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Abstract 11 

 In fMRI research, univariate analysis (UNIVAR), representational similarity analysis 12 

(RSA, following multi-voxel pattern analysis (MVPA)), and functional connectivity analysis 13 

(FCA) are the most commonly used methods by cognitive neuroscientists investigating the 14 

functional organization of the human brain. Despite their popularity, few studies have 15 

examined the relationship between the network structures as identified through these different 16 

methods. Thus, the current study aims to evaluate the similarities between neural networks 17 

derived from UNIVAR, RSA, and FCA, and to clarify how these methods relate to each other. 18 

To achieve this goal, we analyzed the data of a previously published study with the three 19 

methods and compared the results by performing (partial) correlation and multiple regression 20 

analysis. Our findings reveal that neural networks resulting from UNIVAR, RSA, and FCA 21 

methods are highly similar to each other even after ruling out the effect of anatomical proximity 22 

between the network nodes. Nevertheless, the neural network from each method shows 23 

idiosyncratic structure that cannot be explained by any of the other methods. Thus, we conclude 24 

that the UNIVAR, RSA, and FCA methods provide similar but not identical information on 25 

how brain regions are organized in functional networks. 26 
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1. Introduction 36 

Three techniques are most frequently used to analyze fMRI data: univariate analysis 37 

(UNIVAR), multi-voxel pattern analysis (MVPA), and functional connectivity analysis (FCA). 38 

UNIVAR assesses neural activation of an individual voxel or a mean activation across voxels 39 

of a brain region of interest (ROI). For this reason, it is often used to localize brain regions 40 

engaged in processing a particular type of stimuli (e.g., face versus object) and thereby draw 41 

conclusions about the regions that are involved in cognitive processes important for the stimuli 42 

or task at hand (Coutanche, 2013; Haynes, 2015; Haynes and Rees, 2006; Logothetis, 2008; 43 

Mur et al., 2009). It is referred to as univariate because a general linear model (GLM) is applied 44 

voxel-wise to relate the experimental design to the neural activity of each voxel’s time-course 45 

in the brain (Raizada and Kriegeskorte, 2010).  46 

In contrast, MVPA considers the pattern of neural activation across multiple voxels of 47 

a brain region and examines whether these patterns contain task-related information 48 

(Coutanche, 2013; Haxby, 2012; Haxby et al., 2001; Haynes, 2015; Haynes and Rees, 2006; 49 

Kriegeskorte, 2011; Mur et al., 2009). It is referred to as multivariate or multi-voxel because it 50 

analyzes a set of voxels together (the pattern of activation of this set) instead of modeling 51 

activity of a single voxel (as is done in UNIVAR through a GLM) (Kriegeskorte, 2011; Mur et 52 

al., 2009; Norman et al., 2006; Yang et al., 2012). In addition, patterns of activation can be 53 

used to investigate the similarities between such patterns of different conditions, or between 54 

such patterns of different brain regions in a certain condition (Haxby, 2012, Mur et al., 2009). 55 

This approach is referred to as representational similarity analysis (RSA) (Kriegeskorte et al., 56 

2008). In first-order RSA, a representational dissimilarity matrix (RDM) is set up to understand 57 

the dissimilarity between patterns of activation of different stimuli in a certain brain region 58 

(Kriegeskorte et al., 2008; Yang et al., 2012). Furthermore, comparing neural patterns across 59 

ROIs, by correlating RDMs of several brain regions, is referred to as a second-order RSA 60 

(Kriegeskorte et al., 2008; Yang et al., 2012). Kriegeskorte and his group have referred to this 61 

method as representational connectivity as it allows us to identify the representational 62 

relationship among ROIs (Kriegeskorte et al., 2008). Connectivity related to multivariate 63 

information has since then been given a more specific meaning to refer to analyses of the 64 

temporal dynamics of the information contained in multi-voxel patterns, also sometimes 65 

referred to as multivariate or informational connectivity (Anzellotti and Coutanche, 2018; 66 

Coutanche and Thompson-Schill, 2014). For this reason, we opted for the more general RSA 67 

term instead of using the term representational connectivity.  68 
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FCA (for a review, see Friston, 2011) characterizes the communication between brain 69 

regions during rest or a task (Friston, 1994), measuring the strength of the relation between 70 

BOLD time-series signals of brain regions (Geerligs et al., 2016; Yang et al., 2012). When 71 

FCA is applied to a resting-state fMRI dataset, it reveals the intrinsic network of the brain based 72 

on low-frequency BOLD fluctuations of brain regions (Biswal et al. 1995; Cordes et al., 2001; 73 

Fox and Raichle, 2007). Fair and colleagues demonstrated how to extract the intrinsic network 74 

in the brain from a task-based fMRI dataset by removing the task-induced signal from the data 75 

(Fair et al., 2007). This type of FC is referred to as intrinsic functional connectivity (Fair et al., 76 

2007). The authors asserted the validity of the method, emphasizing that the intrinsic 77 

fluctuations in BOLD signal would only be weakly affected by task demands and could be 78 

separated when entangled with the task-related signals (Fair et al., 2007; Fox et al., 2006). 79 

Since then, several studies have used such methods (e.g., Bassett et al., 2011; Boets et al., 2013; 80 

Ebisch et al., 2013). More recently, Elliott and colleagues (2018) have demonstrated that 81 

intrinsic functional connectivity measured either during resting-state or during a task are 82 

similarly reliable. Gratton and colleagues (2018) showed that task state does not have much 83 

impact on functional networks and this impact largely varies from individual to individual.  84 

 There are various conceptual similarities and differences between these three methods. 85 

UNIVAR and FCA methods are similar in that they average BOLD signal of the voxels in the 86 

brain region, unlike MVPA. The structure of networks from co-activation has also proven to 87 

be similar to those from resting-state connectivity (Crossley et al., 2013). Analogously, 88 

Anzellotti and Coutanche referred to this type of FCA as univariate FCA (Anzellotti and 89 

Coutanche, 2018). Regarding RSA and FCA, as their names suggest (representational 90 

connectivity versus functional connectivity), second-order RSA and FCA are similar in that 91 

they are both based on the correlational analysis. Correlating the averaged BOLD time-series 92 

signals between the ROIs in FCA is methodologically similar to correlating RDMs of those 93 

ROIs in second-order RSA (Xue et al., 2013). UNIVAR and RSA, or at least MVPA, have 94 

been frequently compared when describing functional properties of one region of the brain 95 

(e.g., see Coutanche, 2013; Jimura and Poldrack, 2012). A significant finding from these 96 

studies was that changes (across different stimuli) in the activation patterns could be detected 97 

even when changes in average-activation of that region are absent (Mur et al., 2009). For 98 

example, different speech sounds showed different activation patterns in the right auditory 99 

cortex, but the average-activation of this region across those speech sounds did not differ 100 

(Raizada et al., 2010). These studies have provided valuable insights into the conceptual and 101 

empirical relationships between UNIVAR and MVPA. Similarly, studies have used both RSA 102 
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and FCA, some drawing the same conclusion from the results of RSA and FCA (e.g., Zeharia 103 

et al., 2015), or not (Boets et al., 2013; Bulthé et al., 2018).  104 

Here we focus upon the use of these three methods to show how brain regions organize 105 

into networks. Each method provides relevant albeit different information on such network 106 

structure: 1) UNIVAR can uncover similarities between the brain areas in terms of magnitude 107 

of neural response elicited by different conditions; 2) RSA does in terms of patterns of neural 108 

response; 3) FCA does in terms of fluctuations in BOLD signal. A study that directly compares 109 

network structures resulting from UNIVAR, RSA, and FCA is missing from today's literature. 110 

Thus, the current study aims to reveal how the results from UNIVAR, RSA, and FCA 111 

complement each other when investigating the functional architecture of the brain. Although 112 

direct comparisons between brain network structures based on UNIVAR, RSA and FCA have 113 

not been performed (to our knowledge), we expect at least some convergence. For example, 114 

we hypothesize that brain regions with similar representational similarity structure would tend 115 

to be functionally connected, without excluding the possibility of uniqueness in the networks 116 

resulting from the two methods. Specifically, given the evidence of the topographic 117 

arrangement of the basic sensory cortical areas, such as the visual and sensorimotor cortex (see 118 

Kaas, 1997, for a detailed review), we predict that the way in which brain networks composed 119 

of visual or sensorimotor areas are constructed would be highly similar in all three methods. In 120 

sum, the goal of this study is to compare the network structure derived from UNIVAR, RSA, 121 

and FCA. To answer this question, we applied intrinsic FCA to a previously reported dataset 122 

from our previous fMRI study (Lee Masson et al., 2018) and compared these FCA results with 123 

those obtained from UNIVAR and RSA. In particular, we conducted (partial) correlation and 124 

multiple regression analysis (comparing them to signal-to-noise ratio measurements), 125 

controlling for the confounding influence of anatomical proximity between brain regions of 126 

interest on UNIVAR, RSA and intrinsic FCA results. In addition, we explored our results 127 

visually by implementing multi-dimensional scaling (MDS) and Procrustes transformations 128 

methods. 129 

2. Methods 130 

2.1 Datasets 131 

 We reanalyzed data from our previous fMRI study (Lee Masson et al., 2018). All 132 

participants provided written informed consent before the experiment. The study was approved 133 

by the Medical Ethical Committee of KU Leuven (S53768 and S59577). In this study, 21 134 

healthy participants observed greyscale videos (see Fig. 1) of social touch interaction, varying 135 
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in valence and arousal (Lee Masson and Op de Beeck, 2018). The experiment included 39 136 

social touch videos, and in addition 36 nonsocial control videos. Participants carried out an 137 

orthogonal attention task: they pressed a button with their left or right thumb whenever the 138 

touch interaction initiator wore a grey or black shirt, depending on the instruction of that 139 

specific run (left for grey, right for black). The stimuli were displayed for 3 s, followed by an 140 

inter-stimulus interval of 3 s during which a fixation cross was presented and during which the 141 

participants could press a button as a response related to the task. Each run was divided into 142 

three blocks of 25 videos. At the start of each block, a baseline (display of a fixation cross) of 143 

6 s was included. The total duration of each run was 7.80 min. The participants completed six 144 

runs. In the following UNIVAR and RSA analyses, we restrict the analyses to the data from 145 

the 39 social touch videos.  146 

Importantly, when creating the videos, we controlled for the visual elements, such as 147 

clothes style and color of the actors so that these do not induce a visually biased neural response 148 

(Lee Masson and Op de Beeck, 2018). For example, having actors wear blue in the pleasant 149 

touch scenes and having actors wear red in unpleasant touch scenes can induce visual bias 150 

related to the clothing color when contrasting the brain response between the pleasant and 151 

unpleasant touch conditions. 152 

 153 

Fig. 1 The experimental procedure. Participants received an instruction on when they should 154 

press a certain button (e.g. press the button with your left thumb when touch interaction initiator 155 

wears black sweatshirt). After a baseline of 6 s, the stimuli were presented for 3 s always 156 

followed by an inter-stimulus interval of 3 s, during which a fixation cross was presented and 157 

participants could press a button. In this example, still frames of three social touch videos are 158 

shown (left: hug, middle: stroke, right: shake). All videos can be found here: 159 

https://osf.io/nq5mf/ 160 

In addition, the scan sessions included runs in which participants received (instead of 161 

observing) pleasant (brush strokes) and unpleasant touch (rubber band snaps) in a block design 162 

(see Lee Masson et al., 2018, for more details). These data were used for the intrinsic FCA. 163 
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2.2 Regions of interest (ROIs) 164 

For our previous study (Lee Masson et al., 2018), we selected 16 a priori defined ROIs, 165 

belonging to four different networks in the brain that proved to be important in processing 166 

observed social touch interactions: the somatosensory-motor network (the parietal operculum 167 

(PO),  Brodmann area (BA) 3, BA1, BA2, BA4 (Rolls et al., 2003)), the social-cognitive 168 

network (the middle temporal gyrus (MTG), the precuneus, the superior temporal gyrus (STG), 169 

the temporoparietal junction (TPJ) (Jacoby et al., 2016)), the pain network (the middle 170 

cingulate cortex (MCC), the insula (Gordon et al., 2013; Lamm and Majdandžić, 2015; 171 

Morrison et al., 2011), and the visual network given that visual stimuli were used (BA17, 172 

BA18, BA19, BA37, V5) (see Fig. 2). To define these ROIs anatomically, first, we made masks 173 

with various templates from PickAtlas software (Maldjian et al., 2003), SPM Anatomy toolbox 174 

(Eickhoff et al., 2005) and connectivity-based parcellation atlas (Mars et al., 2012). Second, 175 

we extracted all the voxels in the mask per ROI and combined left and right hemispheres. After, 176 

we examined if there were overlapping voxels among ROIs (e.g., V5 is located in BA19 and 177 

BA37) and removed overlapping voxels from each other in order to ensure all ROIs are 178 

anatomically independent. For further information about these ROIs and how they were 179 

defined, see our previous study (Lee Masson et al., 2018). In contrast to the resting-state 180 

functional connectivity analysis that often includes a more extensive set of ROIs, the RSA 181 

method requires ROIs to contain meaningful neural signals associated with the experimental 182 

conditions. For this reason, only the aforementioned 16 ROIs, whose spatial neural patterns 183 

passed the MVPA reliability test, were selected (Lee Masson et al., 2018). Briefly, in this 184 

reliability test, runs are split into two halves and the correlation between neural patterns for 185 

within- and between-conditions are compared per ROI. This process is repeated 100 times (to 186 

randomly split the runs into two halves) and these results are then averaged. ROIs are only 187 

included if the correlations for within-conditions are significantly stronger than those for 188 

between-conditions. Neural pattern similarity between different conditions are difficult to 189 

interpret when neural pattern similarity between the same conditions is low (Ritchie et al., 190 

2017; for more details on this test and the results see Lee Masson et al., 2018). In this context, 191 

building a brain network using ROIs composed of noise would not be reliable. 192 
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 193 

Fig. 2 Illustration of the different ROI networks. Top left: somatosensory-motor network ROIs 194 

including BA1 (red), BA4 (pink), BA2 (yellow), BA3 (purple) and PO (blue). Top right: social-195 

cognitive network ROIs including precuneus (red), STG (pink), MTG (yellow) and TPJ 196 

(purple). Bottom left: pain network ROIs including insula (red) and MCC (yellow). Bottom 197 

right: visual network ROIs including BA17 (red), BA37 (pink), BA18 (yellow), BA19 (purple) 198 

and V5 (blue). This figure was made using CONN toolbox 17 (Whitfield-Gabrieli and Nieto-199 

Castanon, 2012)  200 

2.3 Univariate analysis 201 

In our previous study, we processed functional data by using a standard preprocessing 202 

pipeline and by applying a general linear model (GLM) to each subject’s data (Lee Masson et 203 

al., 2018). On top of the regressors of interest (matched to the onset time of each regressor 204 

(duration = 0) of the event-related design of the fMRI observing touch experiment), six head 205 

motion parameters were included in the models as nuisance covariates (Lee Masson et al., 206 

2018). These GLMs were defined with data smoothed with 8 mm FWHM. For detailed 207 

information on how data was preprocessed and how the GLM was applied, see our previous 208 

study (Lee Masson et al., 2018). From these GLMs, we obtained the estimated beta-values per 209 

stimulus of the social condition (N = 39) for all voxels in each ROI. For each stimulus, we 210 

averaged the beta values of all runs, of all voxels within each ROI, and of all participants, 211 

yielding a one-dimensional array with 39 elements in each ROI, reflecting how strongly each 212 

of the 39 videos activated the ROI. These arrays were Pearson correlated for each possible pair 213 
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combination of ROIs to investigate the similarity between ROIs’ average BOLD responses 214 

evoked during the observation of social touch and therefore to investigate clustering/networks 215 

of our ROIs with regard to their average activations. We refer to this clustering as the activation 216 

network. 217 

2.4 Representational similarity analysis 218 

 This analysis was based upon a GLMs applied to the fMRI observing touch experiment 219 

(smoothed with 5 mm FWHM) that consisted of 75 predictors (one for each video). For each 220 

ROI, we created a 39 x 39 neural matrix by correlating (Pearson) the multi-voxel patterns 221 

between all possible combinations of pairs of stimuli of the social condition (N = 39) and then 222 

averaged this across subjects (first-order RSA, Kriegeskorte et al., 2008). After, we vectorized 223 

the upper diagonal elements of this group-averaged matrix while discarding the diagonal and 224 

lower diagonal elements, and correlated (Pearson) these vectors for all possible combinations 225 

of ROI pairs (second-order RSA, Kriegeskorte et al., 2008). These comparisons between areas 226 

allow us to investigate the representational similarity between ROIs and therefore to investigate 227 

clustering/networks of our ROIs with regard to the between-condition similarity in multi-voxel 228 

activation patterns (Kriegeskorte et al., 2008). We refer to this clustering as the representation 229 

network. More information on the details of how MVPA was applied to fMRI data can be 230 

found in our previous study (Lee Masson et al., 2018). 231 

2.5 Functional connectivity analysis 232 

Functional connectivity analysis, performed in the CONN toolbox 17 (Whitfield-233 

Gabrieli and Nieto-Castanon, 2012), was applied to a different set of fMRI data (wherein 234 

participants received touch) obtained in the same scan sessions. We used two independent sets 235 

of fMRI data to avoid a spurious correlation between the two sets of brain networks resulting 236 

from UNIVAR and FCA. BOLD signal fluctuations may be partially induced by the presented 237 

stimuli, which may result in shared signals between networks derived from the UNIVAR and 238 

FCA methods. Spontaneous fluctuations over time may affect the estimated univariate 239 

activation.  240 

Preprocessing was conducted as described in our previous study (Lee Masson et al., 241 

2018), with the exception that no smoothing was carried out to avoid a spillover effect 242 

(Alakörkkö et al., 2017). The outlier scans were detected based on the global signal spike and 243 

motion in the functional data by the Artifact Detection Toolbox (ART) software package 244 

(www.nitrc.org/projects/artifact_detect/). Consequently, standard denoising methods were 245 
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applied to remove confounding effects. This step consists of 1) linearly regressing out 13 246 

principal components of white matter and cerebrospinal fluid signals, six head motion 247 

parameters and their first-order derivatives, all scrubbing covariates from the artifact detection, 248 

and main task effects (rest condition, see below), 2) linear detrending, and 3) band-pass filtering 249 

(0.008-0.09 Hz) that removes slowly fluctuating noise, such as scanner drift, and the task-250 

induced signal. To calculate intrinsic FC (functional connectivity) instead of task-related FC, 251 

we did not encode task-related information in the experimental design. Instead, task effect (i.e., 252 

receiving touch) was removed from the fMRI time series by including regressors corresponding 253 

to each task condition during denoising step, and the rest condition was defined (Fair et al., 254 

2007). Task-relevant fMRI data with the task-evoked signal removed has been frequently used 255 

in previous studies to yield the intrinsic functional connectivity network (e.g. Bassett et al., 256 

2011; Boets et al., 2013; Ebisch et al., 2013; Fair et al., 2007). 257 

For each subject, a GLM was performed to assess bivariate Pearson correlation 258 

coefficients between ROIs’ BOLD time-series. These coefficients were averaged across 259 

subjects. As a result, networks of functionally connected (communicating) regions were 260 

uncovered. We refer to this clustering as the connectivity network. 261 

2.6 Signal-to-noise ratio measurement 262 

To measure the reliability of the fMRI signal for the activation (from UNIVAR), 263 

representation (from RSA) and connectivity (from FCA) network, we randomly split the 264 

participants into two groups (n = 10 or 11 per group). For each of these analyses, we correlated 265 

the resulting activation, representation, and connectivity network matrices (off-diagonal 266 

values) of one group with the one of the other group. This process was performed for a total of 267 

100 iterations (each time randomly splitting the data into two groups). The correlations were 268 

adjusted with the Spearman-Brown split-half reliability formula and then averaged (across the 269 

100 iterations) for UNIVAR, RSA, and FCA separately. The results from the between-subject 270 

correlations work as a measure of signal-to-noise ratio (SNR), taking the between-subject 271 

variability in the neural data into account, in that it estimates the maximum correlation we 272 

could expect. The correlation between the same types of data from the two sub-groups (group 273 

1 vs. group 2 in FCA results) should be higher than the correlation with another type of data 274 

(e.g., FCA vs. RSA results). The correlation coefficient/SNR was also squared to obtain the 275 

proportion of the variance in the signal that can be explained by other variables.  276 
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2.7 Anatomical proximity 277 

For each ROI per hemisphere, we collected the x-y-z coordinates of its voxels. 278 

Consequently, for each ROI pair, we calculated Euclidian distances for all possible pairs of 279 

voxels between these two ROIs. Among these calculated distances, we use the minimum value 280 

per ROI pair as a measure of the anatomical distance between the two ROIs. Then, we averaged 281 

the distances across the two hemispheres. We also performed supplementary analyses with 282 

distance based on the average rather than the minimum value, which yielded very similar 283 

results (the two indices correlate strongly, r = .81). As a final step, we inverted these results to 284 

have a measure of anatomical proximity instead of distance with the maximal distance 285 

becoming the minimal proximity zero. We refer to these results as the anatomical proximity 286 

network. Dependency of functional connectivity on anatomical distance has been observed 287 

(Salvador et al., 2005). Thus, the anatomical proximity network was included in the partial 288 

correlation and the multiple regression model to rule out the effects of anatomical proximity 289 

when comparing the activation, representation and connectivity network. 290 

2.8 Comparing the activation, representation and connectivity network 291 

2.8.1 (Partial) correlation models 292 

 To understand how similar the activation, representation, connectivity and anatomical 293 

proximity network are, we conducted a rank-order correlational analysis between these 294 

networks. In addition, we also computed the partial Spearman correlation coefficient to 295 

understand the similarities between the two networks while controlling for the remaining 296 

networks. To draw statistical inferences, we conducted the permutation test, wherein one of the 297 

variables of interest (one of the networks, consisting of all possible unique ROI pairs (120 298 

pairs)) was randomly shuffled and then (partially) correlated with the unshuffled variables 299 

(remaining original networks, each consisting of all possible unique ROI pairs (120 pairs per 300 

network)). This process was iterated 1000 times. These permutation tests provide empirical p-301 

values reflecting the proportion of permutations wherein the (partial) correlations with the 302 

shuffled data were larger (or equally large) than the original (partial) correlations. 303 

2.8.2 Multiple regression models  304 

Following up on the (partial) correlation models, we conducted multiple regression 305 

analysis to investigate if the activation, representation or connectivity network respectively, 306 

could be explained by the other remaining networks. The anatomical proximity network was 307 
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also included in all of the multiple regression models. Z-score standardizations were performed 308 

to normalize the data before building a regression equation. Similarly to the correlational 309 

analysis, permutation tests were used to obtain empirical p-values. In the end, the percentage 310 

variance explained by the model was compared to the squared signal-to-noise ratio of the 311 

predicted variables of the model.  312 

2.8.3 Multi-dimensional scaling (MDS) and Procrustes transformations  313 

We conducted multidimensional scaling (MDS) on the activation, representation, and 314 

connectivity network matrices to visualize the networks in a two-dimensional space that shows 315 

the distance between each pair of ROIs based on how dissimilar these ROIs are in terms of 316 

their activation, representation, and connectivity respectively. MDS results of the 317 

representation network were used as a template to which the MDS results of the activation and 318 

connectivity networks were aligned using Procrustes transformations, to visualize the networks 319 

on the same space. 320 

3. Results 321 

3.1 Networks 322 

 In total, we have four matrices (see Fig. 3). For three of the methods (UNIVAR, RSA, 323 

and FCA) the values in the matrices are based upon correlational analyses. In each of these 324 

matrices, we had a large range of values. In the activation network matrix, the correlation 325 

results range from -.01 (precuneus – PO) to .98 (BA3 – BA4). For the representation network, 326 

for which vectorized first-order RSA results were correlated between all ROI pairs, correlations 327 

range from .07 (V5 – insula) to .82 (BA3 – BA4). The values of the ROI-to-ROI connectivity 328 

range from -.17 (precuneus – PO) to .83 (BA3 – BA4). The anatomical proximity network 329 

values range from 0 to 67.63. The higher the value, the more closely the two ROIs are located. 330 

As the values are inverted distances, a value of 0 indicates the minimum anatomical proximity 331 

between ROIs (e.g., BA1 – BA17), which in the original distance was 67.63 mm. A proximity 332 

value of 67.63 indicates the maximum anatomical proximity between ROIs: these ROIs are 333 

located right next to each other (e.g., BA1 – BA2).  334 
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 335 

Fig. 3 Visualization of the different networks before z-score standardization of the correlation 336 

coefficients. Top left: activation network (UNIVAR), top right: representation network (RSA), 337 

bottom left: connectivity network (FCA), bottom right: anatomical proximity network. Yellow 338 

in the matrix = when two ROIs are very similar in their activation (UNIVAR results) or their 339 

representation (RSA results), are well connected (FCA results), or are located closely in the 340 

brain. Blue in the matrix = when two ROIs are very different in their activation (UNIVAR 341 

results) or their representation (RSA results), are not connected (FCA results), or are located 342 

remotely in the brain. SOMA (red) = somatosensory-motor network areas, PAIN (yellow) = 343 

pain network areas, SOCOG (purple) = social-cognitive network areas, VISUAL (green) = 344 

visual network areas 345 

Each of the matrices was very reliable. The signal-to-noise ratio estimated from the 346 

results of between-subjects correlations was r = 0.96 (squared to obtain explainable variance 347 

EV = 92%) for the activation network, r = 0.92 (EV = 85%) for the representation network, 348 

and r = 0.97 (EV = 94%) for the connectivity network. As illustrated in Fig. 3, the activation, 349 
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representation and connectivity networks look highly similar to each other. For example, the 350 

high correlation values between the ROIs in somatosensory areas such as BA3, BA1, and BA2 351 

are apparent in all of these networks: these ROIs are activated to a similar level (based on 352 

UNIVAR results), contain similar task-related information (based on RSA results) and are 353 

functionally linked to each other (based on FCA results). BA4, the motor area, is strongly 354 

correlated to BA3 and BA1 in the activation, representation and connectivity network, but only 355 

moderately to BA2. Another example is the moderate to high correlation between visual areas, 356 

found in the activation, representation and connectivity network. In sum, this finding applies 357 

to all the four ROI networks. Areas of different ROI networks typically show lower 358 

correlations, which is again consistent across methods. For example, the moderate correlations 359 

between social-cognitive areas and visual areas can be found in the activation, representation 360 

and connectivity network. 361 

3.2 Comparing networks 362 

 To understand the (dis)similarity between activation, representation, connectivity, and 363 

anatomical proximity networks, we tested the linear relationship among these networks. The 364 

results indicated that all networks are similarly organized in the context of brain function and 365 

anatomy, with the Spearman rank-order correlations (all significant) ranging from .53 to .79 366 

(see Fig. 4, left). In addition, the partial correlation coefficients were computed between two 367 

networks after removing the effect of the other remaining networks. The results from partial 368 

correlation (including all four networks) demonstrated that, after controlling for the other 369 

networks, the activation and connectivity network (rS = .50, p < .001), the activation and 370 

representation network (rS = .34, p < .001), and the representation and anatomical proximity 371 

network (rS = .67, p < .001) still correlate significantly (see Fig. 4, right). Conversely, the 372 

measured partial correlation between the connectivity and representation network was no 373 

longer significant after ruling out the effects of the other covariates (rS = .61, partial rS = .10), 374 

implying that their association is fully explained by their relationship with other networks. The 375 

partial correlation between the connectivity and anatomical proximity network (rS = .55, partial 376 

rS = .15), and between the activation and anatomical proximity network (rS = .53, partial rS = 377 

.06) was also no longer significant. 378 
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 379 

Fig. 4 Illustration of correlations (left) and partial correlations (right) between the activation 380 

(UNIVAR), representation (RSA), connectivity (FCA) and anatomical proximity (Anat. Prox.) 381 

network. Yellow = strong (partial) correlation. Blue = weak (partial) correlation  382 

 As an alternative approach, we also implemented multiple regression models. Similar 383 

to the (partial) correlation measurements, these regression models quantify the relations 384 

between the networks, but in addition the regression models provide an estimate of the total 385 

variance in a network that can be explained by all other networks.  386 

A first model tested if the connectivity, activation and anatomical proximity network 387 

significantly predicted the representation network. The coefficient of determination from the 388 

regression equation indicated that these three predictors explained 71.2% of variability in the 389 

representation network (R2 = .712, F(3,116) = 96, p < .001). The squared signal-to-noise ratio 390 

(based on the between-subjects correlation) in the representation network indicated 85% of the 391 

variance to be explainable, leaving approximately 14% of the signal unexplained. In addition, 392 

we calculated the β coefficients to examine the degree to which each predictor independently 393 

contributes to the prediction of the representation network. According to the results, the 394 

anatomical proximity network significantly contributed to the prediction of the representation 395 

network (β = 0.40, p < .001), as did the connectivity network (β = 0.36 p = .004) and the 396 

activation network (β = 0.26, p = .03).  397 

 Similarly, we predicted the connectivity network based on the representation, 398 

activation, and anatomical proximity network, using multiple regression analysis. The results 399 

indicated that the predictors explained 59.6% of variability in the connectivity network (R2 = 400 

.596, F(3,116) = 57, p < .001). The squared signal-to-noise ratio (based on the between-subjects 401 

correlation) in the connectivity network indicated 94% of the variance to be explainable, 402 
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leaving approximately 34% of the signal unexplained. When examining the independent 403 

contributions of each predictor, we found out that the representation network significantly 404 

contributed to the prediction of the connectivity network (β = 0.51, p = .003), as did the 405 

activation network (β = 0.37, p = .005), but not the anatomical proximity network (β = -0.07, 406 

p = .55).  407 

Lastly, we tested if the representation, connectivity, and anatomical proximity network 408 

significantly predicted the activation network. The results revealed that the predictors 409 

explained 55.8% of variability in the activation network (R2 = .558, F(3,116) = 49, p < .001). 410 

The squared signal-to-noise ratio (based on the between-subjects correlation) in the activation 411 

network indicated 92% of the variance to be explainable, leaving approximately 36% of the 412 

signal unexplained. The predictors indicated that the representation network significantly 413 

contributed to the prediction of the activation network (β = 0.41, p = .01), as did the 414 

connectivity network (β = 0.41, p = .001), but not the anatomical proximity network (β = -0.01, 415 

p = .91).   416 

 Thus, for each type of network, we find that a lot of the structure can be predicted from 417 

the other networks, but there is also some remaining variance left unexplained. We visualized 418 

this unique signal left in each of these networks after regressing out the signal explained by the 419 

other networks from the activation, representation and connectivity network respectively (see 420 

Fig. 5b). In Fig. 5b, in contrast to Fig. 3 and 5a (which takes the values of Fig. 3 and z-score 421 

standardizes them, for reasons mentioned above), the networks now do not look similar: they 422 

show different patterns.  423 

Several unique findings concerning correlations between ROI-networks can be 424 

observed in Fig. 5b. For example, social-cognitive brain areas correlate strongly to other visual 425 

areas in the activation network (e.g., r (before z-score standardization) = .69 between TPJ and 426 

BA37) while this is moderate to low in the representational (e.g., r = .24 between TPJ and 427 

BA37) and connectivity network (e.g., r = .01 between TPJ and BA37). This finding implies 428 

that these areas are activated similarly, but do not represent similar information nor do they 429 

communicate with each other. Another example, social-cognitive areas correlate moderately to 430 

somatosensory-motor areas (e.g., r = .32 (representation), r = .59 (activation) between MTG 431 

and BA1), except in the connectivity network (e.g., r = .03 between MTG and BA1). As a last 432 

example, visual area V5 does not correlate strongly to other brain areas in the representation 433 

network (e.g., r = .39 between V5 and BA19) while a much stronger correlation is found in the 434 

other networks (e.g., r = .76 (activation) r = .61 (connectivity) between V5 and BA19).  435 

 436 
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 438 

Fig. 5 a. Visualization of the different networks after z-score standardization of the correlation 439 

coefficients. b. Visualization of the different networks after regressing out the signal explained 440 

by the other networks. In a. and b. Top left: activation network (UNIVAR), top right: 441 

representation network (RSA), bottom left: connectivity network (FCA), bottom right: 442 

anatomical proximity network. Yellow in the matrix = when two ROIs are very similar in their 443 

activation (UNIVAR results) or their representation (RSA results), are well connected (FCA 444 

results), or are located closely in the brain. Blue in the matrix = when two ROIs are very 445 

different in their activation (UNIVAR results) or their representation (RSA results), are not 446 

connected (FCA results), or are located remotely in the brain. SOMA (red) = somatosensory-447 

motor network areas, PAIN (yellow) = pain network areas, SOCOG (purple) = social-cognitive 448 

network areas, VISUAL (green) = visual network areas 449 

 For visualization purposes, we performed MDS on these three networks to reconstruct 450 

each two-dimensional neural space that shows a distance between each possible pair 451 

combination of ROIs based on 1) how dissimilar the activation was, 2) how dissimilar carried 452 
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information on social touch was, or 3) how well connected the ROIs were. Moreover, 453 

Procrustes transformations were performed to align the networks in the same neural space. The 454 

resulting two-dimensional neural space after Procrustes transformations is shown in Fig. 6. The 455 

results confirm the high similarity (d (Procrustes distance: the difference between the shape of 456 

the two networks) between the activation and representation network = .48, d between the 457 

connectivity and representation network = .34, d between the activation and connectivity 458 

network = .42) and some dissimilarities between the networks as was previously indicated by 459 

the (partial) correlation and multiple regression models. As Fig. 3 indicated, Fig. 6 shows for 460 

example that somatosensory-motor areas are located nearby in all three networks, implying 461 

high similarity in activation and representation and strong inter-regional communication 462 

among these areas. As Fig. 5b indicated, we can see in Fig. 6 for example that the social-463 

cognitive brain areas correlate strongly to visual areas overall in the activation network (blue 464 

in Fig. 6) but not so much in the other networks. It suggests that social cognitive brain areas 465 

and the visual cortex do not represent the same information and that those areas are not 466 

functionally connected despite the similar magnitude of neural response. 467 

 468 

Fig. 6 Procrustes transformed MDS results of the activation (UNIVAR, blue) and connectivity 469 

network (FCA, green) to the MDS results of the representation network (RSA, red). SOMA 470 

(circles) = somatosensory-motor network areas, PAIN (squares) = pain network areas, SOCOG 471 

(diamonds) = social-cognitive network areas, VISUAL (triangles) = visual network areas 472 

4. Discussion 473 

UNIVAR, RSA, and FCA are the most widely used methods for analyzing fMRI data. 474 

Although two or more methods have been used simultaneously to analyze the same set of data 475 

in many studies, most of them have focused on the properties of each ROI separately. No study, 476 

to our knowledge, has built and directly compared networks derived from UNIVAR, RSA, and 477 
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FCA. In the current study, we examined how the structure of networks built from UNIVAR, 478 

RSA, and FCA relate to each other after ruling out the effect of the anatomical location of 479 

network nodes. We analyzed fMRI data of a previous study (Lee Masson et al., 2018) with 480 

these methods and performed (partial) correlation and multiple regression analysis on the 481 

resulting networks.  482 

The current study reveals for the first time that neural networks resulting from 483 

UNIVAR, RSA, and FCA are highly similar even after ruling out the effect of anatomical 484 

proximity. As predicted, brain areas within the somatosensory-motor network are similarly 485 

activated, represent similar task-related information, and are intrinsically connected. This 486 

applies also to the other sub-networks (pain, social-cognitive and visual). Correlations between 487 

different sub-networks are also similar in the activation, representation and connectivity 488 

network (e.g. the moderate correlations between social-cognitive areas and visual areas). As 489 

outlined in the introduction, UNIVAR, RSA and FCA share theoretical and/or methodological 490 

properties that can explain similarities as observed in this study. The high similarity in the 491 

neural networks of RSA and FCA provides support for the idea that brain areas showing similar 492 

stimulus-related selectivity are also intrinsically connected. Our finding is in line with previous 493 

resting-state fMRI studies that have identified functionally relevant networks, such as the 494 

primary visual network, auditory network, motor network, and cognitive networks, during rest 495 

(e.g., Biswal et al., 1995; Fox and Raichle, 2007; Jung et al., 2018). 496 

On the other hand, our finding suggests that the network structure derived from each 497 

method contains unique signals. To reveal this, the explainable variance of each network 498 

revealed by SNR estimation was compared with the actual variance explained by the other 499 

networks. These results suggested that the network, derived from each method, contain 500 

idiosyncratic structure that none of the other networks are able to explain. Analyzing the 501 

remaining signal variance that was left unexplained, as well as comparing the similarity of 502 

UNIVAR, RSA, and FCA, we were also able to reveal the idiosyncratic network structure of 503 

each method. For example, brain areas in the social-cognitive network are similar to areas in 504 

the visual network in terms of neural activation, whereas neural patterns of those two sub-505 

networks do not represent the same information and they are not intrinsically connected. 506 

Another example are the moderate correlations between social-cognitive brain areas and 507 

somatosensory-motor areas in the activation and representation network, but not in the 508 

connectivity network. 509 

This idiosyncratic structure is important to keep in mind when interpreting a network 510 

structure found with one particular method. Although second-order RSA can be used to 511 
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construct brain connectivity, RSA and FCA adopt different approaches shown in their 512 

methodology: correlating RDMs in RSA; correlating the BOLD signal fluctuations in FCA. 513 

Thus, RSA is used for investigating the similarity between brain areas in how they represent 514 

the task-related information while FCA is used for investigating how a series of brain areas 515 

construct the intrinsically connected cortical network. These distinctions allow RSA and FCA 516 

to tap into the functional architecture of the brain from different perspectives as revealed in the 517 

idiosyncratic network structures. 518 

Likewise, the same reasoning can be applied to the relationship between UNIVAR and 519 

FCA, and UNIVAR and RSA. As outlined in the introduction, they are related theoretically 520 

and empirically while they differ in their focus, allowing both similarities and dissimilarities 521 

between the resulting networks.  522 

Such distinctions between the network structures derived from different methods has 523 

also been observed in the recent study of Jung and her colleagues (Jung et al., 2018) comparing 524 

resting-state fMRI and structural connectivity. Although their comparison involves different 525 

methods than ours, they provided some possible explanations that should be considered in the 526 

current study. Quality and nature of the datasets used for three methods (even from identical 527 

data sources, but measured at different times or analyzed in a different way) may not be equal 528 

and different measurement noise may be present (Jung et al., 2018). In addition, they mention 529 

that networks during mental activity are modulated away (slightly) from intrinsic connections, 530 

which is especially relevant to the comparison of RSA with FCA. Accordingly, our findings of 531 

similarities and differences between RSA and FCA network structure are consistent with the 532 

observation that studies using both RSA and FCA lead to either similar or different conclusions 533 

about brain function derived from the two methods (e.g., Boets et al., 2013; Zeharia et al., 534 

2015). Despite the high similarity across the network structures derived from the UNIVAR, 535 

RSA and FCA methods, given the nature of idiosyncrasy of each network, we encourage 536 

researchers to understand the benefits of each methodology and what they (do not) detect; and 537 

to use them adequately depending on the research questions.  538 

 As a critical note, we point to several limitations of our current study. First, the current 539 

findings are based on only one task domain (i.e., social touch videos perception), and our 540 

conclusions should be complemented by future studies that include other tasks, such as moral 541 

decision-making tasks, or tasks using other sensory modalities such as auditory and tactile 542 

scenes. UNIVAR and RSA methods may not produce similar network structures in another 543 

task. In particular, when having a task with no activation differences across the conditions but 544 

evoking neural pattern selectivity, this could be the case (see Introduction). Second, 545 
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participants did not undergo a resting-state run and as a consequence, the network from resting-546 

state functional data is not present. Instead, we used a method similar to Fair and colleagues 547 

(2007) wherein we removed task-induced signal and calculated intrinsic functional 548 

connectivity based on low-frequency fluctuations, a method frequently used (e.g. Bassett et al., 549 

2011; Boets et al., 2013; Ebisch et al., 2013; Fair et al., 2007). Although we have rationale to 550 

justify using this method (see Introduction), it remains to be seen in a future study how the 551 

structure of the network derived from a resting-state run would differ. Third, we selected a 552 

limited number of ROIs rather than including a large number of network nodes. One important 553 

argument for doing this is that the selected brain regions had to include meaningful task-related 554 

signals for performing RSA (see the description of diagonal versus non-diagonal measures as 555 

a reliability test in choosing ROIs in Methods). The effect of the number and size of ROIs on 556 

the relationships between the networks obtained using UNIVAR, RSA and FCA can be 557 

explored further. Other details (e.g., a pre-processing step such as a smoothing parameter) of 558 

how UNIVAR, RSA and FCA are conducted may be factors that affect this relationship. 559 

Finally, extending the comparisons made in the current study is another important step to take. 560 

Specifically, networks built from second-order RSA and multivariate functional connectivity 561 

could also be compared (Anzellotti and Coutanche, 2018; Coutanche and Thompson-Schill, 562 

2014).  563 

5. Conclusions 564 

The present study provides first-time rich evidence that cortical network structures 565 

derived from three commonly used neuroimaging approaches (univariate analysis, 566 

representational similarity analysis and functional connectivity analysis) are highly similar 567 

regardless of the structural variations of each network. Importantly, the study also demonstrates 568 

that each of these three networks contains idiosyncratic structure, unexplainable by the other 569 

networks. As such, all three methods are important when investigating the functional 570 

architecture of the brain. In the future, improving the understanding of the relationship between 571 

the structures of the networks derived from these methods will allow researcher to use 572 

univariate, representational similarity and functional connectivity analyses more adequately. 573 

6. Appendix A. Data 574 

The data that we used in the current study (from Lee Masson et al. (2018)) is freely 575 

available in Open Science Framework (https://osf.io/xt4ze/) for scientific use. 576 
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