor ArchT expression. Thus we can conclude that, at least with regard714

to the driving of gaping, our preparation leaves the system capable of normal function.715

Previous work has shown that while the appearance of palatability-related firing in GC716

(which arises suddenly and coherently across neurons in single trials) robustly predicts the717

onset of gaping bouts (see below and Sadacca et al. (2016)), it is unrelated to the mechanics718

of individual gapes within gaping bouts (Grill and Norgren (1978b), Li et al. (2016)). We719

therefore predicted that GC perturbations delivered once gaping was already underway would720

have minimal impact on gaping behavior.721

In fact, our data show that rats gaped normally, with gape bouts beginning at approximately722

the same time as in control (no laser) trials, if perturbations arrived late in the trial (1.4-1.9s,723

Figure 5B). Furthermore, this late perturbation failed to prematurely end gaping bouts that724

had already begun. Figures 5C1-C4 show example trials in which the probability of gaping725

rhythm in the EMG signal went high following Conc Qui delivery, and stayed high despite late726

(1.4-1.9s) GC inhibition. In fact, the percentage of trials in which gaping was maintained into727

22

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 9, 2019. ; https://doi.org/10.1101/486043doi: bioRxiv preprint 

https://doi.org/10.1101/486043


this period was unchanged by late GC perturbation - 57% (36/63) of control trials vs 55%728

(26/47) of laser trials. We can thus conclude that GC is of no consequence for the maintenance729

of ongoing gaping.730

In contrast, GC activity plays a clear role in the initiation of gaping. GC perturbations731

occurring 0-0.5s after taste delivery - that is, before transitions into the palatability-related732

state of GC activity - delayed gaping onset by approximately 0.25s on average (Figure 5B). This733

delay cannot be explained in terms of removal of early gaping - gaping latencies as early as 0.5s734

after taste delivery were rare, and an analysis of control (no laser) trials showed that removing735

latencies of less than 0.5s had essentially no impact on the mean onset time of gaping. The736

much more likely explanation is that GC inhibition (which is inevitably partial, see Discussion)737

perturbs the ongoing process that leads to the release of a “decision to gape” signal visible in738

GC (Sadacca et al. (2016)).739

Similarly, GC perturbations timed to occur squarely around the average time of the palata-740

bility / decision-related neural state change (0.7-1.2s; see Sadacca et al. (2016)) delayed the741

onset of gaping until just before 1.2s after taste administration - approximately 0.25s after742

gaping on control trials and in control sessions (with no laser or ArchT). That is, brief disrup-743

tions of GC activity occurring before or during the “heart” of quinine processing had a strong744

impact on the latency of aversive orofacial behavior. Not only is the impact of brief optogenetic745

perturbation significant, it was every bit as large as that observed with whole-trial (i.e., 2.5s)746

perturbations, which delayed the appearance of gaping by ∼0.2s (Figure 5B). These long per-747

turbations are not discussed further, because they had the additional unintended consequence748

of impacting gaping behavior on control trials (see Figure 5A and Discussion).749

3.4 GC perturbation impacts orofacial behavior only if delivered be-750

fore the onset of palatability-related ensemble activity751

We have previously demonstrated that the temporal dynamics of GC taste responses are well de-752

scribed as sudden transitions between two stimulus-specific ensemble firing rate “states” (Jones753

et al. (2007)), the latter of which is laden with information about stimulus palatability and754

highly predictive of the latency of gaping on single trials (Sadacca et al. (2016)); the trial-755

to-trial variability of both behavioral and transition latencies is large (the neural transition756

happens at a range of latencies spanning the approximate interval between 0.4 to 1.5s, and the757

behavior follows close behind), such that trial averaging smears the changes in firing rates into758

a more gradual-seeming ramp.759

We timed our 0.7-1.2s perturbations to overlap with the transition into this palatability-760

related ensemble activity state, but due to the above-described variability in timing, there were761

inevitably a subset of trials in which the ensemble state transition occurred before the pertur-762

bation. This fact afforded us an opportunity: we predicted that identical 0.7-1.2s perturbations763

would impact gaping latency differently depending on whether the transition into the late en-764

semble activity state had already occurred in that specific trial; this prediction implies that the765

results in Figure 5B, averaged across all trials receiving the perturbation, occlude our ability766
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to see the diversity of that perturbation’s possible effects, and mask a larger impact of the767

perturbation in one independently identified subset of trials.768

While we have previously used Hidden Markov Models (HMMs) to detect ensemble firing769

rate transitions in GC responses to tastes (Jones et al. (2007), Moran and Katz (2014), Sadacca770

et al. (2016)), this analysis is not amenable to the data in our study: a dataset made up of771

all 4 trial types (early, middle, and late perturbation, plus control) would be complex enough772

(each trial type would likely involve distinct sets of firing rates, see below) that the HMM773

would seldom reach stable solutions; divided into individual trial types, meanwhile, the datasets774

would be too small to allow convergence to even simple stable fits. Instead, we took advantage775

of the insights gained from our previous publications (Katz et al. (2001), Fontanini and Katz776

(2006), Jones et al. (2007), Grossman et al. (2008)) and built a constrained change-point model777

of GC population activity; specifically, the model consisted of 2 activity change-points, the778

latter of which introduced palatability-related firing. This model constrained the general HMM779

framework in a way that allowed us to estimate transitions in individual trial types (see Figure 6780

and Materials and Methods for details).781

The distributions of putative transition times (identified by the change-point model) into782

the palatability-related ensemble state are shown in Figure 7A for all Qui trials in which GC783

firing was perturbed from 0.7s to 1.2s post stimulus. As firing rates were suppressed during784

the perturbation, we did not attempt to identify change-points when the lasers were on (a fact785

that inevitably impacted change points that could be identified at the “edges” of the excised786

time period; see below and Methods). According to this algorithm, the palatability-related787

state emerged before the lasers were illuminated on 55% of the trials (92/168, but see below);788

on the remaining 45% of trials (76/168), the palatability change-point could not be identified789

before laser onset. Regression analysis allowed us to confirm that significant palatability-related790

information appeared before 0.7s in trial-averaged single neuron firing during trials in which791

the ensemble state transition occurred prior to laser onset time; this information was notably792

lacking in trials in which the transition had not occurred (Figure 7B).793

On the basis of this analysis, we were able to show that, in line with our expectations,794

identical 0.7-1.2s perturbations had distinctly different effects on the onset of gaping depending795

on whether or not the transition into palatability-relatedness appeared to have occurred prior796

to laser perturbation (Figure 7C). Perturbations that arrived before the ensemble transition797

delayed gaping by more than ∼0.5s - that is, gaping appeared more than 0.2s after the end of798

GC inhibition in these trials. A comparison with control data confirmed that this effect was not799

caused by a simple truncation of the distribution of gaping latencies: even when we restricted800

ourselves to analyzing only the proportion (31%, 52/168) of control trials which lacked any801

gaping-related EMG activity till 1.2s (which was, in perturbation trials, the laser off time), the802

average gaping latency was still significantly less then that observed in the (larger) subset (45%)803

of laser trials in which the ensemble transition failed to precede the 0.7s onset of GC inhibition.804

Clearly, GC perturbation perturbs consumption behavior, if that perturbation begins prior to805

the ensemble neural transition into palatability coding.806
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Gaping occurred significantly earlier in trials in which the ensemble transition to the high-807

palatability state preceded the onset of GC perturbation at 0.7s (Figure 7C), but contrary to808

our expectation, gaping was still somewhat delayed compared to the no-laser condition even in809

these trials. As the ensemble state transition purportedly happens by 0.7s on these trials (i.e.,810

earlier than the average transition time on control trials), we expected that the onset of gaping811

would be similarly expedited. This was not the result that we obtained. We considered several812

possible explanations for this result (see Discussion), the most reasonable of which seemed the813

possibility that some transitions identified as happening just prior to laser onset were artifactual814

- the inevitable effect of attempting to identify firing rate changes next to a data “edge” (see815

Methods and Discussion) - and thus that for a small subset of trials in this group transitions816

into palatability coding did not in fact precede laser onset. Note that this hypothesis would also817

explain why the percentage of trials in which pre-0.7s transitions were identified was somewhat818

larger than expected (see above, and compare to the grey bars showing transition times in the819

no-laser control trials in Figure 7A).820

We tested this hypothesis, and found that the delay in the onset of gaping can indeed821

be entirely attributed to the trials where the ensemble state transition is calculated to occur822

between 0.65 and 0.7s. Specifically, when we restricted our analysis to trials in which the823

ensemble transition happened at 0.65s or earlier, the onset of gaping was found to occur more824

than 300ms earlier than in control trials. We went on to examine the trials in which transitions825

were identified to occur between 0.65 and 0.7s, and found that “early-onset” gaping occurred in826

only a subset (15) of these trials - almost precisely the same number (14) as there were control827

trials in which the transition occurred in the 0.65-0.7s interval; this result suggests that those828

true transitions that occurred during this interval likely resulted in gaping that was unaffected829

by the laser perturbation.830

As a whole, our results demonstrate that the impact of brief optogenetic inhibition of GC831

depends on precisely when that inhibition occurs: laser perturbation of GC that begins after832

the onset of palatability-/decision-related firing utterly fails to impact the timing of aversive833

orofacial responses, but GC perturbation that begins before the transition significantly de-834

lays those responses. Furthermore, given the trial-to-trial variability in the issuance of this835

decision-related transition, the result of any particular timing of brief GC inhibition will differ836

in different particular trials, depending on precisely what state the brain has achieved prior to837

that perturbation. This result provides support for our overarching hypothesis that the onset838

of palatability-related population activity in GC marks a discrete shift in taste processing - the839

ensemble transition in taste-related firing that predicts behavior is in fact the emission of the840

decision to gape.841
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4 Discussion842

Perception and action are inextricably linked in cortical taste responses. Neurons in gustatory843

cortex (GC), the primary sensory cortical area for taste, exhibit responses that, across 1.5s of844

post-stimulus time, shift from first reflecting stimulus identity to predicting a rat’s consumption845

decision (Katz et al. (2001), Fontanini and Katz (2006), Sadacca et al. (2012), Maier and Katz846

(2013)). With ensemble analysis, these otherwise gradual-seeming changes in firing rates are847

revealed to be swift, coherent transitions between population activity “states” (Jones et al.848

(2007)) - transitions that vary widely in latency from trial to trial, and that are therefore849

effectively blurred out in stimulus-aligned averages. Despite (in fact, because of) their highly850

variable latencies, these ensemble firing states reliably precede the onset of ingestion-egestion851

mouth movements by ∼0.2-0.3s (Sadacca et al. (2016), Li et al. (2016)), predicting not only852

the nature but the latency of these movements in single trials.853

Here we show that GC neural ensemble dynamics described above are not merely “efferent854

copy” reflections of processes occurring elsewhere, but are instead an indication of processing855

that is (to at least some extent, see below) intrinsic to GC. Brief (0.5s) optogenetic perturbations856

of GC neurons impact the timing of the animal’s decision to expel a bitter taste in the mouth,857

but only if those perturbations begin before the neural ensemble has shifted to palatability-858

related firing. Thus, a unique moment in time (the shift of population activity to reflect stimulus859

palatability), despite being enormously variable in latency from trial-to-trial, reflects a tipping860

point in taste processing; cortical disruptions have no impact beyond this tipping point, as the861

control of the ongoing movements themselves shifts elsewhere (presumably to brainstem pattern862

generators that control the ingestion-egestion mouth movements themselves in real time, see863

Travers et al. (1997), Travers et al. (2000)).864

A massively interconnected network of forebrain regions underlies or reflects taste processing865

- in addition to GC, this network includes the central and basolateral nuclei of the amygdala866

(CeA and BLA, Nishijo et al. (1998), Grossman et al. (2008), Fontanini et al. (2009), Sadacca867

et al. (2012)), hippocampus (Ho et al. (2011)), lateral hypothalamus (LH, Yamamoto et al.868

(1989), Li et al. (2013)), the bed nucleus of the stria terminalis (BNST, Norgren (1976), Li and869

Cho (2006)), the parabrachial nuclei of the pons (Baez-Santiago et al. (2016)), and the nucleus of870

the solitary tract (NTS, Di Lorenzo and Lemon (2000)). Several of these brain regions have been871

shown to integrate sensory and motor aspects of taste stimuli in their responses (Sadacca et al.872

(2016), Baez-Santiago et al. (2016), Denman et al. (2018)). Furthermore, multiple forebrain873

regions send direct descending feedback to the primary brainstem taste regions, influencing both874

their activity (Di Lorenzo (2000), Cho et al. (2003), Li et al. (2005)) and generation of orofacial875

movements (Zhang and Sasamoto (1990), Berridge and Valenstein (1991), Shammah-Lagnado876

et al. (1992), Travers et al. (1997)). Given this widely distributed network of processing nodes,877

it is to be expected that perturbation (or disruption over long periods of time) of one (or a few)878

of the participatory nodes will initiate homeostatic mechanisms that minimize the resultant879

degradation of behavior; thus, it is unsurprising that rodents remain able to produce gapes880

following ablation (King et al. (2015)) or disruption of GC (Li et al. (2016)) - in fact, the basic881
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gaping response to quinine is produced even in decerebrate rats (Grill and Norgren (1978b)).882

Nonetheless, we find that brief perturbations of GC do significantly alter these behaviors (as883

do lesions of other areas, such as gustatory thalamus, Grill and Norgren (1978b)), proving that884

far more than the minimal circuit is involved in triggering them in situ.885

Longer disruptions of GC activity appear to have lasting effects that can confound the886

interpretation of their behavioral impact - our 2.5s long optogenetic perturbations delayed the887

onset of gaping even in control (no laser) trials. Such spillover effects may reflect cellular or888

network-level processes, but they cannot be attributed to cell death caused by the perturbation:889

in our case, similar optogenetic protocols have been shown to have no observable impact on890

cell integrity in GC, even for perturbations much longer than 2.5s (Maier et al. (2015), Flores891

et al. (2018)); furthermore, the same rats in later sessions produced normally-timed orofacial892

responses on the control trials. We suggest that, to at least some degree, such effects on behavior893

reflect the widespread nature of taste processing, and the status of GC as one participatory894

node.895

Despite being just one node of this large network of brain regions, our brief perturbations896

reveal a temporally-specific role of GC in the driving of orofacial behavior - a role that could897

not be discerned through wholesale disruption of activity. This conclusion is bolstered by898

findings showing that: 1) even early - i.e., pre-transition - GC perturbations delay gaping; and899

2) palatability-related firing does not immediately return to normal levels following cessation900

of perturbation (as would be expected if GC was simply an output path reflecting processing901

performed elsewhere). Our 0.5s perturbations reveal that GC contributes to the instigation902

of a gaping bout but plays no role in the maintenance of gaping once it begins. These data903

suggest a dynamic flow of processing control within the larger taste network: modulatory signals904

propagate out of GC (signals that likely develop under the guidance of basolateral amygdala;905

Piette et al. (2012)) to influence the choice of a motor program in brainstem circuits, which906

is then implemented and controlled locally. At its heart, the proposed role of cortex in this907

model of taste processing has deep similarities to the role of neuromodulatory systems in the908

circuits underlying Aplysia feeding (Dacks and Weiss (2013)), leech swimming (Crisp and Mesce909

(2004)), control of gastric rhythms in the lobster and crab (Marder and Bucher (2007)), and910

rat whisking (Hattox et al. (2003)); in each, temporal aspects of rhythmic motor programs911

produced autonomously by a pattern generating circuit are influenced by descending signals.912

The discreteness, coherence and inter-trial variability of GC ensemble dynamics has several913

attractor network-like properties (Hopfield (1982), Amit (1992)): 1) attractor networks with914

multiple quasi-stable states can reproduce the sudden switches of activity seen in GC ensem-915

bles (Miller and Katz (2010)); 2) the transition durations and state lifetime statistics of GC916

population dynamics are more in line with a dynamically switching attractor model than linear917

models of firing rate evolution (Jones et al. (2007), Sadacca et al. (2016)); and 3) nonlinear918

attractor-based circuits that exploit the noise inherent in neural processing more optimally919

perform the decision to ingest or expel a taste, which rats need no training to perform, than do920

linear integrating circuits (Miller and Katz (2013)). Our optogenetic protocol, with its mix of921

27

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 9, 2019. ; https://doi.org/10.1101/486043doi: bioRxiv preprint 

https://doi.org/10.1101/486043


inhibitory and excitatory effects, presumably introduces a transient disruption in such attrac-922

tor dynamics; such a perturbation is strong enough to transiently “knock” the network out of923

stability, but only if it hasn’t already settled into the eventual, decision-related stable state.924

The finding that the involvement of GC in the gape instigation process appears to last925

almost precisely 50ms past the calculated transition times could conceivably be explained in926

many ways. Firstly, transitions between quasi-stable states of GC processing, however discrete,927

are certainly not instantaneous - the time constants of neural firing ensure that there is some928

finite (albeit small) amount of time across which the ensemble makes the “jump” from one929

state of activity to another. In addition, it is worth noting that both HMMs and change-930

point analysis techniques provide only a noisy estimate of state transition times, even if the931

transitions themselves were instantaneous. While both of these explanations have merit, it is932

also clear that that the change-point analysis model, which must deal with a sudden change in933

firing introduced by the laser, identifies artifactual "change-points" close to the laser onset time934

on some of the trials, even if palatability firing actually began after the lasers were switched935

off. Our analysis suggests that some, if not all, of the seeming response delay following change-936

points occurring between 0.65 and 0.7s may be artifactual, which in turn suggests that GC937

perturbations may have no impact even scant milliseconds following ensemble transitions. It938

is worth noting in this context that gaping lags 0.2-0.3s behind the ensemble neural transition939

(Sadacca et al. (2016)); thus, it appears that GC becomes irrelevant following the emission of940

a “gape signal”, even before actual gaping has begun.941

In this study, we focused exclusively on gapes, the orofacial responses that rats make to942

expel aversive tastes from the oral cavity. Pilot attempts to implant EMG electrodes in deeper943

muscles that control the distinctive consumption behaviors that occur in response to palatable944

tastes resulted in unacceptable levels of distress for the animals. This means that it remains945

(remotely) possible that gapes and LTPs are produced by separate cortical mechanisms (Peng946

et al. (2015)), and that therefore our results are informative only about aversion. We consider947

this possibility highly unlikely, however, for several reasons: 1) GC ensemble firing reflects948

the palatability of both appetitive and aversive tastes (Figure 3, Katz et al. (2001); also see949

Fonseca et al. (2018)), even if palatability is modified by learning (Moran and Katz (2014));950

2) the latency and inter-trial variability of the onset of palatability-related ensemble activity is951

similar for palatable and aversive tastes (Sadacca et al. (2016)); 3) there is considerable overlap952

in the brainstem circuits that underlie gapes and LTPs (Travers et al. (2000), Chen and Travers953

(2003), Venugopal et al. (2007), Moore et al. (2014)), resulting in similar latencies in the onset of954

LTPs and gapes after taste delivery (Travers and Norgren (1986)); and 4) independent analysis955

has suggested that orofacial behaviors reflecting aversiveness and palatableness lie on a single956

parametric continuum (Breslin et al. (1992)). These lines of evidence are consistent with the957

suggestion that cortex plays similar roles in the initiation of LTPs and gapes, which leads us to958

speculate that the transition of GC population activity to reflect stimulus palatability marks a959

shift in processing control, irrespective of the palatability of the tastant.960

In summary, the balance of our results demonstrate a dynamic role for cortex in the pro-961
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cessing of tastes; because this role involves ensemble activity states with variable trial-to-trial962

latencies, it cannot be discerned using standard analyses that average across trials. They reveal963

the importance of a unique moment in time that, despite being massively variable in latency964

from trial to trial, denotes a reliable shift of processing control - a modulatory signal emerging965

(at least partly) from cortical circuits that is passed (presumably) to a brainstem central pat-966

tern generator. These results suggest an attractor-like network of activity (although they could967

also be consistent with networks with thresholds), potentially spread across interconnected968

brain regions, underlying the animal’s decision to ingest or expel the tastant in the mouth -969

perturbations to this network can disrupt its functioning transiently, but only if it has not yet970

settled into the final, behaviorally-relevant stable state.971
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5 Figures972

30

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 9, 2019. ; https://doi.org/10.1101/486043doi: bioRxiv preprint 

https://doi.org/10.1101/486043


+
-

+
-EMG

Dil
Suc

Conc
Suc

Dil
Qui

Conc
Qui

Lasers

0.0       0.5      1.0       1.5       2.0      2.5
          Time post taste delivery (s)

0.0       0.5      1.0       1.5       2.0      2.5  
          Time post taste delivery (s)

0-2.5s

0-0.5s

0.7-1.2s

1.4-1.9s
0.5s

perturbation

2.5s
perturbation

A

B

C

Timing of possible 
transitions to  

palatability-related
ensemble state

0.0       0.5      1.0       1.5       2.0  
 Time post taste delivery (s)

D Detection
Identity
Palatability

Figure 1: Experimental paradigm. A: 4-6 weeks after receiving surgeries for virus injections,
rats were implanted with opto-trodes and EMG electrodes. Post recovery, they were given
intra-oral infusions of Dil Suc (30mM Sucrose), Conc Suc (300mM Sucrose), Dil Qui (0.1mM
Quinine-HCl) and Conc Qui (1mM Quinine-HCl), and ArchT-expressing GC neurons were
briefly inhibited by green (532nm) laser light. B: Coronal slice from a subject, showing ArchT
expression (visualized by the GFP tag) localized in gustatory cortex (GC). A small lesion, left
by the tip of the opto-trode is visible in the middle of the GFP expressing region, had no general
impact on behavior (see below). C: Inhibition protocol used in the study: two types of optoge-
netic perturbations, short (0.5s) or long (2.5s), were delivered in separate experimental sessions;
short perturbations were delivered at one of three possible time points on any individual trial.
Not shown, but delivered in all sessions, were control trials with no perturbations. Grey dashed
lines mark the approximate range of the ensemble transitions to palatability/decision-related
firing. D: A schematic of the temporal structure of single-neuron coding across the first 2.0s
of taste responses in GC. Immediately following taste presentation, responses are nonspecific,
indicating only the presence of fluid on the tongue (“detection” epoch). The next two temporal
epochs of GC firing are taste specific: the first codes the physio-chemical identity of the stimu-
lus (“identity” epoch); following a transition (that can happen anywhere between 0.5-1.5s post
stimulus on individual trials, see grey dashed lines, and on average happens midway through
this period) firing rates change to reflect palatability and the upcoming consumption decision
(“palatability” epoch).
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Figure 2: Impact of ArchT-mediated inhibition on GC neurons. A1-A4: Rasters of spiking
in an example single GC neuron in a 0.5s-perturbation session; each hash mark is an action
potential. Activity is robustly suppressed during laser stimulation. B1-B2: Analogous data
from an example single GC neuron in a 2.5s perturbation session, also showing clear inhibition
during laser stimulation. C: Histogram of changes in firing rates (plotted as a fraction of the
firing rate on control trials, x-axis) produced by 0.5s perturbations across the entire sample
(y-axis = number of neurons). The majority of neurons show robust firing suppression when
perturbed (fraction > 0), but a small group of neurons actually increased their firing rates in
response to perturbation, presumably due to network-level effects (fraction < 0). D: Analogous
histogram of changes in firing rate produced by 2.5s perturbation. Almost all neurons were
affected by the perturbation: the large majority are suppressed, but a small minority show
elevated firing rates in response to perturbation.
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Figure 3: Impact of optogenetic perturbations on palatability relatedness of the firing of GC
neurons. A: Coefficients (palatability-relatedness, y-axis) obtained from the regression of trial-
averaged firing rates on palatability ranks of the taste stimuli across time (x-axis). The solid
lines depict the mean regression coefficient across time for the entire data sample; coefficients
significantly different from 0 at the 5% level are marked by dots. The dashed lines are logistic
sigmoid fits for each condition. Disruption of GC firing for 2.5s wipes out the entirety of the
palatability response. B: The post-stimulus latency (blue bars and y-axis) and magnitude (red
bars and y-axis) of the peak (95% of the asymptote) of the sigmoid fits in A. Error bars denote
95% Bayesian credible intervals; differences are statistically significant at the 5% level if bars
are not overlapping. On control (laser off) trials, GC neurons asymptote to peak palatability
firing ∼ 0.8s post stimulus. The 2.5s perturbation, by disrupting the palatability response
completely, is fit by a flat sigmoid whose peak magnitude overlaps 0, although the latency to
“peak” is similar to that of control trials. C: Analogous graph of post-stimulus latency (blue
bars and y-axis) and magnitude (red bars and y-axis) of the peak (95% of the asymptote) of
the sigmoid fits for each trial type in the 0.5s-perturbation sessions. Error bars denote 95%
Bayesian credible intervals; differences are statistically significant at the 5% level if these error
bars are not overlapping. On laser off trials, GC representation of palatability peaks ∼ 0.8s after
taste delivery, identical to the 2.5s perturbation control trials in B. Perturbations early (0-0.5s)
and in the middle of the taste response (0.7-1.2s) delay the peak of palatability firing by ∼ 0.5s;
the magnitude of this peak, however, is the smallest for the middle perturbation. Perturbations
late in the taste trial (1.4-1.9s), after palatability-related firing has mostly subsided, have (as
expected) no impact compared to control trials.
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Figure 4: Bayesian spectrum analysis (BSA) of anterior digastric EMG recordings - probability
of gaping calculated in terms of the total posterior probability of 4-6Hz movements. A1-A2:
Two representative Conc Qui trials. The animal’s mouth movements can be seen as bursts of
higher-amplitude (y-axis) EMG activity (blue) following taste delivery - the onset of gaping,
as detected on video, is marked. The time series of the envelope of the EMG signal (black
line) are the data subjected to BSA. B1-B2: Result of BSA brought to bear on a pair of
individual Conc Qui trials. The calculated probability of gaping (y-axis, black lines) matches
up with individual gapes (grey vertical hash marks) picked by a previously published quadratic
classifier that achieved 75% accuracy; while correlating well with the earlier technique, BSA
avoids multiple pitfalls of that technique (and is easier to apply, see Methods). C1-C2: BSA
(solid line) and the quadratic classifier (dotted line) produce similar estimates of trial-averaged
probability of gaping in response to Dil Qui (C1) and Conc Qui (C2) on a set of control
(laser off) trials. D: The probability of gaping from BSA rises reliably just before the first
gape. Gaping probability was averaged across trials aligned by the time of the first gape,
detected either on video (black) or by the quadratic classifier (grey). The black dashed line
(0 on the x axis) indicates the occurrence of the first gape. E: KL divergence between the
probability of gaping to Conc and Dil Qui (higher values indicate larger differences in their
gaping distributions, same trials as in B). As expected, the distributions of gaping probability
on Conc and Dil Qui trials are initially similar (while non-specific investigative licks happen)
and diverge out at ∼1s post stimulus once gaping begins. F: The cumulative sum of the KL
divergence in E across time. The jump in KL divergence around the mean onset time of gaping
is seen as a change in slope of its cumulative sum. We fit two straight lines to the cumulative
sum and pick their intersection as the mean onset of gaping across this set of trials.
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Figure 5: Onset times of 4-6Hz aversive orofacial behaviors (gapes) under different conditions.
A: Onset of aversive orofacial behaviors in control (no laser) trials in 0.5s and 2.5s perturbation
sessions. The x-axis presents the mean gape onset times; the extent of their 95% Bayesian
credible intervals are shown in the error bars. Non-overlapping error bars depict statistical
significance at the 5% level. The 2.5s controls show a delayed onset, likely due to lasting
effects of the (relatively) long optogenetic perturbation. B: Delay in the onset of aversive
orofacial behaviors (compared to control trials) with 2.5s perturbation (top bar), and in the
different 0.5s laser trials, with the same conventions as A. Early (0-0.5s) and mid-trial (0.7-
1.2s) perturbations of the taste response delay the onset of gaping (to the same degree as 2.5s
perturbation). The delay in the onset of gaping is insignificant if GC neurons are disrupted late
in the trial (1.4-1.9s). C1-C4: Four representative Conc Qui trials with optogenetic disruption
from 1.4-1.9s post taste delivery. On each of these trials, the probability of 4-6Hz aversive
orofacial responses is unaffected by the onset of the laser, confirming that GC perturbation
fails to disrupt ongoing bouts of gaping.
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Figure 6: Switchpoint model of GC ensemble responses to tastes, which were assumed (on the
basis of our previous work) to consist of 3 states as follows: 1) Detection: a brief, initial state
of nonspecific responses with identical population distributions of activity for each tastant in
our battery; 2) Identity: responses related to the chemical identity of the taste stimulus with
2 population firing rate distributions, one each for Suc and Qui; 3) Palatability: population
firing rich in palatability and consumption-decision related information with 4 population dis-
tributions of activity, one for each of the 4 tastants in our stimulus battery. The model assumed
that the transitions between these states could not occur during the optogenetic perturbation
of GC (denoted by periods of green diagonally hatched regions): each row shows how the search
for change points is hypothesized to be impacted by GC perturbation; note the two distinct
possibilities with regard to 0.7-1.2s trials.
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Figure 7: The impact of 0.7-1.2s perturbation on GC neural activity and aversive orofacial
behavior varies from trial to trial, depending on the progress of taste dynamics. A: Distribution
of change-points into the palatability-related ensemble state identified in Qui trials (in green).
We could not examine the time period of perturbation, from 0.7s to 1.2s, because firing during
this period was deeply confounded by laser-induced inhibition: as we concatenated the pre- and
post-perturbation periods, an abnormally large number of change points are localized to the
time of splicing (compare to change points identified in control trials, in grey). B: Correlation
(quantified in terms of coefficient of regression) of trial-averaged firing rates of GC neurons with
palatability of the taste stimuli in two subsets of trials - those in which the ensemble transition
into palatability-related firing was identified to have occurred prior to perturbation (blue line),
and those in which it did not (green line). Coefficients significantly different from 0 at the 5%
level are marked by dots; these coefficients differ from 0 only within the trials in which the
palatability-related ensemble state appeared before the onset of perturbation. C: The impact
of 0.7-1.2s GC perturbation on the onset of aversive orofacial behavior, quantified in terms of
the delay of behavior onset compared to control trials (x-axis). The onset of gaping is delayed
significantly more if the perturbation begins before palatability information has appeared in
ensemble activity than if it does not - but even on these trials behavior is significantly delayed.
When we drop the subset of trials in which transition times into palatability-related firing occur
within 50ms of 0.7s (a subset that likely contains artifactually identified transitions), however,
gaping on transition-before-perturbation trials is revealed to happen earlier than on control
trials - the expected result (see text).
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