Abstract
Manipulating feeding circuits in freely moving animals is challenging, in part because the timing of sensory inputs is affected by the animal’s behavior. To address this challenge in Drosophila, we developed the Sip-Triggered Optogenetic Behavior Enclosure (“STROBE”). The STROBE is a closed-looped system for real-time optogenetic activation of feeding flies, designed to evoke neural excitation coincident with food contact. We demonstrate that optogenetic stimulation of sweet sensory neurons in the STROBE drives attraction to tasteless food, while activation of bitter sensory neurons promotes avoidance. Moreover, feeding behavior in the STROBE is modified by the fly’s internal state, as well as the presence of chemical taste ligands. We also find that mushroom body dopaminergic neurons and their respective post-synaptic partners drive opposing feeding behaviors following activation. Together, these results establish the STROBE as a new tool for dissecting fly feeding circuits and suggest a role for mushroom body circuits in processing naïve taste responses.