
 

 

Title: 

 

Exploring contributors to variability in estimates of SNP-heritability and genetic correlations from the 

iPSYCH case-cohort and published meta-studies of major psychiatric disorders. 

 

Authors: 

 

Andrew J. Schork
1,2,*

, Thomas Werge
3,*

, for the iPSYCH Consortium 

 
1
Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, 

Roskilde, Denmark 
2
The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark 

3
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 

Copenhagen, Denmark 

 

*Please address correspondence to: 

Andrew J. Schork 

Andrew.Schork@regionh.dk 

Thomas Werge 

Thomas.Werge@regionh.dk 

 

 

 

 

 

 

 

 

  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487116doi: bioRxiv preprint 

https://doi.org/10.1101/487116
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Abstract 

 

 As more and more large psychiatric genetic cohorts are becoming available, more and more 

independent investigations into the underlying genetic architecture are performed, and an expanding set 

of replicates for estimates of key genetic parameters, namely, liability scale SNP heritability and genetic 

correlations – is amassing in the literature.  In recent work, we published a set of SNP-heritability and 

genetic correlation estimates for major psychiatric disorders using data from the iPSYCH case-cohort study, 

and presented them alongside estimates gleaned from large, independently collected, analyzed and 

published meta-studies of the same disorders.  Although in the broadest sense the estimates from iPSYCH 

and external meta-studies were concordant, and requiring strict statistical significance could reject the null 

hypothesis for few pairs, there were enough subtle trends in the differences to warrant further 

investigation.  In this work, we consider a set of factors related to sample ascertainment, including the 

lifetime risks for disorders for the sampled populations, the use of age censored or partially screened 

controls, the sampling of extreme cases and controls, and diagnostic error rates, and attempt to assess 

their potential contributions to estimates of genetic parameters in the context of the difference trends 

observed in our previous work. 
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Introduction 

 

 The underlying theory for the estimation of heritability on the liability scale
1-3

 is based on a model 

that defines the case-control status of individuals in the study as simple partitioning of a sample from a 

single population into two groups (cases and controls) at a threshold in unobserved liability that is defined 

by the lifetime risk for becoming a case.  Whether real disease data conform to this assumption cannot be 

proven, but with data currently available the model seems robust and cannot be rejected. Given the 

model, transformations can be made from statistics estimated from the data to generate estimates of 

parameters on the liability scale, which at least allow benchmarking under a comparable scale across 

different scenarios. However, sometimes data collected for GWAS may be ascertained in such a way that 

they violate the assumptions inherent in the transformations.  A series of recent papers have shown these 

deviations can introduce bias under the liability-scale SNP heritability framework, if the ‘standard’ 

transformations are applied, and provide revised transformations to account for sample ascertainment. In 

the following we discuss the implications of these papers to provide a qualitative investigation into the 

bounds on potential contributors to differences trends observed in the genetic parameters presented in 

Schork et al
4
. 

 

Baseline Difference Trends in Published Genetic Parameters 

 

 In Tables 1 and 2 we briefly summarize describe the key estimates presented in Figure 1 of Schork 

et al
4
 which we examine under a closer lens throughout, and their underlying sample sizes.  All estimates in 

these tables have been published previously in Schork et al
4
, which itself culled GCTA GREML estimates of 

SNP heritability for external meta-studies from Lee et al
5
.  LD-Score regression (LDSC)

6,7
 estimates from 

Schork et al
4
 used published meta-study GWAS summary statistics that have been studied widely: eXDX

8
, 

eADHD
9
, eAFF

10
, eANO

11
, eASD

12
, eBIP

13
, and eSCZ

14
.   We present these published estimates to simply 

note the presence of some difference trends in estimates of genetic parameters in iPSYCH and published 

meta-studies for the same disorder or disorder pairs.  What follows is an assessment of the potential 

contribution of ascertainment related factors to these observed (potential) differences. 
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  Phenotype Method Sample N Case Control K h2 (Obs. Scale) h2 s.e. (Obs. Scale) h2 (Liab. Scale) h2 s.e. (Liab. Scale) 

S
N
P
 H
e
r
it
a
b
il
it
y
 

XDX 
GCTA iPSYCH 43311 25334 17977 0.34855 0.13 0.01 0.21 0.01 

LDSC eXDX 61220 33332 27888 0.35 0.18 0.01 0.27 0.02 

ADHD 
GCTA 

iPSYCH 27109 7601 19508 0.03235 0.21 0.01 0.20 0.01 

Lee et al 16203 4163 12040 0.05 0.25 0.02 0.28 0.02 

LDSC eADHD 7479 2960 4519 0.05 0.19 0.07 0.16 0.06 

AFF 
GCTA 

iPSYCH 29375 9929 19446 0.1275 0.13 0.01 0.16 0.02 

Lee et al 18422 9041 9381 0.15 0.18 0.02 0.21 0.02 

LDSC eAFF 18759 9240 9519 0.15 0.17 0.03 0.21 0.03 

ANO 
GCTA iPSYCH 21482 1837 19645 0.010275 0.11 0.02 0.19 0.03 

LDSC eANO 14477 3495 10982 0.01 0.26 0.04 0.20 0.03 

ASD 
GCTA 

iPSYCH 26491 6939 19552 0.012575 0.13 0.01 0.10 0.01 

Lee et al 6731 3303 3428 0.01 0.31 0.05 0.17 0.03 

LDSC eASD 15954 7387 8567 0.01 0.33 0.04 0.18 0.02 

BIP 
GCTA 

iPSYCH 20465 780 19685 0.01580 0.02 0.01 0.08 0.06 

Lee et al 15735 6704 9031 0.01 0.44 0.02 0.25 0.01 

LDSC eBIP 40255 9784 30471 0.01 0.20 0.01 0.15 0.01 

SCZ 
GCTA 

iPSYCH 20997 1330 19667 0.01745 0.05 0.01 0.12 0.04 

Lee et al 21258 9087 12171 0.01 0.41 0.02 0.23 0.01 

LDSC eSCZ 79845 34241 45604 0.01 0.45 0.02 0.25 0.01 

 

Table 1.  Estimates of SNP-heritability described in Figure 1 of Schork et al
4
.  XDX, cross-disorder; ADHD, attention-deficit hyperactivity 

disorder; AFF, affective disorder; ANO, anorexia; ASD, autism-spectrum disorder; BIP, bipolar disorder; SCZ, schizophrenia; LDSC, LD-score 

regression; GCTA, GREML approach implemented in the GCTA software package; K, lifetime prevalence used for liability scale 

transformations; Obs., observed; Liab., liability; h2, SNP-heritability; s.e., standard error. 
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Phenotype 1 Phenotype 2 Method 

Sample 

(Phenotype 1) 

Cases 

(Phenotype 1) 

Controls 

(Phenotype 1) 

Sample 

(Phenotype 2) 

Cases 

(Phenotype 2) 

Controls 

(Phenotype 2) 
rG rG s.e. 

S
N
P
 G
e
n
e
t
ic
 C
o
r
r
e
la
t
io
n
 

ADHD AFF 
GCTA iPSYCH 6895 9635 iPSYCH 9223 9634 0.49 0.08 

LDSC eADHD 2960 4519 eADHD 9240 9519 0.43 0.18 

ADHD ANO 
GCTA iPSYCH 7538 9724 iPSYCH 1774 9725 0.01 0.09 

LDSC eADHD 2960 4519 eADHD 3495 10982 0.10 0.15 

ADHD ASD 
GCTA iPSYCH 6137 9693 iPSYCH 5474 9694 0.29 0.08 

LDSC eADHD 2960 4519 eADHD 7387 8567 -0.09 0.14 

ADHD BIP 
GCTA iPSYCH 7485 9745 iPSYCH 664 9744 0.34 0.21 

LDSC eADHD 2960 4519 eADHD 9784 30471 0.39 0.12 

ADHD SCZ 
GCTA iPSYCH 7459 9737 iPSYCH 1188 9736 0.59 0.17 

LDSC eADHD 2960 4519 eADHD 34241 45604 0.23 0.08 

AFF ANO 
GCTA iPSYCH 9406 9700 iPSYCH 1314 9701 0.43 0.12 

LDSC eAFF 9240 9519 eAFF 3495 10982 0.35 0.11 

AFF ASD 
GCTA iPSYCH 9315 9654 iPSYCH 6325 9653 0.61 0.11 

LDSC eAFF 9240 9519 eAFF 7387 8567 0.24 0.12 

AFF BIP 
GCTA iPSYCH 9929 9713 iPSYCH 780 9713 0.82 0.34 

LDSC eAFF 9240 9519 eAFF 9784 30471 0.48 0.08 

AFF SCZ 
GCTA iPSYCH 9462 9709 iPSYCH 863 9709 0.96 0.28 

LDSC eAFF 9240 9519 eAFF 34241 45604 0.51 0.05 

ANO ASD 
GCTA iPSYCH 1749 9747 iPSYCH 6851 9747 0.29 0.12 

LDSC eANO 3495 10982 eANO 7387 8567 0.03 0.09 

ANO BIP 
GCTA iPSYCH 1810 9813 iPSYCH 753 9812 0.15 0.23 

LDSC eANO 3495 10982 eANO 9784 30471 0.29 0.06 

ANO SCZ 
GCTA iPSYCH 1791 9805 iPSYCH 1284 9804 0.47 0.21 

LDSC eANO 3495 10982 eANO 34241 45604 0.25 0.04 

ASD BIP 
GCTA iPSYCH 6901 9766 iPSYCH 742 9766 0.67 0.33 

LDSC eASD 7387 8567 eASD 9784 30471 0.15 0.08 

ASD SCZ 
GCTA iPSYCH 6825 9758 iPSYCH 1216 9758 0.73 0.23 

LDSC eASD 7387 8567 eASD 34241 45604 0.21 0.06 

BIP SCZ 
GCTA iPSYCH 711 9824 iPSYCH 1261 9824 0.59 0.39 

LDSC eBIP 9784 30471 eBIP 34241 45604 0.75 0.03 

Table 2.  Estimates of SNP-genetic correlation described in Figure 1 of Schork et al
4
.  XDX, cross-disorder; ADHD, attention-deficit 

hyperactivity disorder; AFF, affective disorder; ANO, anorexia; ASD, autism-spectrum disorder; BIP, bipolar disorder; SCZ, schizophrenia; 

LDSC, LD-score regression; GCTA, GREML approach implemented in the GCTA software package; rG, SNP-genetic correlation; s.e., standard 

error.
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Estimates of Population Lifetime Risk 

 

 Whether estimated by GREML or LD-score regression, SNP-heritability
15

 is the proportion of 

phenotypic variance explained by common SNP-variation from unrelated subjects.  For quantitative traits 

the phenotypic variance is estimated well from a sample drawn from the population. For binary case-

control (0/1) data the phenotypic variance in a sample is P(1-P), where P is the proportion of the sample 

that are cases, or the lifetime risk. Hence, the estimate for the variance explained by all SNPs is made on 

the “observed scale” (SNP ����).  This estimate is then transformed to be an estimate on the liability scale 

(SNP ����) according to parameters describing the underlying population distribution in liability: 1) K, the 

lifetime risk of the disorder and 2) z, the height of the standard normal curve at the liability quantile (the 

case threshold) corresponding to a tail probability of K, and here assuming that our case-control sample 

has been randomly drawn from the population and everyone in the population who will get the disease 

has the disease, P=K (i.e. no age censoring). 

 

Equation 1 ��,��� � ������1 � ��
	�  

 

 Often GWAS data are not consistent with the assumptions of this simple transformation because 

they are typically ascertained for cases at levels well above the proportion expected given the population 

lifetime risk, which will produce biased (i.e., inflated or deflated) estimates
15,16

.  Lee et al
15

 propose 

corrections to the transformation applied to estimates of ���, the magnitude of which depends on P for the 

sample.  To emphasize that the estimated ��� is dependent on the properties of the case-control sample, 

rather than the population, the estimate from ascertained data is called ������
 .   The updated 

transformation accounts for ascertainment through its effect on the variance in the population K(1-K) 

relative to the variance in the sample P(1-P). 

 

Equation 2 ��,��� � ��,��� ��1 � ��
��1 � �� � ������
 ��1� ��

	�
��1 � ��
��1 � ��  

 

 If an inaccurate lifetime risk is used for the above transformation, then an inaccurate heritability 

estimate will result.  True lifetime risk estimates for a sampled population can be surprisingly hard to find, 

and so sensitivity analyses can be conducted considering a plausible range of K. The impact is usually trivial 

when K is 0.01 (with a plausible range of 0.005 to 0.02) relative to the assumptions of the model, but can 

become less trivial when K is 0.1 with a plausible range from 0.05 to 0.15. Although in Lee et al
5
, the study 
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from meta-study GCTA estimates were obtained, this is discussed, errors in estimates of K may not be 

regularly accounted for a source of variability in estimates, intuitively or statistically (e.g. via adjusted 

standard errors).  Estimating heritability in meta-studies aggregating multiple case-control samples from 

different populations using different case definitions requires assuming a risk that is not well defined, 

limiting the objective precision of SNP-heritability estimates. iPSYCH has the unique advantage of 

published lifetime risk estimates
17

 calculated for the same diagnostic criteria and within the same 

population SNP-heritability is studied in (XDX, 0.349; ADHD, 0.032; AFF, 0.128; ANO, 0.010; ASD, 0.013; BIP, 

0.016; SCZ, 0.017), which provide similar, but not identical numbers to those emphasized in Lee et al 

(ADHD, 0.05; AFF, 0.15; ASD, 0.01; BIP, 0.01; SCZ, 0.01).  In Figure Set 1 below, we show the effect of using 

different lifetime prevalence estimates on the estimates of SNP-heritability for each diagnosis in iPSYCH 

and for the external meta-studies.  These data show that, especially for rare diseases where the immediate 

slope of the liability heritability versus assumed lifetime risk curve is steepest, assuming the wrong lifetime 

risk just slightly could change the estimate of heritability by as much as a standard deviation (half of the 

confidence interval). The iPSYCH data is linked with unambiguously appropriate estimates of lifetime risk, 

although these are still subject to sampling variance
3
 of K(1-K)/z

2
N, where N is the size of the population 

from which the estimates are made. So, for a single birth cohort year from Denmark (population 5.7M, 

~61,000 births per year), the standard error on the estimate of K =0.01 is 0.015, but reducing to a standard 

error of 0.0015 when 10 years of birth cohort data are used. For the external meta-studies, accurate 

estimates of K are not available, as the aggregated data may come from different populations, with 

different phenotype definitions, and thus different lifetime risks, introducing uncertainty.  In Lee et al
5
, the 

plausible ranges of K they consider can result in estimates of heritability for the upper and lower bounds of 

K that are as much as two standard deviations apart (the width of the confidence intervals barely overlap).  

This additional source of variability, which is not typically reflected in the estimated standard errors and 

confidence intervals, and the likelihood of its effect in both cohorts should be considered intuitively when 

thinking about estimates of heritability from iPSYCH and external studies.  Estimation of genetic 

correlations are scale independent
15

, so these estimates are not likely to be susceptible to misestimation of 

K. 
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Figure Set 1.  Effects of different assumed lifetime risk on estimates of liability scale 

heritability.  Each pair of figures (a row) depicts the estimates of SNP-heritability from 

Schork et al
4
 described in table 1.  The figure on left shows the iPSYCH estimate of SNP-

heritability re-computed for a range of assumed lifetime risk (solid blue curve) and it’s 

approximate 95% confidence interval (dashed blue curve).  The solid black bar shows the 

estimate and 95% confidence interval when assuming the lifetime risk estimated in the 

Danish population by Pedersen et al
17

.  The pale yellow and pale green rectangles show the 

95% confidence regions for the external estimates taken from GCTA (Lee et al
15

) and 

computed for external GWAS using LDSC regression, respectively, at the prevalence 

described in Table 1.    In the right figures for each disorder, pale yellow and pale green 

curves show the GCTA and LDSC regression external estimates and 95% confidence intervals 

over a range of assumed lifetime risk, while the blue rectangle shows the 95% confidence 

interval for the iPSYCH estimate at the assumed lifetime risk described in Table 1.  Solid dots 

and vertical bars represent the external estimates at the assumed risk from Table 1.  For 

data taken from Lee et al, we also include dashed vertical bars to denote their specified 

plausible bounds of lifetime risk in the previous study.  Blue and green triangles along the x-

axis mark the lifetime risk from table 1 for iPSYCH and external estimates, respectively.  

  

Use of (Partially) Screened Controls 

 

 One assumption of the standard transformation equation of SNP-heritability estimates from case-

control to liability scale, i.e., ������
  to ���� is that control samples are completely screened for the condition 
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being studied
18

.  This is not always the case, for example when a sample from the general population is 

used as controls and diagnoses are unavailable.  The work by Peyrot et al
18

 shows how using unscreened 

controls leads to a downward bias in the estimation of heritability and derives a correction factor.  The 

correction adjusts for the proportion of the controls that are expected to be unscreened cases, which they 

call false controls (F = Nfalse controls / (Nfalse controls + Ntrue controls)) and extends the transformation above. 

 

Equation 3 ��,��� � ��,��� 1
�1� ��� � ������
 ��1 ���

	�
��1 � ��
��1 � ��

1
�1 � ��� 

 

In addition, if control subjects are young enough that they have not expressed their lifetime risk, then they 

can be viewed as “partially screened” – they have been screen for disease only up to their current age.  In a 

large enough sample of young individuals, a (substantial) proportion will be expected to develop a disorder 

later in life.  This could be especially pertinent for the iPSYCH cohort given its youth (all controls born 

between 1981 and 2005) relative to external studies which may employ older controls.  

 We can again take advantage of the extensive epidemiological work that preceded the iPSYCH 

study
17

, which not only provides estimates lifetime risk, but also gender specific cumulative risk estimates 

across the lifespan (Supplementary Tables of Pedersen et al
17

).  We leverage these estimates to explore the 

potential under-estimation of heritability in iPSYCH due to the youth of the subjects, assuming the 

framework proposed in Peyrot et al
18

.  For each control subject, we define their remaining risk (Kage+) for a 

disorder as the lifetime risk of the disorder (K), minus the cumulative risk up to their age (Kage-), conditional 

on their gender.  This number can be seen as a rough estimate of the probability that a given control will 

convert to being a case at some point in their life.  For the control group for each disorder, we estimate the 

expected number of false controls (Nfalse controls) by summing these probabilities across all control 

individuals for the disorder.  We set a plausible range for these numbers by estimating the expected 

number of false controls using the upper and lower 95% confidence intervals for the lifetime cumulative 

risk estimates (Supplementary Tables of Pedersen et al
17

).  We further extend this range to account the 

smaller sample in iPSYCH, relative to Pedersen et al.  We extend the lower and upper bounds by two 

standard deviations of binomial distributions where the probability is defined the by the estimated number 

of false controls over the total number of controls (F) and the number of draws by the total number of 

controls.  Our estimates for the expected number and proportion of false controls are described in Table 3 

below. 

 In Figure Set 2 below we describe the potential effects of having a relatively young control cohort 

on our estimates of SNP heritability.  These data show that in general the youth of the iPSYCH cohort is not 

expected to have introduced substantial downward bias in our estimates of SNP-heritability, as even in the 
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worst-case scenario, the prevalence of any single mental disorder is not sufficient to result in large 

numbers of false controls.  An exception for this trend may be for AFF, where the prevalence is relatively 

higher and there is an appreciable proportion of risk that appears late in life
17

. The effect on XDX estimates 

also appear large, however, these numbers may be less accurate because an implicit assumption of the 

correction factor is that the misclassified cases are equivalent genetically to the identified cases, which 

may not hold in this case.  For a definition of XDX that is “all mental disorders,” this will not hold because 

our definition of XDX is enriched for the iPSYCH ascertained diagnoses (i.e., it is not perfectly 

representative of the population of all psychiatric patients).  Also, any changes in genetic architecture, (e.g. 

the magnitude of heritability or levels of genetic heterogeneity) that are a function of age of onset would 

result in differences between the observed cases and false controls and would be expected to alter these 

descriptions. 

 Unfortunately, the necessary data for the external studies are not available to explore these 

transformations, but we would expect the effect to be reduced as iPSYCH is exceptional in its youth.  This 

means the youth of iPSYCH would likely lead to exaggerated differences between iPSYCH and external 

studies of heritability (assuming the true values are the same).  However, the contribution of this potential 

downward bias (which is already modest) is expected to be further tempered by the same (but less severe) 

age censoring in published data.  We are not aware of a published framework for investigating the impact 

of unscreened or partially screened controls on estimates of SNP-based genetic correlation and see this as 

an avenue for future research. 

 

  ADHD AFF ANO ASD BIP SCZ XDX 

NFalse Cases 206.66 2084.93 100.42 41.82 284.21 263.15 4414.25 

Range Lower Bound 176.23 1988.09 79.42 28.3 246.62 228.06 4291.69 

Range Upper Bound 236.13 2181.84 122.88 54.9 323.31 299.38 4536.67 

F 0.0106 0.1072 0.0051 0.0021 0.0144 0.0134 0.2455 

F Lower Bound 0.009 0.1021 0.004 0.0014 0.0125 0.0116 0.2386 

F Upper Bound 0.0121 0.1123 0.0063 0.0028 0.0165 0.0153 0.2525 

 

Table 3.  Estimates for the number and proportion of false controls in the iPSYCH data 
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Figure Set 2.  Bounding the effects of age censoring as misclassified controls.  Each figure 

shows the estimated liability scale SNP-heritability (solid blue curve) and its 95% confidence 

interval (dashed blue curves), after accounting for a given proportion of false controls, 

ranging from 0 (fully screened) to the population life risk (fully unscreened).  Blue dot and 

vertical bar represent the unadjusted estimate provided in Table 1, while the black solid bar 

and dashed bars provide the estimates given expected proportion of false controls and 

potential upper and lower bounds, respectively.  Yellow and green rectangles show the 95% 

confidence intervals for the LDSC regression and GCTA external estimates of SNP-

heritability, respectively, presented in Table 1. 

 

Extreme sampling of cases and/or controls 

 

 Another assumption of the standard transformation from ������
  to ���� is that cases and controls are 

a random sample of a population’s cases and controls, with respect to the single liability partitioning.  Data 

collected for GWAS, as used for heritability estimation in the external studies, may not only be ascertained 

for extra cases, but also often employ extreme cases and/or controls, which could violate this assumption.  

Extreme controls can be defined as ascertained control subjects with, on average, less genetic liability for 

the disorder being considered than would be expected from a random sample of the underlying population 

of unaffected subjects.  In practice, this could arise when subjects are selected for an absence of family 

history, to be free of specific disorders that are genetically correlated with the outcome of interest, or for 

exceptional mental health, in general.  It is known that in the Psychiatric Genetics Consortium (PGC, who 

published most of the external studies we cite), for example, some contributing cohorts use the same 
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control individuals for multiple disorders or select for other aspects of psychiatric health within the control 

samples.  Extreme cases can be similarly defined as ascertained cases with, on average, more genetic 

liability than would be expected in a representative sample of cases from the underlying population.  In 

GWAS, cases may be ascertained for prevalent cases, treatment resistant cases, disease severity, or 

archetypical presentation.  If any of these features are correlated with increased genetic liability, as, for 

example, has been recently suggested for schizophrenia
19,20

, an upward bias in genetic liability relative to a 

random selection cases is expected and it is expected to translate to an upward bias in heritability.   

 This issue was introduced formally in a recent commentary
21

 describing the mis-estimation of 

heritability for male pattern baldness that was a result of censoring cases of “rather dubious baldness.”  

Yap et al
21

 suggested that this censoring resulted in case and control populations that were extreme with 

respect to genetic liability by unintentionally censoring an intermediate portion of the underlying genetic 

liability distribution.  As a result, the original paper
22

 produced a SNP-heritability estimate biased 

substantially upwards, by approximately 50% of the corrected value.  To counter this, Yap et al 

(Supplementary Methods)
21

 derive a transformation for observed scale heritability that takes into account 

ascertainment of extreme cases and/or extreme controls by decoupling the lifetime risk of being a case 

from that of remaining a control.  In the original transformations proposed by Lee et al
15

, cases represent 

the upper K proportion of the population liability and controls the lower 1-K proportion, reflecting the 

notion that the single partitioning of the underlying population is assumed to be mirrored in the study 

sample.  Yap et al
21

, drawing on prior work of Gianola
23

 and Golan et al
16

, generalize this to reflect 

ascertainment of case and control samples that represent more extreme proportions of the underlying 

liability, which may include a “gap” due to intermediate individuals being excluded from the study.  This 

model uses two independent thresholds on the underlying liability scale, defining the lifetime risk of being 

an extreme case (KU) and extreme control (KL) independently, with the definition of ZU and ZL the height of 

the standard normal at the quantiles defined by these tail probabilities.  When Ku = K, and KL=1-K, their 

correction reduces to the equation from Lee et al
15

 above. 

 

Equation 4 ��,	�� � ������
 1
��1 � ��

1
�
�
 �

�����
 

 

 In iPSYCH, the data should be fairly, and perhaps uniquely, free from potential extreme sampling 

ascertainment bias because of how case and control populations have been drawn from the broader 

Danish population and aggregated for analysis (see Pedersen et al
24

 for a description of the sampling 

scheme).  The iPSYCH groups were defined to mirror a simple, single partitioning of underlying population 
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liability.  Controls are random samples of the population of unaffected subjects, without additional 

censoring, and cases include all diagnosed individuals, regardless of features that may reflect genetic 

severity.  The extent of extreme sampling bias in the external meta-studies is hard to determine because 

the contributing cohorts will have different criteria for inclusion, and the censoring of controls or 

ascertainment for cases may not be directly on the genetic liability for the disorder, as was the case for the 

baldness study, obscuring appropriate estimates for KU and KL.  To illustrate, consider screening 

schizophrenia controls additionally for bipolar disorder.  Because of the high genetic correlation that is 

more or less accepted between these disorders, the remaining control population will be depleted for the 

portion of genetic risk that is shared between the disorders.  In essence, this censors individuals that are 

expected to be intermediate with respect schizophrenia liability, similar in concept to the example from 

Yap et al.  However, because the genetic correlation between the disorders is not one, they are not directly 

selected to be depleted of schizophrenia liability, and so the proportion of the population being 

represented by the screened controls is not simply 1-KSCZ-KBIP.  The lower tail proportion (KL) of the 

population represented by sampling bipolar censored schizophrenia controls may be difficult to define but 

should certainly be less than the assumed 1-KSCZ. The same complications arise when oversampling severe, 

prevalent or archetypical cases.  The proportion of the underlying population with respect to liability 

represented by ascertained subjects, KU, is surely less than K (i.e., they are likely more extreme with 

respect to underlying liability than an average case), but the correct choice for KU requires knowing the 

relationship between the ascertained features and underlying liability.  Investigating this fully in the 

context of psychiatric disorders requires additional data from external studies and the development of 

novel analytic paradigms.  As such, we can only attempt to provide crude benchmarks for this effect in 

hope to motivate more thorough future work. 

 In order to qualitatively explore this phenomenon, we again take advantage of the ascertainment in 

iPSYCH, providing unselected cases and controls.  We benchmark a plausible bound on the value for KL in 

ascertained GWAS data, by estimating the SNP-heritability for each disorder after censoring the control 

population for all other psychiatric diagnoses, and comparing the resulting SNP-heritability with the 

estimate obtained when using the appropriate uncensored controls.  In Figure Set 3 below (lightest grey 

bars) we show a universal overestimate, albeit modest, of heritability when using extreme controls created 

by censoring subjects with additional diagnoses, consistent with the concepts described in Yap et al
21

.  By 

assuming the true heritability (hl
2
) is equal to the estimate computed with uncensored controls, and, due 

to the iPSYCH design where our cases should not be ascertained for higher than expected liability (i.e., 

KU=K), we can solve equation 4 above (taken from Yap et al
21

) for KL.  This estimates the proportion of the 

population for, say, schizophrenia liability, that are being sampled from when controls are indirectly 

censored by excluding subjects with any other psychiatric diagnoses.  We provide benchmark estimates of 
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KL for each disorder in Table 4, below.  Consistent with intuition, the difference between KL and 1-K when 

controls are censored for secondary conditions is largest for phenotypes with the largest genetic 

correlation with the remaining diagnoses (SCZ, BIP, AFF; see Schork et al
4
 Supplementary Figure 4) and 

smallest for those with less genetic correlation (ANO; see Schork et al
4
 Supplementary Figure 4).   

 To explore a possible bound on the values for KU in ascertained GWAS data, we censored cases 

according to a plausible proxy for severity, the total number of hospital contacts an individual experienced 

for the disorder, and re-estimated SNP-heritability using the iPSYCH data.  Frequency and length of 

hospitalization was recently shown to correlate positively with genetic liability for schizophrenia
19

 and it 

has been supposed that clinically ascertained research cohorts may be enriched for prevalent cases which 

are noted by more frequent and longer duration of hospital contacts, among other potentially 

exaggerating features
19,25

.  Because the exact function defining the relationship between liability and this 

proxy for severity is unknown, and may vary across disorders, we estimated the SNP-heritability censoring 

cases for greater than the 0.25, 0.5 and 0.75 quantiles in number of hospital contacts (data not shown) and 

report the largest SNP-heritability from these three case definitions.  This will surely over-fit the effect of 

censoring on hospital contacts, but provides us an estimate that we can use as an intuitive, albeit 

imperfect, attempt to provide a worst-case upper bound of the effect.  As such, our estimates should be 

treated as a speculative demonstration of the underlying concept, with limitations that are left for future 

work. 

 In Figure Set 3 below (medium grey bars) we suggest that, relative to unselected cases, using 

severity enriched cases can inflate estimates of liability scale heritability, relative to unascertained cases.  

As above, we similarly use equation 4 to back calculate the necessary KU to return the heritability estimate 

provided in the unascertained scenario, providing a benchmark estimate for bounding potential impact of 

sampling extreme cases. In Figure Set 3 (dark grey bars) we show how using both extreme cases and 

controls compounds the effect introduced by each individual factor, as expected.  Intuitively, we can 

interpret the estimates of KL and KU as demonstrating that extreme sampling of cases and controls can lead 

to a “gap” in a study’s representative of the underlying population liability, which should follow the 

implications of Yap et al.  

 In Figure Set 4 below we show the corrected external study SNP heritability estimates that attempt 

to account for various levels of extreme sampling of controls or cases, independently, adapting the 

framework of Yap et al
21

.  These corrections using the bounds for KL and KU we derived from resampling 

iPSYCH cases or controls suggest the heritability estimates could potentially be fairly substantially biased 

upwards (black dot and confidence interval vs. the grey dot and confidence intervals, along the continuous 

colored lines).   In Figure Set 5 below we show corrections for nine permutations assuming both extreme 

cases (KU = K*p, p=0.1, 0.5, 0.75) and extreme controls (KL = (1-K)*p, p=0.75, 0.85, 0.95), where our scaling 
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factors, p, were chosen to span the plausible ranges gleaned from Table 4, below.  Even positing among 

the weakest scenarios is enough to remove the differences between external estimates and those made in 

iPSYCH for some disorders (ADHD, AFF, ANO, XDX), although quite strong selection in both directions is 

needed for others (ASD, BIP, SCZ). 

 As was described by Yap et al, when cases and controls have been selected to occupy more 

extreme portions of the underlying population liability, substantial bias in heritability can arise, however, 

precise estimates of the size of the effect require precise study into the strength of extreme sampling.  We 

emphasize that this exercise and our attempts to bound potential overestimation from external estimates 

of SNP-heritability for psychiatric conditions in data that has been ascertained for GWAS are limited and 

should be seen as speculative.  However, we do feel it suggests at least some overestimation of heritability 

should be expected in the published studies, given our knowledge of their ascertainment schemes.  More 

precise investigations into the extent of overestimations, and whether the effects have a substantial 

impact on our broader conceptualizations of the genetic architecture of psychiatric conditions, is a topic 

for future research, as is the effect of extreme sampling on SNP-based genetic correlations, for which we 

are unaware of an established framework for investigating.  

 

 

 

Figure Set 3.  Re-estimation of iPSYCH SNP heritability after extreme sampling of cases 

and/or controls. 
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 ADHD AFF ANO ASD BIP SCZ XDX 

Assumed 1-K 0.968 0.872 0.99 0.987 0.984 0.983 0.651* 

Plausible KL 

Lower Bound 

0.925 0.787 0.985 0.946 0.810 0.855 0.653* 

KL / (1-K) 0.956 0.903 0.995 0.958 0.822 0.870 1 

Assumed K 0.032 0.128 0.010 0.013 0.016 0.017 0.349 

Plausible KU 

Upper Bound 

0.016 0.09 NA** 0.001 0.0001 0.001 0.256 

KU / K 0.494 0.729 NA** 0.062 0.006 0.071 0.734 

 

Table 4.  Benchmark values KL and KU inferred indirectly from iPSYCH data. *the controls 

cannot be additionally censored for XDX, by definition of the phenotype, so this confirms 

that our back calculations return 1-K, modulo rounding error, work as intended.  **Severity 

information for ANO was not currently available. 
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Figure Set 4.  Exploring the effects of extreme sampling of either cases or controls.  In each 

pair of figures (a row) we show the effects of correcting for extreme sampling on external 

estimates of SNP heritability for GCTA (green curves with 95% confidence intervals) and 

LDSC regression (yellow curves with 95% confidence intervals).  The point estimate and 95% 

confidence intervals computed in iPSYCH are covered by the blue rectangle.  The black dot 

and confidence interval shows the original estimate from Table 1, while the grey dot and 

confidence interval highlights the corrected value using KL or KU presented in Table 2, above.  

 

 

0.
0

0.
1

0.
2

0.
3

0.
4

XDX

Extreme Control Propor tion: kL / (1−k)

Li
ab

ili
ty

 S
ca

le
 S

N
P

 h
2

1 0.9 0.8 0.7 0.6 0.5

iPSYCH / GCTA
External / GCTA
External / LDSC

0.
0

0.
1

0.
2

0.
3

0.
4

XDX

Extreme Case Proportion: kU / k

Li
ab

ili
ty

 S
ca

le
 S

N
P

 h
2

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

iPSYCH / GCTA
External / GCTA
External / LDSC

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487116doi: bioRxiv preprint 

https://doi.org/10.1101/487116
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487116doi: bioRxiv preprint 

https://doi.org/10.1101/487116
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487116doi: bioRxiv preprint 

https://doi.org/10.1101/487116
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Figure Set 5.  Exploring the potential effect of simultaneous extreme sampling of cases and 

controls for a limited number of scenarios.  Each pair of figures (row) presents the 

unadjusted iPSYCH estimate of SNP heritability (blue) and external study (light grey) along 

with estimates corrected for one of nine permutations of KU = K*p where p=0.75, 0.5, or 0.1 

and KL = (1-K)*p where p=0.95, 0.85, 0.75 which more or less cover the values from Table 2 

above.   GCTA estimates are shown with solid bars and LDSC estimates with shaded bars. 

 

 

Diagnostic Errors  

 

 Our interpretation of statistics associated with a disease (observed disease) may differ from our 

belief of the disease (true disease). When cases are ascertained through noisy diagnoses, the estimated of 

SNP-heritability from the observed disease are typically downward biased compared to the true disease
26

, 

of course ascertaining on true disease status may never be achievable.  For example, if some proportion of 

cases of one disorder are instead diagnosed with a different disorder, and/or vice versa, then estimates of 

genetic correlations between these two disorders will be inflated
26

.  Wray et al.
26

 introduced a framework 

for exploring the expected impact of various levels of diagnostic error for two hypothetical disorders, A and 

B, in terms of unstandardized additive genetic variances and covariance for the diagnosed (σg,DA
2
, σg,DB

2
, 

σg,DA,DB) and true disorders (σg,TA
2
, σg,TB

2
, σg,TA,TB), and the proportions of cases correctly diagnosed (MTA, 

MTB) and misdiagnosed (MFA=1-MTA, MFB=1-MTB).  Antilla et al
27

 re-derived the single variance component 

(e.g., σg,DA
2
) equation in terms of liability scale heritability (so σg,DA

2
 = hDA

2
 as the liability variance is taken 

to be one) and defining the covariance term (σTA,TB) using the genetic correlation (e.g., rG,TA,TB=σg,TA,TB*(hTA
2
, 

hTB
2
)

-0.5
), giving an equation for describing the relationship between the true heritability and that estimated 

from diagnosed individuals. 

 

Equation 5 ��� � ��
� ��� ���

� ��� � 2������,�,����� ���  

 

Under the simplifying assumption that for a given pair of disorders, the misclassification occurs only 

between the two disorders for which the correlation is computed, such that the misdiagnosed proportion 

of those diagnosed with disorder A (MFA) in actuality have disorder B, we can use the same notation to re-

write the equations for σg,DA,DB from Wray et al
26

 in terms of genetic correlations and liability scale 

heritability. 
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Equation 6 ��,�,�� �
������� ���������,�,������ ���� � � ��������� � � ���������� �

���� ����
 

 

 From our knowledge of the external meta-studies, the contributing cohorts are predominantly 

ascertained according to research diagnoses, while in in iPSYCH we aggregate register records of clinical 

diagnoses.  Although psychiatric diagnoses in the Danish register have been shown to be highly reliable in 

multiple validation studies (e.g.,
28-31

) the diagnoses in iPSYCH cohort, per se, have not been systematically 

re-assessed and the trends towards lower SNP-heritability and higher SNP-based genetic correlations 

could, in theory, be taken as evidence for a relative increase in misdiagnosis when compared to the rate in 

external studies.  Previous work in the Danish health registers
32

 has suggested that ~15% of patients first 

diagnosed with BIP will be subsequently diagnosed with SCZ and ~6% initially diagnosed with SCZ will be 

subsequently diagnosed with BIP, numbers that more or less agree with an independent study
33

 conducted 

in the U.S. (~15% and ~4%).  We can speculate whether these shifts represent initial misdiagnoses, disease 

progression, comorbidity, or some other factor, and the extent to which they also affect external meta-

studies (an un-measureable phenomenon, given the lack of lifetime data).  Regardless, we can anchor our 

investigations into the magnitude of effects of potential misdiagnosis on a range with some empirical 

support (~5-15%), which may represent an upper bound given the similarities between the symptoms of 

SCZ and BIP, relative to other disorders, and because we attribute the entire cause of these later diagnoses 

to initial misdiagnoses.   

 In Figure set 6, below, we investigate the potential effects of various levels misdiagnosis on 

estimates of SNP-heritability.  In order to predict a “true” SNP-heritability (hTA
2
) from a “diagnosed” SNP-

heritability (hDA
2
), we need to specify not only the misdiagnosis rate (MFA), but also the composite SNP-

heritability of the disorders the misdiagnosed patients truly have (hFA
2
, 0 if they should be a control), and 

the genetic correlation between the true patients and misdiagnosed patients (rG,TA,FA).  We consider three 

values for each which span the range of estimates in Table 1 (hFA
2 

= 0, 0.1, 0.2; rG,TA,FA = 0, 0.33, 0.66).  

Under the intuition that a patient diagnosed is unlikely to be a true control but may have been assigned 

the wrong disorder, we place special emphasis on the dashed blue and purple lines, which consider the 

misdiagnosed patients to be a group that has moderate genetic correlation with the disorder of interest, 

consistent with an “average psychiatric patient.”  These data suggest that misdiagnosis rates ranging from 

5-15% can lead to a modest under estimation of SNP-heritability, but unreasonably high misdiagnosis rates 

(>40%) are needed to rectify the largest differences.  For some disorders and parameter scenarios (e.g., 

BIP, purple lines), misdiagnosis alone cannot, even in theory, explain the observed differences in SNP-

heritability, no matter the proposed rate.   

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 4, 2018. ; https://doi.org/10.1101/487116doi: bioRxiv preprint 

https://doi.org/10.1101/487116
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 Unlike the previous examples, the effects of misdiagnosis on SNP-based genetic correlations has 

been described analytically, albeit only for the scenario where cases from the two disorders for which 

genetic correlations are being estimated are misdiagnosed for each other, only.  In Figure set 7, below, we 

show the levels of inflation that are expected for a given true value of genetic correlation (green bars), 

when various proportions of the two hypothetical disorders are misclassified as the other (grey bars).  

When true genetic correlations are low (0 or 0.2) and misdiagnosis rates are high (0.15), the genetic 

correlations can be exaggerated by nearly 0.40 above their true value.  When true genetic correlations are 

more moderate and misdiagnosis rates lower (0.05), the expected inflation is more modest.   
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Figure Set 6.  For each iPSYCH disorder we attempt to describe the potential contributions 

of misdiagnosis.  Values on the y-axis represent the “true SNP heritability” that would be 

expected produce our estimate from Table 1, under varying levels of misdiagnosis (x-axis).   

We consider scenarios where the misdiagnosed patients represent a group with a SNP-

heritability of 0 (aqua lines), 0.1 (blue lines), or 0.2 (purple lines) which is genetically 

correlated either 0 (solid lines), 0.33 (dashed lines) or 0.66 (dotted lines) with the diagnosis 

of interest. Yellow and green rectangles show the 95% confidence intervals for the LDSC 

regression and GCTA external estimates of SNP-heritability, respectively, presented in Table 

1.  The grey box highlights a 5-15% window.  Black dot and bars represent point estimate 

and 95% confidence interval from Table 1. 
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Figure Set 7.  Potential impact of diagnostic misclassification on estimates of SNP-based 

genetic correlations.  For four levels of “true” genetic correlation (True rG = 0, 0.2, 0.4, 0.6) 

and two levels of true heritability for each hypothetical disorder (hA
2
, hB

2
=0.15, 0.25), we 

describe the predicted effects of different combinations of misdiagnosis (MFA
2
, MFB

2
=0, 0.05, 

0.15).  The green bar shows the “true” genetic correlation, while the grey bars show this 
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inflation due to different combinations of true SNP-heritability and levels of misdiagnosis.  

Note that all misdiagnosed cases of A are assumed to be true cases of B, and vice versa. 

 

Discussion 

 

 In this work we have, where established frameworks were available, attempted to provide context 

for the potential sources of uncertainty in SNP-based heritability and genetic correlation estimates that 

could contribute to subtle difference trends between iPSYCH and external meta-study reports.   In doing 

so, we hope to emphasize a few points.  First, strong interpretations of exact point estimates for SNP-

heritability and genetic correlations may impose more precision than the underlying models and concepts 

beget.  We see these quantities as providing broad-scale benchmarks for more qualitative claims regarding 

the amount of genetic variation remaining to be discovered by GWAS, general importance of common SNP 

variation and the plausibility of pleiotropic signals among risk variants.  Second, ascertainment of cases and 

controls may be an important consideration when estimating SNP-heritability and one that could be 

studied further.  Here, we consider two sets of studies, iPSYCH and external meta-studies, which were 

ascertained according to different sampling schemas (registers vs. predominantly clinical ascertainment) 

and with different primary goals in mind (epidemiological validity vs. GWAS power).  As we have attempted 

to demonstrate, the differences in these schemas may make the individuals studies susceptible to different 

sources of bias that may not be a part of the current intuition when considering estimates of SNP-

heritability and genetic correlations.  More work in this area may be needed as large genetic cohorts with 

different ascertainment schema emerge. 

 We can summarize the totally of these demonstrations by integrating them with our own intuition 

about the most likely consequences of differences in ascertainment between iPSYCH and external studies.  

Taken together, we could speculate that the variability in SNP-heritability estimates from the meta studies 

is likely underestimated due to variability in the assumed lifetime risk that is not accounted for, may be 

underestimated modestly in iPSYCH due to the relatively younger age of control subjects and potentially 

higher incidence of misdiagnosis, and overestimated in external studies due to the use of extreme cases 

and controls.  In terms of genetic correlations, we are unaware of frameworks for exploring the potential 

effects of age or severity censoring, but increased misdiagnosis rates could lead to upwardly biased 

estimates of genetic correlations.  These conclusions should be viewed against the background of the 

inherent lack of precision in the models and concepts of SNP-heritability and genetic correlations, large 

sampling variances for the estimators, expectations for real differences when genetic parameters are 

estimated in different populations, and the need for future development of frameworks for further 

studying the effects of ascertainment on genetic parameters.       
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