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Abstract

Brain-computer interfaces have been largely developed to allow communication, control, and neurofeedback

in human beings. Despite their great potential, BCIs perform inconsistently across individuals. Moreover, the

neural processes activated by training that enable humans to achieve good control remain poorly understood.

In this study, we show that BCI skill acquisition is paralleled by a progressive reinforcement of task-related

activity and by the reduction of connectivity between regions beyond those primarily targeted during the

experiments. Notably, these patterns of activity and connectivity reflect growing automaticity and predict

future BCI performance. Altogether, our findings provide new insights in the neural mechanisms underlying

BCI learning, which have implications for the use of this technology in a broad range of real-life applications.
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Introduction

Voluntarily modulating brain activity is a skill that can be learned by capitalizing on the feedback pre-

sented to the user. Such an ability is typically used in neurofeedback control to self-regulate putative

neural substrates underlying a specific behavior, as well as in brain-machine interfaces, or brain-computer

interfaces (BCIs)(1), to directly regulate external devices. Despite the potential impact, from elucidating

brain-behavior relationships (2) to identifying new therapeutics for psychiatric (3) and neurological disor-

ders (4; 5), both neurofeedback and BCIs face several challenges that affect their usability. This includes

inter-subject variability, uncertain long-term effects, and the apparent failure of some individuals to achieve

self-regulation (6). To address this gap, investigators have searched for better decoders of neural activity (7)

as well as for psychological factors (8) and appropriate training regimens (9) that can influence user per-

formance. On the other hand, neuroplasticity is thought to be crucial for achieving effective control and

this has motivated a deeper understanding of the neurophysiology mechanisms of neurofeedback and BCI

learning (10). At small spatial scales, the role of cortico-striatal loops with the associated dopaminergic and

glutamatergic synaptic organization has been demonstrated in human and animal studies suggesting the

procedural nature of neurofeedback learning (11). At larger spatial scales, evidence supporting the involve-

ment of a distributed network of brain areas related to control, learning, and reward processing has been

provided in fMRI-based neurofeedback experiments (12). Recently, a motor imagery (MI) BCI study based

on ECoG recordings showed that successful learning was associated with a decreased activity in the dorsal

premotor, prefrontal, and posterior parietal cortices (13). To date, however, the emergence of large-scale

dynamic cortical activity changes during BCI learning has not been tested directly.

On the above-mentioned grounds, we hypothesized that BCI learning would be paralleled by a dynamic

recruitment of a larger network of distributed cortical areas. More specifically, based on previous studies

documenting user’s transition from a deliberate mental strategy to nearly automatic execution (13; 10), we

expected a progressive involvement of task-related regions that are not directly associated with the feedback

control. Furthermore, we hypothesized that the characteristics of circuit recruitment in terms of extent,

intensity, and inter-regional activity interactions, would be able to predict the success of learning.

To test these predictions, we recorded high-density EEG in a group of naive healthy subjects during a

simple MI-based BCI training consisting of 4 sessions over 2 weeks. We derived cortical activity maps

by performing source-reconstruction and we studied the longitudinal task-modulated changes in different
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frequency bands. We evaluated the evolution of the size and strength of the activated cortical network as

well as the functional connectivity between different regions of interest. Finally, we tested their relationships

with learning as measured by the BCI performance. See the section entitled Materials and methods for a

detailed description of the experimental and methodological design.

Results

Behavioral performance

The BCI task consisted of a 1D, two-target right-justified box task (14) in which subjects learned to control

the vertical position of a cursor that moves from left to right on the screen. To hit the up-target, subjects

performed a motor imagery-based hand grasping (MI condition) and to hit the down-target, they stayed

at rest (Rest condition). At the beginning of each experimental session, we identified the controlling EEG

features during a calibration phase among the electrodes over the contra-lateral motor area and within the

standard α and β frequency ranges (SI Figure S2 ).

We found that the ability to control the BCI significantly increased across sessions (days) but not within

sessions (hours) (see SI Figure S3 ). The session effect was also present when we averaged the BCI accuracy

scores across the runs of each session (one-way ANOVA, F3,57 = 13.9, p = 6.56.10−7). Despite the expected

high inter-subject variability (> 8.95%), (see SI Table S1 ), the group reached on average a reasonable level

of control - above the chance level of 57 % (15) - by the end of the training (Figure 1A).

We next investigated the characteristics of the EEG controlling features. From a spatial perspective, the

electrodes above the primary motor area of the hand (C3 and CP3) tended to better discriminate the MI

and Rest mental states (Figure 1B). The most discriminant frequencies occurred between high-α and low-β

ranges (Figure 1B). These results are in line with previous studies (16). Notably, we observed a progressive

focus over CP3 and low-β ranges throughout the sessions.

Among the demographical and psychological items that we measured before the experiment (see SI Materials

and methods), only the kinesthetic imagery score (17) moderately predicted the ability of subjects to control

the BCI (Spearman, r = 0.45, p = 0.045). We also found that these items could not predict the evolution of

BCI accuracy over time (see SI Table S2, non-significant values of the other tests), suggesting that BCI skill

acquisition is a complex process that could not be simply explained by a reduced number of scores taken

from questionnaires.
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Spatiotemporal cortical changes during training

We evaluated the spatiotemporal cortical changes associated with the BCI training by performing a group

analysis at the source-space level. Specifically, we computed the task-related brain activity by statistically

comparing the power spectra of the MI versus the Rest condition in each session (Materials and methods).

In both α and β frequency ranges, we found a progressive involvement of distributed sources in the cortical

hemisphere contralateral to the movement (Figure 2). The regions that were involved exhibited a signifi-

cant power decrease (p < 0.025), as typically observed during motor-related tasks (18). These decrements

were particularly diffuse in the α2 and β1 frequency sub-bands, and were more pronounced in the primary

somatosensory cortex (pre- and postcentral gyri, central sulcus), the primary motor cortex (inferior and

superior parts of the precentral sulcus), the frontal, the prefrontal, the temporal, and the parietal areas.

Notably, the observed decreases tended to focus more on the contralateral pre- and postcentral gyri at the

end of training (Figure 2 and SI table S3 ). We did not observe comparable significant differences in the

other frequency bands (SI Figures S4-S6 ). To quantify these changes at the individual level, we computed

both the size CS and the relative power ∆P of the most significant cluster of cortical sources extracted in

each subject (Material and methods). These quantities exhibited a significant session effect only in the α

and β frequency ranges (p < 0.002, SI Table S5 ). This result indicates that BCI training is accompanied

by an increase of desynchronization (∆P ) that tends to be more diffuse (CS) implicating areas that are also

outside the sensorimotor cortex.

Notably, the observed longitudinal changes could be explained by the significant decrease of the relative

power in the MI condition (F3,57 = 4.82, p = 0.003; F3,57 = 3.09, p = 0.024 respectively in

the α2 and β1 frequency sub-bands), while the Rest condition did not vary across sessions (α2) or varied less

significantly than the MI condition (β1) (Figure 3). As expected, this result confirmed that during training,

the subjects learned how to imagine the movement rather than to remain at rest.

Functional connectivity network analysis

To evaluate the cortical changes at the network level, we considered functional connectivity (FC) patterns

that have been shown to be senstive to BCI-related tasks (19) as well as to learning processes (20). For

that purpose, we calculated the imaginary coherence between the source reconstructed signals of each pair of

regions of interest (ROIs) corresponding to the Destrieux atlas (Material and methods). Imaginary coherence
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is a spectral measure of coherence weakly affected by volume conduction and spatial leakage (21; 22).

By statistically comparing the FC values between MI and Rest conditions at the group level, we found a

progressive decrease of task-related connectivity in both α and β frequency ranges across sessions. No signif-

icant differences were observed in the other frequency bands (Figure 4, SI Figures S9-S10). In α frequency

ranges, the strongest decreases involved fronto-occipital (α1) and parieto-occipital (α2) interactions. In β

frequency ranges, they rather involved fronto-central (β1) and bilateral temporal interactions (β2), and to a

minor extent bilateral central connectivity (SI Table S6 ). For each subject, we next quantified the regional

connectivity changes by computing the relative node strength ∆N in the α and β frequency ranges (Materials

and methods). Significant across-session decreases were spatially diffused involving bilaterally frontal, tem-

poral and occipital areas in the α frequency ranges, while in the β frequency ranges the significant decreases

were more focused over the right frontal, the left primary motor cortex, the left central, and parietal areas

(p < 0.025, see SI Figures S11-S12 and Table S7 ).

Collectively, the results indicate that BCI training is associated with a progressive decrease of functional

integration among cortical systems that are specialized for diverse functions.

Predictive neural markers of BCI performance

To better understand how the observed cortical changes in α and β frequency ranges were associated with

performance, we conducted a correlation analysis to identify neural features that could explain BCI accuracy

in the same session and that could predict BCI accuracy in a future session. In general, the strongest

correlations occurred in the α2 and β1 frequency bands (see SI Table S8 and SI Figure S13 ). In these bands,

both power and connectivity metrics correlated significantly with performance within the same session.

Higher BCI scores were associated with the recruitment of a higher number of task-related cortical sources CS

(in α2, r = 0.49, p = 0.004, Figure 5A and see SI Table S8 for β1) and with larger decreases of relative

power ∆P (in α2, r = −0.54, p = 0.003, Figure 5B and see SI Table S8 for β1). A better performance was

also associated with a decrease in regional connectivity decrease (SI Figure S13 ). In particular, we found

strong correlations distributed across occipital, pre-supplementary motor, and frontal cortices in the α2 band

(∆N , Figure 5C).

Power changes in α2 and β1 frequency bands were not only associated with performance within the same

training session but also predicted, with similar trends, the BCI accuracy in the subsequent session (in

CS , r = 0.37, p = 0.004, Figure 5A, and SI Table S8 ; ∆P , r = −0.53, p = 1.35.10−5 for α2, Figure 5
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B, see SI Table S8 for β1). In terms of regional connectivity, we also found significant predictions (SI Figure

S13 ). This was particularly evident in the α2 band where the connectivity decrease in the frontal and

temporal (superior temporal gyrus) areas was associated with better future performance (∆N , Figure 5C).

Altogether, these findings demonstrate that the observed dynamic cortical changes are intrinsically associated

with successful BCI learning.

Discussion

Neuroplasticity and learning

Identifying the large-scale neural mechanisms underlying plasticity is fundamental to understand human

learning (20). The ability to voluntarily modulate neural activity to control a BCI appears to be a learned

skill. Investigators have repeatedly documented that task performance typically increases over the course of

practice (23; 24), while BCI users often report transitioning from a deliberate cognitive strategy (e.g. MI)

to a nearly automatic goal-directed approach focused directly on effector control. This evidence is indicative

of a learning process taking place in the brain that is consistent with procedural motor learning.

Efforts in understanding the neural dynamics underlying BCI skill acquisition have been made by using

neuroimaging techniques in primates (23; 25) as well as in humans (26; 27). Results indicated that even

if the use of a BCI only requires the activity modulation of a motor-related brain area, a dynamic and

distributed network of remote cortical areas is involved in the early acquisition of BCI proficiency within the

same session. However, how such a network evolves over longer time-scales of BCI training is still relatively

unknown.

Here, we showed that a BCI training performed across several days elicits a reinforcement of power desyn-

chronization of the sensorimotor areas that is paralleled by a progressive decrease of functional integration

between differently specialized cortical regions. Notably, regional connectivity tended to decrease more for

associative areas in the α frequency ranges, while connectivity decrements were more important for motor-

related regions in the β frequency ranges (see SI Figures S11-S12, Table S7 ). Notably, these cortical systems

are known to play a crucial role in motor sequence learning and in abstract task learning (28; 29; 30; 31).
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Prediction of performance

Forecasting behavior is one of the main challenges for many real-life situations, from econometry to epidemi-

ology. In the BCI context, a correct prognosis will allow an appropriate identification of neural features, and

thus, an effective skill acquisition. Investigators have recognized the need for co-adaptive BCI architectures

that accommodate the dynamic nature of the neural features used as inputs (32). Notably, FC-based fea-

tures have recently been posited as potential alternatives to univariate features (33) (e.g. power spectra);

in some cases, such FC features are correlated with the user’s performance, suggesting their potential in

improving MI-based BCI accuracy (34). Besides, several studies have started to take into account psycho-

logical (e.g. anxiety) or demographical items to predict BCI performances. However, the associated results

seem to be contradictory (35; 36; 37). It has become apparent that there is a critical need for biologically

informed computational models and theory to characterize the neural mechanisms of BCI learning and to

predict future performance, thereby enabling the generalization of these results across subject cohorts, and

the optimization of BCI architectures for individual users (38).

In this work, the modulation of brain activity and functional connectivity in the α and β frequency bands

by the BCI training was evident. The number of regions involved in the task, the associated power desyn-

chronization and connectivity decrease in each participant could be used to predict that participant’s ability

to control a BCI. More importantly, the same cortical changes could forecast the future amount of learning

as measured by the BCI accuracy in the subsequent session. This result could potentially be used to inform

decisions on how to train individuals depending on the current neural properties of their brain.

BCI ”illiteracy”

BCIs are increasingly used for control and communication as well as for the treatment of neurological

diseases (39). While performance usually reaches high levels of accuracy (around 90 %), a non-negligible

portion of users (between 15 % and 30 %) exhibit an inability to communicate with a BCI (40). This is a

well-known phenomenon that is informally referred as to “BCI illiteracy”. Critically, BCI illiteracy affects

the usability of BCIs in the user’s daily life (41) but the reasons (42; 43) and even the definition for such

inability (44) is still under debate. On the one hand, different approaches have been proposed to solve the

problem by improving feature extraction and decoding algorithms (32), combining different modalities (45),

or taking into account the user’s profile (43). On the other hand, alternative accuracy metrics based on

the separability of brain features, rather than on the simple count of successful control, have been shown
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to be more relevant for the proof-of-existence of subject’s learning (46). Our results show that a functional

reorganization of the cortical activity is taking place during BCI training. These findings suggest that

BCI illiteracy could be an epiphenomenon biased by the nature of standard performance metrics which are

affected by decoder recalibration (47), re-parameterizations of the BCI, and the application and adoption

of better mental strategies (48; 49), among other factors. It is possible that other metrics, integrating both

real performance and functional brain changes should be taken into account to better assess individual

learning (46).

Limitations

We considered high-density EEG to quantify the dynamic changes related to BCI training. While scalp-EEG

offers a unique temporal resolution (on the order of milliseconds) to study oscillatory neural changes at dif-

ferent frequencies, it suffers from a low spatial resolution (50). Although we performed source-reconstruction

to estimate the cortical activity, evaluating the role of subcortical areas which are known to play a funda-

mental role in human learning remains challenging (51). More studies, involving multimodal neuroimaging

techniques (e.g., fMRI and EEG (52)), are therefore needed to reveal the neural changes associated with

BCI training at a finer spatial scale.

The temporal window of two weeks considered in our experiment prevents us from observing behavioral

and neural changes over longer timescales and therefore, might not be sufficient to observe the full learning

process (53). Here, BCI skill acquisition was paralleled by a progressive focused activity over the sensorimotor

areas together with a loss of large-scale connectivity, together indicating the initiation of an automaticity

process typical of procedural motor learning (54). Future studies are necessary to assess whether and how

the observed cortical patterns will evolve with longer BCI training. While the BCI accuracy was highly

variable across individuals, the group-averaged performance was relatively low as compared to the state-

of-the-art (55). It is important to mention that the main goal of the present work was not to maximize

the performance but to study the neural mechanisms underlying BCI learning. In this respect, all our

experimental subjects were BCI-naive and exhibited on average an increase of performance reflecting a

successful BCI skill acquisition. From this work alone, we are unable to determine whether or not learning

is the only possible modulator of the observed cortical changes. While no correlation has been found with

behavioral factors (i.e. anxiety), complementary experiments could be designed to test whether the observed

cortical changes are also modulated by fatigue or exogenous stimulants to increase motor excitability (i.e.,
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transcranial direct current stimulation, tDCS (56)).

Conclusion

Consistent with our hypothesis, we have identified specific cortical changes that characterize dynamic brain

reorganization during BCI training. The progressive enhancement of task-modulated activity in motor-

related areas, together with the fading of distributed functional connectivity, are significantly associated

with BCI learning. These cortical signatures varied over individuals and, more importantly, were significant

predictors of future BCI performance. Taken together, our results offer new insights into the crucial role of

neuroplasticity in the prediction of human learning.

Material and methods

Participants and experiment

Twenty healthy subjects (aged 27.45 ± 4.01 years, 12 men), all right-handed, participated in the study.

Subjects were enrolled in a longitudinal EEG-based BCI training (twice a week for two weeks, SI text).

All subjects were BCI-naive and none presented with medical or psychological disorders. According to the

declaration of Helsinki, written informed consent was obtained from subjects after explanation of the study,

which was approved by the ethical committee CPP-IDF-VI of Paris. All participants received financial

compensation at the end of their participation. The BCI task consisted of a standard 1D, two-target box

task (14) in which the subjects modulated their α [8-12 Hz] and/or β [14-29 Hz] activity to control the

vertical position of a cursor moving with constant velocity from the left to the right side of the screen. To hit

the target-up, the subjects performed a sustained motor imagery of their right-hand grasping (MI condition)

and to hit the target-down they remained at rest (Rest condition). Each trial lasted 7 s and consisted of a

1 s of inter-stimulus, followed by 2 s of target presentation, 3 s of feedback and 1 s of result presentation.

BCI control features (EEG electrode and frequency) were selected in a calibration phase at the beginning of

each session, by instructing the subjects to perform the BCI tasks without any visual feedback (SI Text, SI

Figure 2).

Experiments were conducted with a 74 EEG-channel system, with Ag/AgCl sensors (Easycap, Germany)

placed according to the standard 10-10 montage. EEG signals were referenced to mastoid signals, with the
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ground electrode located at the left scapula, and impedances were kept lower than 20 kOhms. EEG data

were recorded in a shielded room with a sampling frequency of 1 kHz and a bandwidth of 0.01-300 Hz. The

subjects were seated in front of a screen at a distance of 90 cm. To ensure the stability of the position

of the hands, the subjects rested their arms on a comfortable support, with palms facing upward. We

also recorded electromyogram (EMG) signals from the left and right arm of subjects. Expert bioengineers

visually inspected EMG activity to ensure that subjects were not moving their forearms during the recording

sessions. We carried out BCI sessions with EEG signals transmitted to the BCI2000 toolbox (57) via the

Fieldtrip buffer (58).

EEG preprocessing and source reconstruction

The signals were downsampled to 250 Hz before performing an ICA (Independent Components Analysis) with

the Infomax approach using the Fieldtrip toolbox (59; 58). The number of computed components corresponds

to the number of channels, i.e. 72 (T9 and T10 were removed). Only the independent components (ICs)

that contain ocular or cardiac artifacts were removed. The selection of the components was performed via a

visual inspection of the signals (from both time series and topographies). On average, 2 ICs were removed.

Data were then segmented into epochs of seven seconds corresponding to the trial period. Our quality check

was based on the variance and the visual inspection of the signals. For each channel and each trial, we

plotted the associated variance values. We kept a ratio below 3 between the noisiest and the cleanest trials.

The percentage of removed trials was kept below 10 % of the total number of trials (60).

After having average referenced signals, we performed source reconstruction by computing the individual

head model with the Boundary Element Method (BEM) (61; 62). BEM surfaces were obtained from three

layers associated with the subject’s MRI (scalp, inner skull, outer skull) that contain 1922 vertices each.

Then, we estimated the sources with the weighted Minimum Norm Estimate (wMNE) (63; 64; 65) via the

Brainstorm toolbox (66). Here, we used the identity matrix as the noise covariance matrix. The minimum

norm estimate corresponds in our case to the current density map. We constrained the dipole orientations

normal to the cortex. To perform the group analysis, we projected the sources estimated on each subject,

and each session, onto the common template anatomy MNI-ICBM152 (67) via Shepard’s interpolation. From

these signals, we computed the associated power spectra. To identify the anatomical structures associated

with the obtained clusters without restricting our work on motor or sensorimotor areas, we used the Destrieux

atlas (68).
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Metrics and statistics

To take into account the subjects’ specificity (69), we used a definition of the α and β sub-bands that rely

on the Individual Alpha Frequency (IAF) obtained from a resting-state recording that lasted 3 minutes with

the subjects’ eyes open). Similarly to (70), the IAF corresponds to the first peak obtained between 6 and

12 Hz. The α1 ranges from IAF - 2 to IAF, α2 from IAF to IAF + 2, β1 from IAF + 2 to IAF + 11 and β2

from IAF + 11 to IAF + 20. For each subject, session, and trial in the source space, we computed the

power spectra. We used the Welch method with a window length of 1 s and a window overlap ratio of 50 %

applied during the feedback period that ranges from t = 3 s to t = 6 s). In the case of the group analysis

presented in Figure 2, we worked within the ICBM152-MNI template. Elsewhere, we used the individual

anatomical space. To perform the analysis presented in Figure 2, we computed statistical differences among

activations recorded in the MI and the rest conditions at the group level or at the subject level via a paired

t-test. Since we expected a desynchronization between the two conditions, we applied a one-tailed t-test.

Statistics were corrected for multiple comparisons using the cluster approach (58; 66). We fixed the statistical

threshold to 0.05, a minimum number of neighbors of 2 and a number of randomization of 500. Clustering

was performed on the basis of spatial adjacency. Cluster-level statistics are obtained by using the sum of

the t-values within every cluster. To obtain the relative power ∆P , we computed the relative difference,

in terms of power spectra, between the two conditions, as follows: ∆P = 100 × PMI−PRest

PRest
, where PMI

and PRest correspond, respectively to the averaged power calculated across the cluster from MI and Rest

trials. The cluster size CS was obtained by estimating the number of elements that belong to the cluster that

presented the best discrimination between the conditions. To perform the study for each condition separately

(Figure 3), we normalized the power spectra with respect to the inter-stimulus interval (ISI) via the Hilbert

transform similar to that approach reported in Ref. (27). The connectivity analysis (Figure 4) was based on

the cross-spectral estimation computed with the Welch method. To reduce the dimensionality, we extracted

the first principal component obtained from the power spectra calculated across the dipoles within each ROI.

Then, we computed the imaginary coherence between each pair of ROIs based on the definition proposed in

Ref.(22). From the resulting connectivity matrix, we next computed the relative node strength ∆N similarly

to what we did for the relative power. The strength of the i-th node was here calculated by summing the

values of the i-th row of the connectivity matrix.
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0.1 Data availability

The data that support the findings of this study are available from the corresponding author upon
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Figures

BA

Figure 1: (A) Session effect associated with BCI scores. Each session consists of 6 runs of 32 trials each.
Here, we computed the averaged BCI performance across the sessions for each subject. In the violin plots,
the black line corresponds to the mean value obtained across the subjects and the outer shape represents
the distribution of the BCI scores. (B) Representation of the selected features over all subjects. On the left,
we show occurrences obtained across the subjects and the sessions in terms of pre-selected channels; on the
right, we show occurrences in terms of frequency bins obtained over the sessions.
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Figure 2: Contrast maps between motor-imagery and rest conditions. Cluster-based permutation results in
the α2 (on the top) and β1 frequency bands (on the bottom) computed from the group analysis performed
across the 20 subjects within the MNI template. Here, we plotted the obtained p-values multiplied by the
sign of the t-values resulting from the paired t-test (Material and methods).
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Figure 3: Evolution of the power spectra across the sessions for the motor-imagery and the rest conditions.
On the left, the boxplots are associated with the α2 frequency band and on the right the boxplots are
associated with the β1 frequency band.
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Figure 4: Cortical connectivity changes in BCI training. Results are represented on a circular graph where
nodes correspond to different regions of interest (ROIs) and links code the statistical values resulting from
two-tailed paired t-test performed between the motor-imagery and rest conditions (p < 0.005).The color of
each node, corresponds to a specific macro-area as provided by the Brainstorm software; ”unassigned” labels
mean that the ROI cannot be properly attributed to a specific macro-area SI Tables S6 and S7.
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Figure 5: Correlation with BCI performance and prediction of future scores (α2 band). Figures along the
first row correspond to the correlations between the BCI scores of a given session i, BCI [i], and the cluster

size C
[i]
S , the relative power ∆

[i]
P and the relative node strength ∆

[i]
N from the same session i. Figures along

the second row correspond to the prediction of the BCI scores of the next session i+1, BCI [i+1], obtained by

taking into account, respectively, the cluster size C
[i]
S , the relative power ∆

[i]
P and the relative node strength

∆
[i]
N from the session i. The r values correspond to the Spearman correlation coefficients, FDR-corrected for

multiple comparison (p < 0.05). For a detailed account of these results, see SI Table S6 and Figure S14.
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