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42 Abstract
43 Hemophilia B is a classical monogenic X-chromosomal recessively transmitted bleeding 
44 disorder caused by genetic variants within the coagulation factor IX gene (F9). Although 
45 hemophilia B has been described in 28 dog breeds and four mixed-breed dogs hitherto, it 
46 has not yet been reported in the Hovawart. Here we describe the identification of a 
47 Hovawart family transmitting typical signs of an X-linked bleeding disorder. Five males had 
48 been reported to suffer from recurrent hemorrhagic episodes, four of them had to be 
49 euthanized finally and one died due to severe blood loss. A blood sample of one of these 
50 males with only 2% of the normal concentration of plasma factor IX (FIX) together with 
51 samples of seven relatives including the mother and grandmother were provided for further 
52 analysis. Next generation sequencing of DNA of the mother and grandmother revealed a 
53 single nucleotide deletion in the F9 promoter (NC_006621.3:g.109,501,492delC; 
54 CanFam3.1). Genotyping of the deletion in 1,298 dog specimens (81 different breeds) 
55 including 720 Hovawarts revealed that the mutant allele was only present in the 
56 aforementioned Hovawart family. The deletion is located 73 bp upstream of the F9 start 
57 codon in the highly conserved overlapping DNA binding sites of hepatocyte nuclear factor 4α 
58 (HNF4α) and androgen receptor (AR). The deletion only abolishes binding of HNF4α as 
59 demonstrated by electrophoretic mobility shift assay (EMSA) using purified recombinant 
60 human HNF4α and a transient overexpression lysate of human AR with double-stranded 
61 DNA probes encompassing the mutant promoter region. Luciferase reporter assays using 
62 wild type and mutated promoter fragment constructs transfected into Hep G2 cells showed 
63 a 65.3% reduction in expression from the mutant promoter. The data presented here 
64 provide evidence that the deletion identified in the Hovawart family caused a rare type of 
65 hemophilia B resembling human hemophilia B Leyden.
66
67 Author summary
68 Hemophilia B is the rarer form of classical hemophilias resulting from the absence or residual 
69 activity of blood clotting factor IX. Due to its X-linked recessive inheritance normally only 
70 males are affected. In a disease subtype, termed hemophilia B Leyden, factor IX activities 
71 increase during puberty resulting in spontaneous improvement of bleeding symptoms or 
72 even clinical recovery. This surprising development-related alteration is caused by 
73 nucleotide variants in important developmental and hormone-responsive regulatory regions 
74 of the factor IX gene promoter interfering with transcription factor binding. Although 
75 hemophilia B has been reported in several dog breeds, subtypes resembling human 
76 hemophilia B Leyden were unknown hitherto. In addition, the single nucleotide deletion 
77 reported here in Hovawarts in the overlapping binding sites of transcription factor HNF4α 
78 and androgen receptor only affecting HNF4α binding, was unexpected. Although it is 
79 advisable to genotype females in the future to prevent a further spread of this subtype of 
80 the disorder, our findings also open up the possibility not to euthanize affected males 
81 inevitably but to treat until puberty if necessary.
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82 Introduction
83 Hemophilia B (Christmas disease) is a recessive X-linked bleeding disorder caused by genetic 
84 variants within the clotting factor IX gene (F9) resulting in the absence or insufficient levels 
85 of factor IX (FIX) in the blood [1]. In humans hemophilia B is also known as the “royal 
86 disease” as it has been transmitted into several European royal dynasties by Queen Victoria 
87 [2, 3]. Currently, 1,113 unique F9 variants have been described in man [4]. The majority of 
88 pathogenic variants is located within exons (923) and intronic regions (137) of F9. Only 33 
89 variants (2.96%) have been described in the 5´-UTR (28) and 3´-UTR (5) accounting for 2.52% 
90 and 0.45% of human pathogenic hemophilia B variants, respectively [4].
91 Although first reports about canine hemophilia B date back to the early 1960´s and also 
92 being the first disorder in dogs characterized on DNA level, data on hemophilia B cases in 
93 dogs remain rather scarce compared to humans [5-8]. For instance, in the Cairn Terrier 
94 colony of the Francis Owen Blood Research Laboratory (University of North Carolina at 
95 Chapel Hill) a G>A transition (NC_006621.3:g.109,532,018G>A) in exon 8 causing an amino 
96 acid exchange (NP_001003323.1:p.Gly418Glu) was detected resulting in a complete lack of 
97 circulating FIX in affected dogs [9]. Due to a complete deletion of F9 in Labrador Retriever, 
98 production of FIX inhibitors was detected after transfusion of canine blood products [10]. In 
99 two unrelated Airedale Terrier breeds a large deletion of the entire 5´ region of F9 extending 

100 to exon 6 and a 5 kb insertion disrupting exon 8 was described, respectively [11]. Similar to 
101 the hemophilia B in the Labrador Retriever in both breeds FIX inhibitors were produced. A 
102 mild hemophilia B in German Wirehaired Pointers was caused by a 1.5 kb Line-1 insertion in 
103 intron 5 of F9 at position NC_006621.3:g.109,521,130 [12]. Until today, hemophilia B has 
104 been described in four mixed-breed dogs and 28 dog breeds, e.g. German Shepherd, Lhasa 
105 Apso, Labrador Retriever, Rhodesian Ridgeback, Airedale Terrier, Cairn Terrier, Maltese and 
106 German Wirehaird Pointer [9-17].
107 In the canine cases analysed so far on DNA level, mutations have been observed only in 
108 exons and introns of F9, whereas alterations of the F9 promoter have not yet been reported. 
109 In humans promoter variants have been detected resulting in the so-called hemophilia B 
110 Leyden characterized by low levels of FIX until puberty, whereas after puberty FIX 
111 concentrations rise to almost normal levels [18-20]. Since the first description, the genetic 
112 background of human hemophilia B Leyden was elucidated by various studies identifying 
113 variants in different transcription factor binding sites in the F9 promoter including androgen-
114 responsive element (ARE), hepatocyte nuclear factor 4α (HNF4α), one cut homeobox 
115 (ONECUT1/2) and CCAAT/enhancing-binding protein α (C/EBPα) binding sites [21, 22]. A 
116 special variant is hemophilia B Brandenburg resulting from variants in the overlapping 
117 binding site of HNF4α and AR [23, 24]. Unlike the classical hemophilia B Leyden, in patients 
118 with these variants FIX levels cannot be restored by testosterone-driven AR activity and 
119 remain low after puberty with no clinical recovery [21, 24].
120
121 Results and Discussion
122 Hemophilias are rare diseases in dogs and hence it was rather coincidental that a case in a 
123 Hovawart (3, Fig 1) was reported to us. With the reconstruction of the pedigree it was 
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124 possible to trace back the disease to the female conductor 39 (Fig 1). In the studied family 
125 the hemophilia was transmitted to 19, 4 and 6. 19 had one litter with 3 hemophilic males 
126 (48, 51, 53). 4 and 6 had litters with 1 affected male 60 and 3, respectively. Although DNA 
127 samples of 48, 51, 53 and 60 were not available, blood parameters and medical reports 
128 about recurrent hemorrhagic episodes were provided (Table 1). These males had increased 
129 activated partial thromboplastin times (aPTT) of 47.8 sec (53) to 72.9 sec (60) indicative for 
130 defects of the intrinsic coagulation pathway and also reduced FIX concentrations in the 
131 blood as is normally the case in hemophilia B. The affected dog 3 presented only 2% of the 
132 standard FIX concentration. The female conductors 4 and 6 showed aPTT within, however, 
133 FIX concentrations slightly below the reference range. The clinical signs together with the 
134 blood coagulation parameters and X-chromosomal transmission supported the diagnosis of 
135 a hemophilia B. The definite clinical diagnosis prompted us to search for the molecular cause 
136 initially on DNA level. The canine F9 gene is located on chromosome X (CFAX) between 
137 positions 109,501,341 (transcription start site) and 109,533,798 and has a length of 32,458 
138 bp (NC_006621.3, CanFam3.1). Similar to other mammals, the canine F9 gene harbours 8 
139 exons with an open reading frame of 1,356 bp coding for 452 amino acids [25]. DNA of 
140 female conductors 4 and 6 were subjected to whole genome sequencing and aligned to the 
141 canine reference F9 gene sequence. Surprisingly, only 6 sequence variants outside the 
142 coding regions of F9 were identified (Table 2). Five variants were located in introns and were 
143 excluded as cause for hemophilia B in the Hovawarts. The remaining variant (deletion) was 
144 located in the promoter of F9 73 bp upstream of the start codon. As this deletion was 
145 located within a putative transcription factor binding site of hepatocyte nuclear factor 4α 
146 (HNF4α) and androgen receptor (AR) which had been shown in humans to be important for 
147 F9 expression and mutated in hemophilia B Leyden and Brandenburg [23, 24], this position 
148 was analysed in more detail.
149 Figure 2 shows the segregation of the nucleotide deletion in the affected Hovawart family. 
150 The female conductors 4 and 6 were heterozygous, evident by the overlapping peaks with 
151 similar heights 5´ of the deletion position. The affected male 3 was hemizygous for the 
152 deleted allele whereas his sister 5 and cousin 7 were homozygous wild type. Genotyping of 
153 1,298 dogs (including 83 different breeds, 720 unrelated Hovawarts, 12 Hovawart family 
154 members) demonstrated the occurrence of the deletion only among members of the 
155 affected Hovawart family (Table 3). To provide proof that the deletion represented the 
156 causative genetic variant and resulted in the low expression of F9, electrophoretic mobility 
157 shift and luciferase reporter assays were performed.
158 As shown in Fig 3 no binding of recombinant HNF4α to the mutated promoter region was 
159 detected. On the other hand, the AR lysate clearly showed binding to both fragments and 
160 hence the deletion seems not to influence AR binding to the androgen-responsive element 
161 in the canine F9 promoter. This might be due to the fact that AR DNA-binding sites display an 
162 exceptional amount of sequence variation [26]. Although the C-deletion is located in the 
163 consensus TGTNCT-motif of class I AR-binding sites several alternative motives, e.g. TGTTTC 
164 in the stomatin-like protein 3 gene or TGTATC in the prostate-specific antigen gene enhancer 
165 III region, have been reported [26-28]. Therefore, it can be assumed that the affected males 
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166 would have recovered from hemophilia during puberty. To analyse the effect of the 
167 promoter variant on F9 expression, wild type and mutated promoter fragment luciferase 
168 constructs were transfected into Hep G2 cells. As shown in Fig 4 the mutated promoter 
169 fragment resulted in a statistically significant reduction of gene expression to approximately 
170 34.6 % of the wild type promoter. The remaining activity of the mutated promoter is in 
171 agreement with the clinical findings of a residual FIX activity in the affected males (Table 1) 
172 and the results of the EMSA showing binding of AR in androgen-dependent promoter 
173 activation.
174 In summary, we have identified and elucidated the causative genetic variant for hemophilia 
175 B Leyden in Hovawarts. This is the first report on a single nucleotide deletion within the 
176 binding sites of HNF4α and AR in the F9 promoter causing hemophilia B Leyden in dogs. As 
177 the deletion only abolishes the binding of HNF4α, it can be assumed that male dogs will 
178 most likely recover during puberty as reported in humans [29-31]. However, to prevent any 
179 risk of a further propagation of the disorder genotyping of females is recommended in 
180 further breeding.
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181 Materials and Methods
182 Ethical statement
183 The collection of dog blood and/or hair samples was done by local veterinarians. The 
184 collection of samples was approved by the Lower Saxony State Office for Consumer 
185 Protection and Food Safety (33.19-42502-05-15A506) according to §8a Abs. 1 Nr. 2 of the 
186 German Animal Protection Law (TierSchG).
187
188 Animals and genomic DNA isolation
189 EDTA blood and/or hair samples were provided by different Hovawart and dog breeders 
190 with written owner consent. DNA was extracted from 30-50 hair roots using the QIAamp 
191 DNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer‘s instructions. A 
192 salting out procedure [32] was used for EDTA blood samples. Additional DNA samples 
193 deposited with the Institute of Veterinary Medicine were used as controls. All samples were 
194 pseudonymized using internal IDs.
195
196 Coagulation assays and FIX activity measurement
197 APTT was measured coagulometrically using different commercially available activating 
198 reagents according to the manufacturer's test instructions.  To standardize measurement 
199 results performed in different laboratories, ratio values (aPTT patient/median aPTT of 
200 healthy dogs) were calculated and reported. FIX activity was measured coagulometrically 
201 using human FIX deficient plasma and a commercial human aPTT reagent for activation. 
202 Canine pooled plasmas were used as reference (activity defined as 100 %).
203
204 Next generation sequencing (NGS) and genotyping
205 DNA of 4 and 6 was used for NGS on an Illumina HiSeq2500. A 450 bp library was prepared 
206 from genomic DNA with the NEBNext Ultra DNA Library Prep Kit for Illumina (New England 
207 Biolabs GmbH, Frankfurt, Germany) following the manufacturer's instructions. Library 
208 quality was evaluated with Agilent2100 Bioanalyzer. Quality of fastq-files was analysed using 
209 FastQC 0.11.7 [33]. Total reads of 1,029,601,630 (4) and 1,000,503,256 (6) were obtained 
210 and mapped to the reference canine F9 gene (NC_006621.3, region 109,501,341 to 
211 109,533,798; CanFam3.1) using DNASTAR Lasergene Genomics Suite SeqMan NGen 15.2.0 
212 (130) [34-36]. The following assembly options were used: mer-size 31 nt, min. match 
213 percentage 98, high layout stringency, min. aligned length 120 nt, min. layout length 50 nt, 
214 max. gap size 5 nt. Duplicate reads were combined and clonal reads removed. For 4 4,590 
215 and for 6 4,982 consistent paired reads were assembled. The sample wise insert size metrics 
216 for high quality aligned reads was median pair distance 383.1 bp (SD 117.46 bp, min. 
217 distance 151 bp, max. distance 894 bp) for 4 and 383.9 bp (SD 103.55 bp, min. distance 153 
218 bp, max. distance 882 bp) for 6.
219 Targeted genotyping of the promoter deletion was done by PCR amplification with primers 
220 cfa_F9_Ex1_F (5´-CCACTGAGGGAGATGGACAC-3´) and cfa_F9_Ex1_R (5´-
221 CCCACATGCTGACGACTAGA-3´) resulting in a fragment of 328 bp (wild type) or 327 bp 
222 (deletion) spanning the variant position. The resulting PCR products were either directly 
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223 sequenced on an ABI 3730 Genetic Analyzer (Thermo Fisher Scientific, Basel, Switzerland) or 
224 genotypes were alternatively determined by RFLP analysis after cleavage with RsaI. In the 
225 wild type allele two fragments are generated with 52 bp and 276 bp while the allele with the 
226 deletion remained uncut.
227
228 Electrophoretic mobility shift assay (EMSA)
229 For EMSA biotin-labelled double-stranded wild type (cfa_F9n_wt_Biotin: 5´-
230 CAGAAGTAAATACAGCTCAACTTGTACTTTGGAACAACTGGTCAACC-3´) and mutated 
231 (cfa_F9n_mut_Biotin: 5´-CCAGAAGTAAATACAGCTCAACTTGTATTTGGAACAACTGGTCAACC-3´) 
232 oligonucleotides were synthesized (Integrated DNA Technologies IDT, Leuven, Belgium) 
233 harbouring the overlapping HNF4α and AR binding sites (underlined). The position of the 
234 deleted C-nucleotide is indicated in bold and italics. Recombinant human HNF4α and human 
235 AR over-expression lysate were purchased from Origene Technologies Inc. (Rockville, USA). 
236 Binding reactions included 2 μL 10 x binding buffer (100 mM Tris, 10 mM EDTA, 1 M KCl, 60% 
237 v/v Glycerol (86% solution), 0.1 mg/ml BSA, 0.5% Triton X-100, 1mM DTT; pH 7.5), 2 μg 
238 poly(dI-dC) and 1.2 μg human HNF4α or 4 µg poly(dI-dC) and 5 µg human AR lysate. As 
239 negative controls 1 pmol duplex DNA oligos were incubated without protein or with 1 μg 
240 BSA. Binding reactions were pre-incubated for 20 min on ice followed by 1 hour at room 
241 temperature after adding 1 pmol biotin-end labelled double-stranded oligonucleotide 
242 probes. The mixtures were loaded onto 12% Tris-Glycine gels (Invitrogen, USA). After 
243 electrophoresis at 80 V for 90 min (HNF4α) or 2 hours (AR), gels were blotted onto PVDF 
244 membranes (GE Healthcare Life Sciences, Germany) using a wet blotter for 30 min at 100 V. 
245 Membranes were crosslinked at 120 mJ/cm2 using a commercial UV-light crosslinking 
246 instrument equipped with 254 nm bulbs for 1 minute. DNA detection was done employing 
247 the Chemiluminescent Nucleic Acid Detection Module Kit (Thermo Scientific, USA) with 
248 minor modifications, i.e. membranes were incubated for 1 min in the substrate working 
249 solution.
250
251 Luciferase-Assay
252 For the luciferase assay the pGL3 Luciferase Reporter Vectors (pGL3-Basic, pGL3-Control) 
253 were used (Promega, Mannheim, Germany). The wild type F9 promoter fragment (971 bp 
254 wild type) was generated by PCR using primers cfa9_HindIII_F_neu (5´-
255 CGTAGACTTAGCACTGTTCAAAGCTTCACACACACAGTTCTTAAAT-3´) and cfa9_HindIII_R_neu 
256 (5´-ATGGCTAGCAACCGTCTAAGAAGCTTAATTGTGCAAGGAGCAAGG-3´). The mutated F9 
257 promoter fragment (970 bp) was generated by PCR using primers cfa9_HindIII_F (5´-
258 ATCGTCAAGCTTCACACACACAGTTCTTAAAT-3´) and cfa9_HindIII_R (5´-
259 CGTACGAAGCTTAATTGTGCAAGGAGCAAGG-3´). For cloning into the HindIII restriction site of 
260 pGL3 primers were designed with an unspecific random 5´-tag (italics) followed by a HindIII 
261 restriction site (underlined). DNA of heterozygous female 6 served as template for 
262 amplification. Promoter fragment design was geared to an equivalence of the canine 
263 genomic situation choosing a respective distance between NC_006621.3:g.109,501,492delC 
264 and the luciferase start codon. Recombinant pGL3 vectors were used for transformation of 
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265 E. coli XL1-Blue according to the manufacturer´s protocol. Plasmid DNA of 17 colonies of 
266 pGL3Basic+970bpinsertF9_MT and 37 colonies of pGL3Basic+971bpinsertF9_WT were 
267 isolated using Promega PureYield Plasmid Miniprep Kit (Promega, Mannheim, Germany) and 
268 sequenced for validation. A validated clone of each construct was incubated in LB-medium 
269 and plasmid DNA was isolated using Qiagen Plasmid Maxi Kit (Qiagen, Hilden, Germany).
270 For normalization Renilla luciferase activity was measured by co-transfecting phRL-TK(Int-) 
271 (Promega, Mannheim, Germany). Low expression levels of C/EBP in Hep G2 cells were 
272 complemented by co-transfection of a C/EBPα expression vector [22]. The carboxy-terminal 
273 triple FLAG human C/EBPα expression vector cloned in pcDNA3 was a kind gift of A. Leutz 
274 and E. Kowenz-Leutz (MDC, Berlin, Germany).
275 For analysis of promoter activity human hepatoma derived cell line Hep G2 (ATCC HB-8065) 
276 was cultivated in Roti-CELL DMEM High Glucose (Carl Roth GmbH, Karlsruhe, Germany) [37]. 
277 Constructs were transfected using Effectene Transfection Reagent (Qiagen, Hilden, 
278 Germany). Firefly and Renilla luciferase luminescence was measured using the Dual-Glo 
279 Luciferase Assay System (Promega, Mannheim, Germany) on a Tecan GENios Pro 96/384 
280 Multifunction Microplate Reader (Tecan GmbH, Crailsheim, Germany) with the analysis 
281 software XFlour v4.64 after cell lysis with Passive Lysis 5X Buffer (Promega, Mannheim, 
282 Germany). Experiments were repeated 5-times with two measurements each. Background 
283 luminescence values were subtracted from raw luminescence values. Renilla luciferase 
284 activities were used for normalization [38]. Data are presented as relative response ratios 
285 [39]. To determine statistical significance Mann-Whitney U test was used. Values were 
286 considered statistically significant when *p < 0.05 (low), **p < 0.01 (medium) and ***p < 
287 0.001 (high).
288
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424 Tables and Figures
425 Table 1. Determination of hemophilia relevant blood parameters and medical reports

IDa) Sex aPTT (s)b) FIX (%)c) Medical report
3 m n.d.d) 2 severe bleeding after chipping, blood 

transfusion, death caused by blood loss
4 f 12.7 92
5 f 13 64
6 f 13 58
7 m 12.1 83
48e) m 49.6 3 slight bleeding during second dentition, 

lameness/joint problems (age 4 months), several 
blood transfusions

50 m 14.4 n.d.d)

51e) m 56.2 70 umbilical hernia with internal bleeding after 
surgery, blood transfusion, minor bleeding 
episodes

52 m 29.7 110
53e) m 47.8 n.d.d) recurrent slight bleeding, prolonged bleeding 

during second dentition, lameness/joint 
problems

54 m 12.9 55
60e) m 72.9 5 severe bleeding after first vaccination (age 8 

weeks)
Control 1 m 11.8 83 healthy unrelated Hovawart control
Control 2 f 11.6 >100 healthy unrelated Hovawart control

426 a) Animal IDs refer to Fig 1; b) aPTT (s): reference range 10-13.1; c) FIX (%): FIX % of standard 
427 (reference range: 75-140%); d): n.d.: not determined; e) 48, 51, 53 and 60 had been 
428 euthanized.
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429 Table 2. DNA sequence variants in the canine F9 gene determined by next generation 
430 sequencing of 4 and 6

Position Ref/Alta) Gene region HGVSb) g.
X:109501492 C/- 5´-flanking 

region
NC_006621.3:g.109501492delC

X:109504229 C/- intron 1 NC_006621.3:g.109504229delC
X:109505462 -/AG intron 1 NC_006621.3:109505462_109505463insAG
X:109507446 -/A intron 2 NC_006621.3:109507446_109507446insA
X:109510986 G/A intron 3 NC_006621.3:g.109510986G>A
X:109524055 A/G intron 6 NC_006621.3:g.109524055A>G

431 a) Ref/Alt: Reference nucleotide/Alternate nucleotide; b) HGVS: Human Genome Variation 
432 Society (http://www.hgvs.org)
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433 Table 3. F9 genotype frequencies
Hovawart Other breedsb)

Genotype HBa) affected 
(n=1)

HB carrier 
(n=2)

Control, related 
(n=12)

Control, 
unknown 
relationship
(n= 720)

Controls
(n= 567)

C/C 12 720 567
C/- 2
-/- 1

434 a) HB: Hemophilia B; b) Airedale Terrier (n=1), Akita Inu (n=8), Alaskan Malamute (n=1), 
435 Appenzell Cattle Dog (n=8), Australian Cattle Dog (n=8), Australian Shepherd (n=8), Barbet 
436 (n=8), Barzoi (n=8), Bavarian Mountain Scent Hound (n=3), Beagle (n=8), Bearded Collie 
437 (n=8), Belgian Shepherd Dog (n=15), Bernese Mountain Dog (n=8), Border Collie (n=11), 
438 Boston Terrier (n=8), Boxer (n=2), Briard (n=8), Cairn Terrier (n=8), Canadian Sheepdog (n=1), 
439 Catalan Sheepdog (n=1), Chinese Crested Dog (n=8), Chihuahua (n=7), Cocker Spaniel (n=1), 
440 Dachshund (n=11), Dalmatian (n=1), German Hound (n=2), Doberman (n=8), Elo (n=8), 
441 Entlebuch Cattle Dog (n=8), Eurasier (n=1), Flat Coated Retriever (n=8), Fox Terrier (n=1), 
442 French Bulldog (n=9), German Shepherd (n=12), German Shorthaired Pointer (n=2), German 
443 Spaniel (n=10), Giant Schnauzer (n=6), Giant Spitz (n=8), Golden Retriever (n=15), Great 
444 Dane (n=8), Greyhound (n=8), Irish Terrier (n=8), Jack Russel Terrier (n=10), Keeshound 
445 (n=8), Kromfohrländer (n=8), Labrador Retriever (n=10), Lagotto Romagnolo (n=8), Landseer 
446 (n=8), Leonberger (n=8), Magyar Viszla (n=1), Maltese (n=2), Xoloitzcuintle (n=6), Miniature 
447 Spitz (n=8), Miniature Pinscher (n=8), Miniature Poodle (n=2), Mudi (n=7), Mongrel (n=34), 
448 Newfoundland (n=7), Norwich Terrier (n=8), Nova Scotia Duck Tolling Retriever (n=8), 
449 Peruvian Hairless Dog (n=6), Polish Lowland Sheepdog (n=8), Pomeranian (n=8), Poodle 
450 (n=10), Portuguese Sheepdog (n=8), Pudelpointer (n=1), Pyrenean Sheepdog smoothfaced 
451 (n=2), Rhodesian Ridgeback (n=8), Saluki (n=4), Schapendoes (n=10), Scottish Terrier (n=8), 
452 Sibirian Husky (n=9), Shi Tzu (n=1), Spanish Water Dog (n=8), St. Bernard (n=8), Tibet Terrier 
453 (n=8), Welsh Terrier (n=3), West Highland White Terrier (n=7), Whippet (n=8), Yorkshire 
454 Terrier (n=10)
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455 Fig 1. Pedigree section of the hemophilia B Leyden Hovawart family
456 Pedigree symbols are according to the standardized human pedigree nomenclature [40]. 
457 Individuals are pseudonymized using internal IDs. DNA samples were available of individuals 
458 indicated with an arrow. For males 48, 51, 53 and 60 hemophilic signs (Table 1) have been 
459 reported and the dogs had to be euthanized after recurrent hemorrhages.
460
461 Fig 2. DNA sequence comparison of the mutatant hepatocyte nuclear factor 4α 
462 (HNF4α)/androgen receptor (AR) binding site in the promoter of canine F9 in the hemophilic 
463 male (3) and relatives (4 grandmother, 5 sister, 6 mother, 7 cousin)
464 The pedigree depicts a detail of the pedigree in Fig 1. Pseudonymized animal numbers also 
465 refer to Fig 1. Pedigree symbols are according to the standardized human pedigree 
466 nomenclature [40]. DNA sequences of heterozygous 4 and 6 (female conductors) show 
467 overlapping peaks with similar heights 5´ of the deletion position.
468 Xm: Maternal X-chromosome; Xp: Paternal X-chromosome; HNF4α: Hepatocyte nuclear 
469 factor 4α binding site (consensus sequence: 5´-TGNACTTTG-3´) [21, 41]; AR: 3´-part of the 
470 androgen receptor binding site (consensus sequence: 5´-AGNACANNNTGTNCT-3´) [21, 41].
471
472 Fig 3. Analysis of HNF4α and AR binding of wild type and mutated F9 promoter region using 
473 electrophoretic mobility shift assay
474 Human HNF4α (A) and AR (B) were used to bind biotin-labelled wild type and mutated F9 
475 promoter fragments (F9-wt, F9-mut). Specific shifted bands (solid arrowheads) are detected 
476 in lane 2 (A) for HNF4α and lanes 5 and 6 (B) for AR. To test specificity, binding reactions 
477 were also performed using BSA (lanes 3 and 4 (A), lanes 1 and 2 (B)). In lanes 5 and 6 (A) and 
478 lanes 3 and 4 (B) no protein was added. Binding reactions were separated on 12% Tris-
479 Glycine gels. X-ray films were cropped using GIMP 2.8.22. The 70 kDa protein marker band 
480 (PageRuler Prestained Protein Ladder, Fermentas) is indicated with an asterisk (lane M). The 
481 open arrowhead indicates unbound free DNA.
482
483 Fig 4. Dual-luciferase reporter analysis of F9 promoter activities in Hep G2 cells
484 Box and whisker plot showing the change of relative response ratios (RRR) between the wild 
485 type (F9-wt) and mutant promoter (F9-mut) gene constructs. The lines in the boxes 
486 represent the median. Whiskers indicate minimum and maximum RRR values. Values have 
487 been normalized as described above. Significance levels are indicated with asterisks (*p < 
488 0.05, **p < 0.01, ***p < 0.001).
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