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ABSTRACT 

 

Genotype-phenotype relationships are at the heart of biology and medicine. Numerous 

advances in genotyping and phenotyping have accelerated the pace of disease gene and 

drug discovery. Though now that there are so many genes and drugs to study, it makes 

prioritizing them difficult. Also, disease model assays are getting more complex and this 

is reflected in the growing complexity of research papers and the cost of drug 

development. Herein we propose a way out of this arms race. We argue for synthetic 

interaction testing in mammalian cells using cell fitness – which reflect changes in cell 

number that could be due to a number of factors – as a readout to judge the potential of a 

genetic or environmental variable of interest (e.g., a gene or drug). That is, if a 

mammalian gene or drug of interest is combined with a known perturbation and causes a 

strong cell fitness phenotype relative to that caused by the known perturbation alone, 

this justifies proceeding with the gene/drug in more complex models like mouse models 

where the known perturbation is already validated. This recommendation is backed by 

the following: 1) human protein-coding genes important to cell fitness under normal 

growth conditions involve nearly all classifications of cellular and molecular processes; 

2) Nearly all human genes important in cancer – a disease defined by altered cell number 

– are also important in other complex diseases; 3) Many drugs affect a patient’s 

condition and the fitness of their cells comparably. Taken together, these findings 

suggest cell fitness could be a broadly applicable phenotype for understanding gene and 

drug function. Measuring cell fitness is robust and requires little time and money. These 

are features that have long been capitalized on by pioneers using model organisms that 

we hope more mammalian biologists will recognize. 
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INTRODUCTION 
 

Biological model systems have made numerous contributions to human health, which is notable 

because often they were used without regard to their eventual applications. For example, many 

transformative medicines and field-changing paradigms exist because of discoveries in 

organisms such as yeast and worms (1-4). Still, some argue that even mice aren’t good models 

of disease. Some researchers are regardless pushing forward and focusing on creating new 

ways to study human disease using model organisms (5, 6). Yet, many important human genes 

aren’t conserved in model organisms. Moreover, even if one uses a mammalian system, it is 

assumed that the context being studied, e.g., tissue type, matters. There is therefore a need for 

models that strike a balance between the ease and robustness of model organisms while 

preserving the signaling networks important to human disease.  

 

Modeling disease has gained new relevance as the number of human population genetic 

studies have exploded (7). Thousands of genes are being implicated in human diseases across 

categories from cancer to autism, Alzheimer’s, and diabetes. Among the surprises from these 

data are findings such as “cancer” genes – genes understood to be important in cancer – being 

linked to diseases seemingly unrelated to cancer. For example, one of the earliest genes found 

to be mutated in the behavioral condition, autism (8), is the well-known tumor suppressor gene, 

PTEN. On first pass, it might be difficult to glean what autism might have to do with the 

uncontrolled cell fitness that PTEN inactivation causes. However, it is clearer when one 

considers that patients with autism often have larger brains and more cortical cells (9). 

Nevertheless, the extent to which the various functions of genes like PTEN are relevant to 

disparate diseases begs the question of how we molecularly classify and model disease.  
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As with studying disease genes, new treatments have often suffered from biases that prevented 

us from seeing their value outside of the context in which they are originally characterized. For 

example, going back in history, one of the largest miscalculations by the pharmaceutical 

industry was the cholesterol-lowering statins being held back from the clinic because they were 

shown to be toxic to cultured mammalian cells. Those early findings scared off drugs companies 

because they suggested statins might not be safe for humans (10, 11). Merck understood these 

results better than their competitors and the statins went on to be one of the biggest success 

stories in drug development history. The successes of drug repositioning also tell us that drugs 

can function in multiple “unrelated” contexts. For example, malarial drugs, such as 

hydroxychloroquine (Plaquenil), are now used to treat rheumatoid arthritis and autoimmune 

disorders (12). There are also chemotherapeutics being considered for depression (13). Drug 

repositioning makes sense from a molecular perspective because many drug side effects could 

actually be on-target effects (14). To take it further, now with so much knowledge in the “-omic” 

era, it might be the expectation rather than the exception that a mechanistic target for a drug 

has many functions in the body. For example, the serotonin transporter, SLC6A4 (a.k.a. SERT), 

is the target of the widely prescribed antidepressants, Prozac and Zoloft. SLC6A4 is expressed 

at high levels in the intestines and lungs (15), and regulates gut motility and pulmonary blood 

flow (16, 17) in addition to mood. This demonstrates the need to find a better way to understand 

the diverse roles of drugs and their targets. 

 

Herein, we address these aforementioned issues. We propose that synthetic interaction testing 

in mammalian cells using cell number/fitness as a readout is a relevant and scalable approach 

to understand surprisingly diverse types of molecular functions, diseases, and treatments. This 

proposal requires a change in thinking because synthetic interaction testing using human cells 

has historically almost always been discussed in the context of cancer (18, 19). This makes 

sense considering cancer has become defined by alterations in several parameters that 
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contribute to cell number/fitness, e.g., proliferation and apoptosis (20, 21). However, we argue 

fitness-based synthetic interaction testing has a much more general purpose. We provide 

evidence that cell fitness is a generalizable phenotype because it is an aggregation of 

phenotypes. To the extent that it might be an aggregation of all possible phenotypes – an 

omniphenotype – suggests its potential as a pan-disease model for biological discovery and 

drug development. 

 

RESULTS 

 

Nearly all cell processes affect cell fitness. A simple way to understand synthetic interactions 

is to consider two genes. It is said there is a synthetic interaction between two genes if the 

combined effect of mutating both on cell fitness, heretofore denoted by ”ρ” (as in phenotype), is 

much greater than the effects of the individual mutations (Fig. 1). If there is an interaction, it can 

Figure 1: A current, commonly used framework for synthetic interaction testing. A synthetic interaction 
between two perturbations, X and Y, means the effect of X combined with Y on cell fitness is significantly greater than 
the effect of either alone. Synthetic interactions can cause lethality, a.k.a., hypersensitivity, or can be buffering, a.k.a., 
confer resistance. Both are depicted mathematically in the figure where ρ – the phenotype – is relative cell number. 
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be either be a negative synergy, where the double mutant cells grow much worse (a.k.a., 

synthetic lethality), or a positive synergy, where the cells grow much better (a.k.a., synthetic 

buffering), respectively, than the individual mutant cells (Fig. 1).  

 

Amongst the ~400 million possible synthetic interactions between protein coding human genes, 

less than 0.1% have been mapped to date (22). It is challenging to scale synthetic interaction 

testing in human cells both because of the size of the experiments needed and because 

sometimes neither interactor has a known function in the ultimate biological context of interest 

(23). Therefore, we sought to develop a framework that would allow us to infer synthetic 

interactions at scale as well as leverage interactors of known importance to explain interactors 

of unknown significance. The convention of characterizing an unknown in the context of a 

known is a typical approach taken by biologists for making discoveries. To formalize our 

approach, we heretofore refer to the known interactor in a synthetic interaction pair as K, and 

the unknown as U. With this convention, U is what’s new and interests the researcher, whereas 

K is a factor that’s known in the field. U and K could represent a gene, disease, or drug. 

 

Several recent works identified “essential” genes – genes that are required for cell fitness (24-

26) – and we wondered what gene ontology (GO) pathways they participate in. We applied the 

principal of the minimal cut set (MCS), which is an engineering term used by biologists to mean 

the minimal number of deficiencies that would prevent a signaling network from functioning (27, 

28). MCS fits well with the concept of synthetic lethality (18), and this was recognized by 

Francisco Planes and colleagues to identify RRM1 as an essential gene in certain multiple 

myeloma cell lines (27).  
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We generalized the idea of MCS to hypothesize that different cell types might be relatively 

defective in components of specific GO pathways such that if a gene in one of these pathways 

was knocked out, it would produce a synthetic lethal interaction with those components (for 

clarity throughout this study, by “genes”, we refer to human protein coding genes). In this case, 

the synthetic interaction testing is as follows: the known, K, is the gene that is essential in at 

least one cell type and U is the unknown, synthetically-interacting GO pathway of interest. 

Indeed, we found that essential genes are involved in diverse GO processes and the number of 

GO processes they participate in scales with the number of cell lines examined (Fig. 2A, Supp. 

Table 1). For example, if one cell line is assessed, 2054 out of 21246 total genes assessed 

were essential and these essential genes involve 36% (6444 out of 17793) of all possible GO 

categories. In examining five cell lines, 3916 essential genes were identified that involve 54% of 

all GO categories (9577/17793). With ten cell lines, 6332 essential genes were identified that 

involve 68% of all GO categories (12067/17793). Therefore, essential genes involve the majority 

of GO processes. Because the Fig. 2A graph appears asymptotic, this suggests if enough cell 

Figure 2. Nearly all GO processes are essential for cell fitness. (A) The y-axis is the ratio is the number of distinct 
GO terms linked to the essential genes in the tested cell lines divided by the total number of distinct GO terms for all 
tested human genes (21,246). The x-axis is the number of essential genes determined for the indicated number of 
cell lines. + indicates relaxed, i.e., p < 0.10, cell fitness scoring. (B) Fitness profile correlations across 563 human cell 
lines of mutant cells of genes from the same GO categories. The statistically significant genes that have been most 
highly co-cited with the indicated genes are color-coded light blue.  
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types are tested, potentially all GO processes would be essential. To extrapolate beyond the ten 

mammalian cell lines where essential genes have been systematically characterized, we 

relaxed the significance on the cell fitness scores, e.g., from p < 0.05 to p < 0.10. This relaxed 

list of fitness-affecting genes encompasses nearly all GO processes (Fig. 2A, 97.2%, 

17291/17793 GO terms; 17473/21246 genes). Taken together, this suggests the majority if not 

all GO processes affect cell fitness.  

 

Recently, genome-scale, protein coding gene inactivation screening using CRISPR has been 

performed on hundreds of human cell lines (29). Using this data and the principle of gMCS, we 

reasoned that the single gene mutant cell fitness profiles for genes in the same GO processes 

would strongly correlate across cell lines. We selected gene pairs from several diverse GO 

categories (immune system process (GO:0002376), behavior (GO:0007610), metabolic process 

(GO:0008152), and developmental process (GO:0032502)) and asked how the fitness profiles 

of other members of the same GO category would rank compared with all 17,634 fitness profiles 

that were assessed. Impressively, other genes from the same GO category and/or highly co-

cited genes were the most correlated in their fitness profiles for each GO category we assessed 

(Fig. 2B, Supp. Table 1). This suggests cell fitness can predict gene function for disparate 

biological processes.  

 

Nearly all common disease genes are cancer genes. The omnigenic model states that all 

genes are important to complex disease (30). Yet, there is a scale and some genes are more 

important than others. These relatively more important genes are referred to as “core” (a.k.a. 

“hub”) genes. We reasoned that the published literature with its millions of peer reviewed 

experiments would be a comprehensive and unbiased way to inform us on which genes are 

core genes for a given complex disease. At the same time, we were interested in leveraging the 

literature to identify genes that would most strongly synthetically interact with these core genes.  
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Here we defined a synthetic interaction as follows: the gene(s) mentioned in a citation is the 

unknown, U. This is by convention because the gene(s) most often is not known in whatever 

context was studied, e.g., diabetes, and that’s why it warrants a publication. Whereas all other 

published genes in that context are the known, K. To measure synthetic interaction strength 

between U and K, we assessed their co-occurrence with the term, “cancer” as a proxy for cell 

fitness because cancer is a complex disease defined by altered cell number. Specifically, we 

assessed all citations linked to the MeSH term “neoplasm” vs. those that were not (i.e., “cancer” 

vs. “non-cancer” citations as we will heretofore refer to them, see Methods for more details). For 

context, the non-cancer literature includes conditions like the top ten most common causes of 

death according to the World Health Organization (31) and other sources: Alzheimer’s, 

cardiovascular disease, diabetes, obesity, depression, infection, osteoporosis, hypertension, 

stroke, and inflammation. In analyzing all currently available PubMed citations (~30M), we 

identified a compelling relationship: most genes are cited in the cancer literature to a similar 

extent as with the non-cancer literature (Fig. 3A, Supp. Table 1). This high correlation (r = 

Figure 3: Nearly all common disease genes are cancer genes. (A) The co-occurrences of each human gene with 
cancer (x-axis) and non-cancer (y-axis) conditions in all currently existing ~30 million PubMed citations were counted. 
The non-cancer conditions include all citations not classified with the “neoplasm” MeSH classifier. It includes common 
conditions like infection, Alzheimer’s, cardiovascular disease, diabetes, obesity, depression, inflammation, 
osteoporosis, hypertension, and stroke amongst many other MeSH classifiers. Line of best fit - Slope, 0.67; 
Correlation coefficient, r = 0.624. (B) Gene ontology (GO) classifications that comprise the non-cancer/cancer 
correlation in (A). Dark blue color represents a stronger correlating GO category, lighter blue represents a weaker 
correlating category.  
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0.624) suggests for many (non-cancer) disease states, genes important to them can be 

identified using synthetic interaction testing. That some genes are cited much more than others 

across disease categories is consistent with the multiple functions of core/hub genes. 

 

We analyzed the pattern we detected in Fig. 3A in more detail. To understand what GO 

categories are leading to better cancer/non-cancer citation correlations, we binned the cancer 

and non-cancer citations for all genes by their GO categories. We found no clear pattern of 

cancer-related GO categories or sub-categories that contribute most vs. least to the cancer/non-

cancer citation correlation (Fig. 3B, Supp. Table 1). For example, the cancer-related GO 

category, cell population proliferation (GO:0008283), is interspersed amongst the same four 

diverse and less explicitly cancer-related GO categories we assessed in Fig. 2: immune system 

process, behavior, metabolic process, and developmental process. This lack of a pattern 

suggests that many more processes than might be expected contribute to cancer. That the GO 

sub-category, maintenance of cell number (GO:0098727), was amongst the top 10 most 

correlated GO sub-categories supports our use of cancer as a proxy for cell fitness (Supp. Table 

1). If it is found that many, most, or all GO categories (and thus all genes) contribute to cancer, 

in future studies it will be interesting to classify each into one or more of the categories outlined 

in the well-known “Hallmarks of cancer” review by Weinberg and Hanahan (20, 21). 
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Drug effects on patient cell fitness are reflective of the patient condition response to 

drug. Like with mutations in genes, drugs can have different effects in different genetic 

backgrounds. We analyzed the published literature to identify reports where the fitness of 

patient-derived cells in response to a drug was also predictive of the same drug’s effect on the 

patient’s condition. In this case, U is the genetic background of the patient cells and K is the 

drug. What’s notable in considering all the studies we identified is that cell fitness is predictive of 

patient drug response for widely divergent medications (Fig. 4A). These results might be 

surprising outside the context of cancer therapy, but they should not be because the level of 

growth inhibition (inhibitory concentration - IC50) for these drugs varies widely in different cell 

lines, which have different genetic/epigenetic backgrounds (Fig. 4A, Supp. Table 1). Note that 

this latter result is similar to that presented in Fig. 2A, though using chemical genetics rather 

than genetics. 

 

To understand how FDA-approved drugs are used for cancer vs. non-cancer conditions and 

how their usage might change over time we analyzed PubMed as in Figure 3A. Like with PTEN 

Figure 4. Establishing the efficacy of FDA-approved drugs using cell fitness. (A) Drugs where their effects on a 
patient condition and the fitness of the same patient’s cells correlate. Listed drugs met two criteria: 1) Their effect on 
a patient’s condition and the same patient’s cell fitness were significantly correlated; 2) The drug had differing IC50 
values – the concentration at which cell numbers are 50% of their untreated values – in multiple, distinct human cell 
types or cell lines. (B) Correlation (r) over time of human protein-coding genes or FDA-approved drugs co-cited with 
cancer or non-cancer conditions analyzed as in Fig. 3A. 
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as previously discussed, our understanding of the role of many genes in cancer has preceded 

that of our understanding of their roles in other diseases. We reasoned that with several 

advances, such as various new –omic analyses, our understanding of the molecular basis of 

many diseases is “catching up” to cancer more recently. Thus, we expect the correlation 

between human protein coding genes and FDA-approved drugs being cited both in and out of 

the context of cancer to be increasing over time. Indeed, human genes are increasingly being 

cited with similar frequency in cancer and non-cancer disease contexts (Fig. 4B, Supp. Table 1). 

This supports the idea that one should be able to increasingly make use of the literature to 

understand an unknown gene’s function. Like with human genes, we found that clinical drugs 

are commonly cited in both the cancer and non-cancer literature (correlation = 0.599), albeit this 

correlation hasn’t increased over time like with genes (Fig. 4B, Supp. Table 1). This latter result 

is interesting in light of the increased focus on repositioning many non-cancer drugs for cancer 

(32) (e.g., immunosuppressant, rapamycin and anti-diabetic, metformin), and vice versa (e.g., 

chemotherapeutics for autism, senolytics for aging (33). 

Figure 5. Current vs. expanded conceptual frameworks for synthetic interaction testing. A currently, commonly 
used framework for synthetic interaction testing is as follows: 1) Genetic interactions are tested between two genes, 
e.g., X and Y; 2) f, the phenotype being measured, is relative cell fitness; 3) It isn’t known how the interaction strength 
between X and Y might be relevant to physiology or disease. The expanded framework described herein is as 
follows: 1) Genetic interactions can be tested between aggregated factors such as multiple genes and/or pathways 
(related to Figure 2); 2) f can be proxied by the relative involvement of the interactors in cancer (related to Figure 3); 
3) One interactor, K, has a known effect on a physiology or disease of interest. The effect of the other, U, in that 
context can therefore be measured relative to K (related to Figure 4). The implications of mammalian cell fitness-
based synthetic interaction testing as described here is that the results using cell fitness can be readily extrapolated 
to the ultimate phenotype of interest, e.g., osteoclast resorptive ability. That is, the magnitude of the synergy on cell 
fitness of the two factors under consideration is expected to be proportional to the magnitude of their synergy on the 
phenotype of interest. 
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DISCUSSION 

 

We propose cell fitness as a simple, yet comprehensive approach to rank less-studied genes, 

cell processes, diseases, and therapies in importance relative to better-studied ones (Fig. 5). 

Rather than needing ever more refined experiments, this work suggests the antithetical 

approach. That is, one can use fitness in mammalian cells to estimate the importance of a 

poorly characterized factor they are interested in (herein referred to as U) in a biological context 

of interest by comparing the new factor’s individual effect on cell fitness vs. its combined effect 

with a factor with a known role in the biological context (herein referred to as K) (Fig. 5). We 

recently published a proof-of-concept of this idea – which can be thought of as an expanded 

definition of synthetic interaction testing – with the osteoporosis drugs, nitrogen-containing 

bisphosphonates (N-BPs) (22, 34, 35). In this work, we identified a gene network, ATRAID-

SLC37A3-FDPS, using cell-fitness-based, drug interaction screening with the N-BPs, and 

subsequently demonstrated this network controls N-BP responses in cells, in mice, and in 

humans (22, 34, 35). Besides this and the statins, there are numerous other examples in the 

literature such as with the mTOR pathway (36) where the steps from cell fitness to phenotypes 

relevant in people can be readily traced.  

 

Cell fitness is a phenotype that has long had traction in the yeast and bacteria communities, but 

not yet in mammalian systems outside of cancer. To increase awareness of its utility, below we 

address its relevance as a phenotype to the different levels at which mammalian biologists 

tackle their work: at the level of cell and molecular processes, at the level of disease, and at the 

level of environmental factors such as drugs. 

 

Relevance to cell and molecular processes (Fig. 2). Our Figure 2 results suggest one can study 

the majority of cell and molecular processes using cell fitness-based, synthetic interaction 
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testing. This is useful for molecular biologists because we often spend considerable time 

developing experimental models. For example, large efforts are often spent upfront (before 

getting to the question of interest) developing technology, such as cell types to model various 

tissues. This is done because of the often unquestioned assumption that the cell type being 

studied matters. While this can be true, it is worth considering whether it’s the rule or the 

exception. In support of the latter, in single cell RNAseq analysis, 60% of all genes are 

expressed in single cells and the percentage jumps to 90% when considering 50 cells of the 

same type (37). Similar percentages are obtained at the population level when comparing cell 

types (38, 39). This argues that the majority of the time, there should be a generic cell context to 

do at least initial “litmus” synthetic interaction testing of a hypothesis concerning a new genetic 

or environmental factor of interest before proceeding with a more complex set-up. Like with 

cellular phenotypes, many molecular phenotypes such as reporter assays require domain 

expertise, can be hard to elicit, and might not be easily reproducible. Whereas cell fitness is 

robust and readily approximated by inexpensive assays such as those to measure ATP levels.  

 

Relevance to diseases (Fig. 3). Our PubMed analysis lends growing support to the use of the 

published literature as a data source (40). The costs to perform the wet-lab experiments 

required to publish in the “-omic” era aren’t small and favor well-resourced teams. Gleaning 

insights from the existing literature, which is large and growing rapidly, but at the same time 

knowable especially when approached computationally, is an underappreciated way to level the 

playing field.  

 

One counterintuitive insight from Figure 3 is that core genes on the diagonal might not be as 

good drug targets as genes off the diagonal because the core genes are involved in more 

diseases. This might mean that because of their importance, core genes might be too 

networked with other genes to be targeted by therapies without the therapies causing off-target 
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effects. Fortunately, this might then also mean those genes off the diagonal might make more 

appealing drug targets because they are less networked. Thus, in this case we would use cell 

fitness as a filter to prioritize genes for further study. This is important because like with income 

inequality where the “rich get richer” certain genes get cited over and over (23), and approaches 

to aggregate data are known to favor the “discovery” of already well-studied genes over less 

studied genes (41). When applied in unbiased methods such as with genome-wide CRISPR-

based screening (22), we expect our approach to be particularly impactful in addressing this 

issue of identifying important genes that historically are ignored.  

 

Relevance to environmental factors, e.g., drugs (Fig. 4). With the exception of oncology, it could 

be argued pharmacogenomics is only slowly going mainstream in many fields. One reason for 

this is the poor feasibility and high cost-to-benefit ratio of current genetic testing strategies to 

predict drug response (42). Though more work needs to be done to test the generalizability and 

“real-world” application of the studies we highlight in Figure 4A, they do provide important initial 

evidence for using cell fitness as a diagnostic assay for precision medicine. In addition to drug 

diagnostics, these studies have implications for drug discovery. Both target-based and 

phenotypic-based drug discovery have drawbacks (43). Target-based approaches don’t 

necessarily tell you about the phenotype and phenotypic screens don’t tell you about the target. 

On the other hand, cell fitness-based, drug response genetic screening (44) can potentially be 

the best of both worlds because it can extrapolate well to the phenotype of interest and provides 

the gene target in the same screen.  

 

Still, we acknowledge limitations in our findings. Our work focuses on genes and drugs as the 

genetic and environmental variables of interest. Future work must determine to what extent our 

work would apply to other variables, such as epigenetic signatures. Also, many genes aren’t 

published on due to human factors, which bias our PubMed-based analyses. As more methods 
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get developed and more knowledge accumulates, a scientist’s job of figuring out where to focus 

their attention gets harder. Our view is that cell fitness could be used more often to help 

scientists triage their opportunities. 
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METHODS 

 

Code. All code created for this work is available at: https://github.com/tim-

peterson/omniphenotype. 

 

Gene ontology and essential gene analysis (Fig. 2A). A list of all human genes was obtained 

from NCBI, ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/. Gene ontology (GO) 

information for each human gene was obtained from BioMart, 

https://useast.ensembl.org/info/data/index.html. Essential gene data was obtained from Blomen 

et al., Wang et al., and Hart et al. (24-26). There were ten cell lines tested: K562, KBM7, Jiyoye 

CS, Raji CS, HAP1, HCT116, DLD1, HeLa, GBM, RPE1. The code used to intersect the GO 

terms for each essential gene is available at the aforementioned Omniphenotype Github 

repository. Gene ontology: Developmental process (6297 genes),  
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For the relaxed filter data point, we used fitness scores at p < 0.1 for both the Wang and Hart 

studies. For the Blomen study, p-values > 0.05 weren’t given, therefore we took all genes with 

fitness scores less than 0.5 standard deviations above the mean.  

 

Gene inactivation fitness profile correlation (Fig. 2B). Single gene inactivation cell fitness 

profiles from the Broad Institute and Sanger Institute were downloaded from the DepMap 

website, https://depmap.org/portal/download/ using the 2019q2 dataset. Fitness profiles for 

singe genes from the same GO category were compared pairwise using the python pearsonr() 

function as detailed in the aforementioned Omniphenotype Github repository.   

 

PubMed analysis (Fig. 3 and 4). In both Fig. 3 and 4, PubMed was analyzed using the E-

utilities (https://www.ncbi.nlm.nih.gov/books/NBK25497/) API endpoint: 

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi. The results from these queries were 

either PubMed IDs (PMIDs), which were counted (Fig. 3A-B, 4B), or abstracts, which were 

manually analyzed for relevant information (Fig. 4A). The code for both analyses is available at 

aforementioned Omniphenotype Github repository.   

 

Cancer vs. non-cancer analysis (Fig. 3A). All PMIDs for each human gene and their homologs 

and all PMIDs for each Medical Subject Headings (MeSH, 

https://www.nlm.nih.gov/mesh/meshhome.html) were collected into tab-delineated files. A 

citation was determined to be associated with a particular MeSH term if it came up from 

searching PubMed with “<MeSH term> [mesh]”. A citation was determined to be associated with 

a particular gene if it has been labeled in “Related articles in PubMed” within the Gene resource 

of NCBI. See Omniphenotype Github repository for how these application programming 

interface (API) calls were made. The gene-PMID file was intersected with the MeSH-PMID file 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/487157doi: bioRxiv preprint 

https://doi.org/10.1101/487157
http://creativecommons.org/licenses/by-nc-nd/4.0/


and the resulting gene-MeSH term list was separated by the MeSH term “neoplasm”. Meaning, 

all citations that were annotated as referring to a gene that were co-annotated with the MeSH 

term “neoplasm” were considered a “cancer” citation and all other citations that were co-

annotated as referring to a gene and any other MeSH term besides “neoplasm” were 

considered “non-cancer” citations. Those citations which mapped to both neoplasm as well as 

other conditions were considered “cancer” citations. Genes with less than 10 citations were 

excluded from the analysis. The correlation co-efficient of cancer vs. non-cancer citation counts 

for all genes was calculated using R using the lm() function on log-log data. 

 

Gene Ontology-subsetted, cancer vs. non-cancer citation analysis (Fig. 3B). To determine the 

diversity of correlations for cancer vs. other conditions among GO categories, we took a subset 

of major GO categories (immune system process, metabolic process, behavior, developmental 

process, and cell population proliferation) as a representation of a diverse subsampling of 

biological processes. We then iterated through the sub-category/child terms of each of these 

major GO categories and found the correlation of all cancer vs. non-cancer citations for genes 

associated with that term. The results are displayed as a 1-Dimensional heatmap with a 

secondary mapping of the higher order GO categories also displayed. 

 

Drug response in patients vs. patient cells analysis (Fig. 4A). To identify studies that reported 

findings on patient cell drug responses that correlated with the patient, the phrase “human 

lymphoblastoid cell lines proliferation” was queried in PubMed and 804 abstracts were returned. 

“PMBC” as in peripheral mononuclear blood cells was substituted for lymphoblastoid cell lines 

(LCLs) to identify the simvastatin study. The LCL and PMBC citations were manually curated to 

identify relevant citations that mentioned drug responses on cell proliferation. The IC50 studies 

were obtained by querying [ drug ] AND “cell viability” OR “IC50”. 
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Co-citation time series analysis (Fig. 4B). PubMed PMIDs are largely chronological, i.e., higher 

PMIDs mostly mean a more recent citation and vice versa, with the exception of PMIDs < 8M as 

well as those between 12M and 15M. As of July 9, 2019, citations up to the end of 2017 have 

been annotated with MeSH terms and gene associations such that cancer vs. non-cancer 

correlations for multiple time points could be determined. Citations were split every million 

PMIDs and for the purposes of graphing the results the calendar year was approximated. The 

FDA-approved drug list was obtained from: https://www.fda.gov/drugs/drug-approvals-and-

databases/drugsfda-data-files. Similar to the cancer vs. non-cancer analysis for genes, all 

PMIDs for each drug were collected into a tab-delineated file, intersected with the MeSH-PMID 

file, and the resulting list was separated by those citations that were co-annotated with the 

MeSH term “neoplasm” and those that were not.  
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