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 13 

Neurodevelopmental trajectories are shaped by interactions between coordinated biological 14 

processes and individual experiences throughout ontogeny, yet the specific genetic and 15 

environmental impact on brain development is enigmatic. Here, we map the genetic 16 

architectures of cognitive traits and psychiatric disorders onto the brain, show that such 17 

canonical genetic maps are associated with individual normative patterns in youths, and 18 

provide evidence that trauma exposure and parental education may alter this relationship. 19 

Psychiatric, cognitive and brain imaging traits are highly heritable and polygenic1-13. Individual 20 

genetic architecture contributes to individual differences in neurodevelopmental trajectories and 21 

subsequent scaffolding and maintenance of brain structure and function throughout ontogeny. 22 

However, the links between the genetic and neural configurations and how their interplay shapes 23 

individual differences in cognitive function and mental health remain poorly understood. This 24 

knowledge gap has nurtured a debate on the extent of environmental influence and genetic 25 

constraints on brain development. Here, we provide a comprehensive neuroanatomical mapping 26 

of the genetic architecture of various cognitive traits and psychiatric disorders using brain 27 

imaging and genetic data in a large population based sample (UK Biobank14), and link the 28 

resulting canonical genetic maps to individual patterns of brain maturity in the Philadelphia 29 

Neurodevelopmental Cohort15.  30 
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We accessed data from the UK Biobank14 and used Freesurfer16 for cortical reconstruction based 31 

on T1-weighted magnetic resonance images obtained from 16,612 healthy individuals with 32 

European ancestry aged 40 to 70 years (mean: 55.8 years, sd: 7.5 years, 52.1% females). We 33 

computed surface maps for cortical thickness and area, registered to fsaverage4 space (2,562 34 

vertices), smoothed using a kernel with full width at half maximum of 15 mm. Next, we 35 

performed a genome-wide association study (GWAS) for every vertex using PLINK17, linking 36 

single-nucleotide-polymorphism (SNP) data with a given vertex’s thickness and area, 37 

respectively. Each GWAS accounted for effects of age, age², sex, scanning site and the first four 38 

genetic principal components18 to account for population stratification.  39 

We first estimated SNP-heritability of cortical morphology using LD Score regression19 for each 40 

vertex (Suppl. Fig 1). The spatial correlation between thickness and area heritability maps was 41 

moderate (r=0.28, pperm=0.0004; Suppl. Fig 1b), and surface area was significantly more 42 

heritable than thickness (Suppl. Fig 1a). Both measures showed regional differences, with high 43 

heritability of thickness in the postcentral gyrus and Heschl’s gyrus (Suppl. Fig 1c), and of 44 

surface area in the lingual gyrus and the temporal lobe (Suppl. Fig 1d). These results from 45 

vertex-wise SNP-based analysis largely confirmed earlier reports from twin studies9-13 and from a 46 

region-wise SNP-based analysis20, supporting the feasibility of our vertex-wise GWAS approach.  47 

We next combined our GWAS results with publicly available summary statistics to compute 48 

vertex-wise genetic correlations between brain morphology and cognitive traits and psychiatric 49 

disorders. Summary statistics for cognitive phenotypes were obtained from GWAS on 50 

intelligence1 (INT) and educational attainment2 (EDU), excluding 23andMe data. For psychiatric 51 

disorders we used summary statistics from analyses on anxiety3 (ANX), autism spectrum 52 

disorder4 (ASD), attention-deficit-hyperactivity disorder5 (ADHD), major depression6 (MD, 53 

excluding 23andMe data), bipolar disorder7 (BP) and schizophrenia8 (SZ). Using LD Score 54 

regression19, for each vertex we estimated the genetic correlation between each of the phenotypes 55 

and thickness and area, respectively. To reduce noise, vertices with a heritability estimate of less 56 

than 1.96 times its standard error were excluded from the analysis, in addition to excluding the 57 

medial wall, yielding a total of 4550 and 4498 vertices for thickness and area, respectively.  58 

Fig. 1a-b depict the resulting cortical maps of vertex-wise genetic correlations – hereafter 59 

referred to as cortico-genetic maps. Each map reflects the overlap between the genetic 60 
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architectures of cortical morphology and the given phenotype. For example, area in the right 61 

superior frontal gyrus was positively genetically associated with INT and negatively with MD, 62 

whereas thickness in this area was positively associated with ANX. Fig. 1c-d illustrate the 63 

correlation between these cortico-genetic maps, largely in line with the published genetic 64 

relationship between the phenotypes (Suppl. Fig. 2 for comparison). Importantly, the cortico-65 

genetic maps were derived from brain imaging data of healthy individuals, thereby reducing the 66 

impact of confounding factors such as comorbid disorders or medication, as might be observed 67 

for case-control brain imaging maps.  68 

 69 

Fig. 1: Cortico-genetic maps reflecting the vertex-wise genetic correlations of cortical morphology 70 

with cognition and psychiatric disorders. Genetic correlations (Rg) per phenotype for thickness (a) and 71 

for area (b). The maximum of the scales was individually adjusted to display the 97.5 percentile across all 72 

vertices. Corresponding p-values are depicted in Suppl. Fig. 3. (c-d) Pairwise Spearman correlations of 73 

the cortico-genetic maps from (a-b). Corresponding p-values from permutation testing are depicted in 74 

Suppl. Fig. 4. 75 

Considering the strong evidence of a neurodevelopmental component in the etiology of many 76 

psychiatric disorders21,22 and the large amount of maturational brain changes related to individual 77 

adaptation and learning23, we hypothesized that brain regions associated with the genetic 78 

architecture of psychiatric and cognitive traits in healthy adults are sensitive to normative 79 

deviations during childhood and adolescence. To this end, we tested if the similarity between an 80 

individual’s map of brain maturity and the respective cortico-genetic maps allowed us to 81 
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statistically predict individual deviations from the developmental norm in the given trait in the 82 

Philadelphia Neurodevelopmental Cohort15. Following cortical reconstruction16, we excluded 83 

data due to insufficient quality after manual screening (n=60) and significant or major medical 84 

conditions (n=73), yielding a total sample of 1467 individuals aged 8 to 21 years (mean: 14.14 85 

years, sd: 3.51 years, 52.9% females).  86 

 87 

Fig. 2: Cortico-genetic fingerprinting yields significant statistical predictions of normative general 88 

cognitive (gF) and general psychopathology (pF) factors in the developing brain. (a) Illustration of the 89 

cortico-genetic fingerprinting approach. (b) Association between general cognition factor (gF) and age. 90 

The black line indicates the model fit to remove the age effect, yielding normative estimates of gF. (c) 91 

Same as (b) but for general psychopathology (pF). (d-e) Significant prediction of normative gF (d) and 92 

normative pF (e) using cortico-genetic fingerprinting and machine learning. For corresponding 93 

permutation tests see Suppl. Fig. 5. 94 

Fig. 2a details the approach. First, we modeled normative trajectories of brain development in 95 

each vertex using generalized additive models24 and removed the statistical relationship with age 96 

and sex from all data sets. For each individual, this yielded one normative map for cortical 97 

thickness and one for cortical area, where the measures at each vertex reflect its respective 98 

deviation from the age- and sex-matched sample norm. Next, we assessed the similarity of each 99 

individual’s normative thickness and area maps to each of the cortico-genetic maps from Fig. 1a-100 

b. Following the connectome fingerprinting approach25-27, we hereafter refer to this as cortico-101 
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genetic fingerprinting outlining that the cortico-genetic maps are used as ‘fingerprints’ of 102 

cognitive traits and psychiatric disorders that individual patterns of normative development are 103 

compared to. Since the direction of effects in studies of brain morphometry may depend on age28, 104 

we also fingerprinted using the unsigned statistical maps. For example, whereas SZ is associated 105 

with widespread reduced cortical thickness29, the cortico-genetic thickness maps for SZ in Fig. 1a 106 

show positive genetic correlations in the precentral cortex. Speculatively, this may partly reflect a 107 

survivor bias as these maps were generated using data from healthy individuals aged 40 and 108 

above with very low life-time probability of a diagnosis. Therefore, in some cases the unsigned 109 

effect sizes might be needed to overcome the bias and to obtain predictive value in a 110 

neurodevelopmental sample. We thus fingerprinted using both signed genetic correlation maps 111 

(Fig. 1a-b) and unsigned maps of -log10 transformed p-values (Suppl. Fig. 3), yielding a total of 112 

eight (phenotypes) by three (area and thickness, and both concatenated) by two (genetic 113 

correlation, -log10 transformed p-values) fingerprinting correlations per individual (48 in total).  114 

To assess the predictive utility of these fingerprints, we used machine-learning to predict 115 

deviations from the developmental norm in cognitive performance and mental health. Using 116 

principal component analysis on clinical and cognitive data, we derived a general cognitive score 117 

(gF) and a general psychopathology score (pF)30 and first removed effects of age using locally 118 

weighted regression (Fig 2b-c), yielding normative estimates of gF and pF. In a 10-fold cross-119 

validation framework, we trained a linear machine learning model on 90% of the data to predict 120 

normative gF and normative pF using the 48 correlation estimates – the connectome 121 

fingerprinting strength - as features, and iteratively testing on the 10% held-out data. Fig. 2d-e 122 

illustrates that it was possible to statistically predict normative gF and normative pF using 123 

cortico-genetic fingerprinting (both pperm<.0001, Suppl. Fig. 5). In models accounting for age and 124 

sex, the associations between true and predicted normative values were highly significant both 125 

for gF (rpartial=0.29; t=11.71, p=2e-16) and pF (rpartial=0.14; t=5.51, p=4e-8). The machine learning 126 

model weights revealed that a range of traits contributed to each prediction (Suppl. Fig. 6). These 127 

results jointly suggest that individual regional deviations from the norm in youths emerge in 128 

those cortical areas that are most strongly associated with the genetic architecture of the 129 

respective phenotypes, and that the extent of overlap with those patterns relates to individual 130 

differences in cognitive performance and – to a lesser degree - mental health. 131 
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 132 

Fig. 3: Association between individual cortico-genetic fingerprinting strength and proxies for 133 

socioeconomic environment and life events. Cortico-genetic fingerprinting strength refers to the 134 

correlation strength of each individual’s normative maps with the cortico-genetic maps from Fig. 1. For 135 

each fingerprint, we computed a linear model assessing (a) the association with parental education, 136 

accounting for age, sex and gF, and (b) the association with trauma, accounting for age, sex and pF (with 137 

trauma excluded from the pF). Suppl. Fig. 8 displays permutation test results from 10,000 permutations. 138 

Significant effects at Bonferroni level (accounting for 16 maps, p=0.003125) for each factor are marked 139 

with a black box. 140 

The observed cortico-genetic overlap with individual estimates of brain maturity raises the 141 

question whether and to which degree this relationship is altered by experience. We used parental 142 

education as a proxy for the socioeconomic environment and the first component from a principle 143 

component analysis on trauma questionnaires as a proxy for major negative life events (Suppl. 144 

Fig 7). Next, we tested for linear associations between these factors and individual cortico-145 

genetic fingerprinting strength. As depicted in Fig. 3a, parental education was positively 146 

associated with fingerprinting strengths on SZ (area), INT (thickness), EDU (thickness and area), 147 

and BD (area), as well as negatively associated with those on ASD (area) and ANX (thickness 148 

and area), each model accounting for age, sex and gF. Trauma exposure was positively associated 149 

with fingerprinting strengths on ANX (thickness), accounting for age, sex and a pF that excluded 150 

trauma items (Fig. 3b). In other words, the overlap between an individual’s normative cortical 151 
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morphology and the cortico-genetics maps from Fig. 1 varied as a function of experience. With 152 

caution and under the restriction that these are probabilistic, not deterministic associations, these 153 

results indicate that individual developmental patterns are more ANX-like following trauma 154 

exposure, more ANX- and ASD-like in individuals from low-educated social environments and 155 

more SZ-, BD-, INT- and EDU-like in individuals from high-educated social environments.  156 

Taken together, our analysis reveals an intriguing impact of genetic architecture on brain 157 

development by illustrating that the similarity between individual patterns of brain maturity and 158 

the neurogenetics of cognition and psychopathology is informative for individual normative 159 

deviations in cognitive performance and mental health. Nevertheless, despite statistical 160 

significance our predictions only explained a proportion of the variance in the data, indicating 161 

that other factors have a large part in explaining individual trajectories. Indeed, we identified two 162 

environmental factors – proxies of the socioeconomic environment and adverse life events - as 163 

significant factors explaining variance in the individual fingerprints. Of note, these factors have 164 

substantial genetic components themselves, and future research needs to address to what extent 165 

the observed associations with environmental factors can be explained by common genetics. 166 

Apart from its utility in pinpointing deviations from the norm in the developing human brain, our 167 

cortico-genetic approach may contribute towards the delineation of genetic and environmental 168 

factors influencing individual trajectories during sensitive neurodevelopmental phases. 169 
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Online methods 223 

Samples and exclusion criteria 224 

UK Biobank: The UK Biobank is a publicly available resource of imaging, genetics and 225 

phenotypic data from an ongoing large-scale cohort study14. All study procedures were approved 226 

by appropriate ethics committees and all study participants gave electronic signed consent. We 227 

obtained access with permission no. 27412. No statistical methods were used to pre-determine 228 

sample sizes as we analyzed all available data from the 20,000-subject release of brain imaging 229 

and corresponding phenotypic and genetics data. Individuals with Caucasian ancestry were 230 

identified by the UK Biobank study team using clustering analysis18 and we followed their 231 

selection of individuals in our study. After exclusion of data from individuals with a diagnosed 232 

brain disorder or data of insufficient quality (see pre-processing and quality control), this yielded 233 

a total of 16,612 healthy individuals with Caucasian ancestry. The age range was 40 to 70 years 234 

(mean: 55.8 years, sd: 7.5 years, 52.1% females). 235 

PNC: The Philadelphia Neurodevelopmental Cohort is a publicly available resource of clinical, 236 

cognitive, genetic and neuroimaging data from children and adolescents15,31. Prior to data 237 

collection, all study procedures were approved by the institutional review boards of the 238 

University of Pennsylvania and the Children’s Hospital of Philadelphia, and all participants gave 239 

written informed consent. We obtained access with permission no. 8642. No statistical methods 240 

were used to predetermine sample sizes as we used all available data, except data with 241 

insufficient quality after manual screening (n=60) and data from individuals with significant or 242 

major medical conditions (n=73). The final sample comprised 1467 individuals aged 8 to 21 243 

years (mean: 14.14 years, sd: 3.51 years, 52.9% females). 244 

 245 

Image pre-processing and quality control 246 

T1-weighted magnetic resonance images for UK Biobank (MPRAGE, TR 2000 ms, TE 2.01 ms, 247 

matrix 208x256x256, resolution 1x1x1 mm) and PNC (MPRAGE, TR 1810 ms, TE 3.51 ms, 248 

matrix 192x256x160, resolution 0.9x0.9x1mm) was processed using Freesurfer 5.316 (recon-all). 249 

In the case of UK Biobank, where manual quality control of 16,612 images was not feasible, we 250 

excluded outliers based on global cortical measures. We regressed age, age², sex and scanning 251 

site from white surface area and mean cortical thickness of each hemisphere and identified 252 
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outliers above or below 4 standard deviations of the full population, excluding N=22 individuals. 253 

In the case of PNC, we screened all reconstructed images manually, excluding data from N=60 254 

children and adolescents that did not adhere to highest data quality standards. Next, for both UK 255 

Biobank and PNC, we resampled the surfaces to fsaverage4 space (2,562 vertices), smoothed 256 

using a kernel with full width of half maximum of 15 mm.  257 

 258 

Vertex-wise genetic analysis in UK Biobank data 259 

Standard quality control procedures were applied to the UK Biobank v3 imputed genetic data, 260 

including removal of SNPs with an imputation quality score below 0.5, with a minor allele 261 

frequency less than .05, missing in more than 5% of individuals, and failing the Hardy Weinberg 262 

equilibrium tests at a p<1x10-6. Genetic principal components were retrieved from the UK 263 

Biobank repository and we regressed the first four genetic components, age, age², sex and 264 

scanning site from vertex-wise thickness and area maps. Next, we ran one genome-wide 265 

association analysis (GWAS) per vertex using PLINK v1.917, and removed the MHC region from 266 

each resulting summary statistic. Using LD Score regression19, we estimated narrow sense 267 

heritability. The significance of the correlation between heritability maps of thickness and area 268 

was assessed using spin-rotation based permutation testing, which applies random rotations to 269 

spherical representations of the cortical surface to generate a null distribution32. Next, we used 270 

cross-trait LD Score regression19,33 to calculate correlations of our vertex-wise GWAS summary 271 

statistics with publicly available summary statistics on intelligence1 (INT), educational 272 

attainment2 (EDU, excluding 23andMe data), anxiety3 (ANX, the case-control GWAS), autism 273 

spectrum disorder4 (ASD), attention-deficit-hyperactivity disorder5 (ADHD), major depression6 274 

(MD, excluding 23andMe data), bipolar disorder7 (BP) and schizophrenia8 (SZ). Significance of 275 

the correlations between each pair of the resulting cortico-genetic maps was again assessed using 276 

spin-rotation based permutation testing32 in addition to correcting the permuted p-values for the 277 

number of total correlations (28, Bonferroni correction). 278 

 279 

Cortico-genetic ‘fingerprinting’ in PNC data 280 

We utilized generalized additive models24 to remove the statistical relationship with age and sex 281 

from vertex-wise thickness and area data, yielding one normative thickness and one normative 282 
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area map per individual in PNC. Each of these individual subject maps was transformed into a 283 

one-column vector and correlated against similar vectors of the cortico-genetic maps of cognition 284 

and psychiatric disorders using Spearman correlations. We refer to this approach – in line with 285 

the connectome fingerprinting literature25-27 – as cortico-genetic fingerprinting. We fingerprinted 286 

against each of the 16 cortico-genetic correlation maps (Rg) from Fig. 1, against each of the 16 -287 

log10 transformed cortico-genetic p-value maps (Suppl. Fig. 3) and against each of 16 vectors 288 

that concatenated thickness and area surface vectors, respectively (8 Rg maps concatenating area 289 

and thickness, 8 -log10(P) maps concatenating area and thickness). In sum, this yielded 48 290 

Spearman correlation estimates (‘fingerprinting strength’) per subject. To assess the predictive 291 

utility of the fingerprinting strengths, we used those 48 correlations as features in machine 292 

learning based prediction of normative estimates of general psychopathology (pF) and general 293 

cognition (gF), respectively. PF and gF were obtained from a PCA following previous protocols30 294 

from the full PNC sample (9490 individuals) and the respective scores extracted for those 295 

individuals with imaging data available. Dependencies with age were removed using locally 296 

weighted regression to account for non-linear effects. Machine learning was performed in a 10-297 

fold cross-validation framework using slm from the care package34 in R statistics and normative 298 

estimates of pF and gF were predicted. Significance of the predictions was assessed using 299 

permutation testing, repeating 10,000 runs of a full 10-fold cross-validation loop using a different 300 

random permutation of the response variable in each run. Feature weights were assessed using 301 

CAR scores and translated to -log10 transformed p-values34. Finally, to assess environmental 302 

impact on cortico-genetic fingerprinting strength, we computed parental education as the mean of 303 

maternal and paternal education, and a principal component analysis across various trauma 304 

questions (Suppl. Fig. 7) yielding a general trauma score (the first factor). For each cortico-305 

genetic map we tested for linear associations between individual fingerprinting strength and 306 

parental education accounting for age, sex and gF. Likewise, for each map we tested for linear 307 

associations with trauma, accounting for age, sex and pF (the pF was recomputed for this analysis 308 

to exclude trauma items). Significance of the linear associations was assessed using permutation 309 

testing, permuting the fingerprinting strength 10,000 times and each time recomputing the models 310 

on the permuted data. In addition, resulting P-values were corrected for multiple comparison 311 

using Bonferroni correction (p=.003125, 16 tests). 312 

 313 
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Data availability 314 

The data incorporated in this work are available as part of the publicly available UK Biobank 315 

(https://www.ukbiobank.ac.uk/) and Philadelphia Neurodevelopmental Cohort (PNC, 316 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v2.p2).  317 

 318 

Code availability 319 

Scripts are available upon request from the first author (tobias.kaufmann@medisin.uio.no).  320 
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Supplementary figures 321 

 322 

Suppl. Fig. 1: SNP-based heritability of cortical thickness and area confirms earlier reports from 323 

twin studies on heritability of cortical morphology. (a) Vertex-wise distribution of heritability estimates 324 

per hemisphere and cortical measure. Area was significantly more heritable than thickness (t=9.2, p<2e-325 

16). To visualize this effect, the long-dashed lines indicate 50% quantiles of the distributions and the dot-326 

dashed lines indicate the 97.5% quantiles. (b) Association of thickness and area heritability maps, per 327 

hemisphere. For both hemispheres concatenated, the association was r=0.28, pperm=.004 (c) Cortical maps 328 

for heritability of thickness (upper row) and corresponding standard error (lower row). (d) Same maps as 329 

(c), but for cortical area.        330 
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 332 

Suppl. Fig. 2: Genetic correlation matrix. Genetic correlation of summary statistics from different 333 

phenotypes using LD-Score regression19,33. The left plot shows the genetic correlations (Rg) and the right 334 

plot depicts the corresponding p-values. Significant associations following Bonferroni correction for the 335 

number of tests (28) are marked in grey. 336 
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 338 

Suppl. Fig. 3: -log10 transformed p-values of cortico-genetic maps for cognition and psychiatric 339 

disorders. Corresponding with Fig. 1 which displays the genetic correlations (Rg), the figures display the 340 

-log10 transformed p-values from vertex-wise LD-score regression19,33 for (a) thickness and (b) area. (c-d) 341 

Pairwise spearman correlations of each -log10 transformed p-value map. 342 
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 344 

Suppl. Fig. 4: Permutation-based p-values corresponding to Fig. 1c (left) and 1d (right). Cortico-345 

genetic maps were permuted using spin-rotation to derive a permutation-based p-value32. Significant 346 

associations following Bonferroni correction for the number of tests (28) are marked in grey. 347 
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 349 

Suppl. Fig. 5: Permutation tests of the machine learning analyses confirms significant predictions of 350 

normative gF and normative pF. The red lines indicate the association between true and predicted 351 

scores (t-statistic), accounted for age and sex. The density plots depict the distribution of similar t-statistic 352 

obtained from 10,000 permutations per trait, with none of the permutation-based statistics exceeding the 353 

true value. (a) Significant prediction of normative gF (pperm<.0001). (b) Significant prediction of normative 354 

pF (pperm<.0001). 355 
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 357 

Suppl. Fig. 6: Feature importance. The -log10 transformed p-values of the CAR scores34 are displayed 358 

for all features. For visualization purpose only the most important features (p<.05) are labeled with text. 359 

Colors indicate the prediction model for normative gF (red) and normative pF (cyan). 360 
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 362 

Suppl. Fig. 7: Details on the trauma principle component. (a) Trauma question and corresponding item 363 

weight in the PCA (b) Distribution of the trauma principle component across individuals. 364 
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 366 

Suppl. Fig. 8: Permutation test results corresponding to Fig. 3. The cortico-genetic fingerprinting 367 

strength was permuted 10,000 times, each time calculating (a) the effect of age, sex, pF (excl. trauma) and 368 
trauma, and (b) the effect of age, sex, gF and parental education. The density plots illustrate the 369 

distribution of respective t-statistics. The vertical line indicates the true association t-statistic. 370 
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