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Abstract 15 

 The invention of representational similarity analysis (RSA, following multi-voxel 16 
pattern analysis (MVPA)) has allowed cognitive neuroscientists to identify the 17 
representational structure of multiple brain regions, moving beyond functional localization. 18 
By comparing these structures, cognitive neuroscientists can characterize how brain areas 19 
form functional networks. Univariate analysis (UNIVAR) and functional connectivity 20 
analysis (FCA) are two other popular methods to identify the functional structure of brain 21 
networks. Despite their popularity, few studies have examined the relationship between the 22 
structure of the networks from RSA with those from UNIVAR and FCA. Thus, the aim of the 23 
current study is to examine the similarities between neural networks derived from RSA with 24 
those from UNIVAR and FCA to explore how these methods relate to each other. We 25 
analyzed the data of a previously published study with the three methods and compared the 26 
results by performing (partial) correlation and multiple regression analysis. Our findings 27 
reveal that neural networks resulting from RSA, UNIVAR, and FCA methods are highly 28 
similar to each other even after ruling out the effect of anatomical proximity between the 29 
network nodes. Nevertheless, the neural network from each method shows idiosyncratic 30 
structure that cannot be explained by any of the other methods. Thus, we conclude that the 31 
RSA, UNIVAR and FCA methods provide similar but not identical information on how brain 32 
regions are organized in functional networks. 33 

1. Introduction 34 

Multi-voxel pattern analysis (MVPA) has recently become one of the most frequently 35 
used techniques for analyzing fMRI data. It considers the spatial pattern of neural activation 36 
across multiple voxels and examines whether these patterns contain task-related information 37 
(Coutanche, 2013; Haxby, 2012; Haxby et al., 2001; Haynes, 2015; Haynes and Rees, 2006; 38 
Kriegeskorte, 2011; Mur et al., 2009). It is referred to as multivariate or multi-voxel because 39 
it analyzes a set of voxels together (the pattern of activation of this set) instead of modeling 40 
activity of a single voxel (as is done in univariate analysis) (Kriegeskorte, 2011; Mur et al., 41 
2009; Norman et al., 2006; Yang et al., 2012). In addition, patterns of activation can be used 42 
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to investigate the similarities between such patterns of different conditions, or between such 43 
patterns of different brain regions in a certain condition (Haxby, 2012, Mur et al., 2009). This 44 
approach is referred to as representational similarity analysis (RSA) (Kriegeskorte et al., 45 
2008). In first-order RSA, a representational dissimilarity matrix (RDM) is set up to 46 
understand the dissimilarity between patterns of activation of different stimuli in a certain 47 
brain region (Kriegeskorte et al., 2008; Yang et al., 2012). In second-order RSA, RDMs are 48 
compared between brain regions (Kriegeskorte et al., 2008; Yang et al., 2012). This method 49 
has been referred to as representational connectivity as it allows to identify the 50 
representational relationship among brain regions (Kriegeskorte et al., 2008). Connectivity 51 
related to multivariate information has since then been given a more specific meaning to refer 52 
to analyses of the temporal dynamics of the information contained in multi-voxel patterns, 53 
also sometimes referred to as multivariate or informational connectivity (Anzellotti and 54 
Coutanche, 2018; Coutanche and Thompson-Schill, 2014). For this reason, we opted for the 55 
more general RSA term instead of using the term representational connectivity.  56 

Univariate analysis (UNIVAR) and functional connectivity analysis (FCA) are two 57 
other frequently used techniques for analyzing fMRI data. UNIVAR assesses neural 58 
activation of an individual voxel or a mean activation across voxels of a brain region. For this 59 
reason, it is often used to localize brain regions engaged in processing a particular type of 60 
stimuli (e.g., face versus object) and thereby draw conclusions about the regions that are 61 
involved in cognitive processes important for the stimuli or task at hand (Coutanche, 2013; 62 
Haynes, 2015; Haynes and Rees, 2006; Logothetis, 2008; Mur et al., 2009). It is referred to as 63 
univariate because a general linear model (GLM) is applied voxel-wise to relate the 64 
experimental design to the neural activity of each voxel’s time-course in the brain (Raizada 65 
and Kriegeskorte, 2010). FCA (for a review, see Friston, 2011) characterizes the 66 
communication between brain regions during rest or a task (Friston, 1994), measuring the 67 
strength of the relation between BOLD time-series signals of brain regions (Geerligs et al., 68 
2016; Yang et al., 2012). When FCA is applied to a resting-state fMRI dataset, it reveals the 69 
intrinsic network of the brain based on low-frequency BOLD fluctuations of brain regions 70 
(Biswal et al. 1995; Cordes et al., 2001; Fox and Raichle, 2007). This intrinsic network can 71 
also be extracted from a task-based fMRI dataset by removing the task-induced signal from 72 
the data (Fair et al., 2007). Therefore, this method is often referred to as intrinsic functional 73 
connectivity. 74 
 Notably, there are various conceptual similarities and differences between RSA, 75 
UNIVAR and FCA. UNIVAR and FCA methods are similar in that they average BOLD 76 
signal of the voxels in the brain region, unlike MVPA. The structure of networks from co-77 
activation has also proven to be similar to those from resting-state connectivity (Crossley et 78 
al., 2013). Analogously, Anzellotti and Coutanche referred to this type of FCA as univariate 79 
FCA (Anzellotti and Coutanche, 2018). Second-order RSA and FCA are similar in that they 80 
are both based on a measure of the similarity between brain regions. When using correlations, 81 
correlating the averaged BOLD time-series signals between the ROIs in FCA is 82 
methodologically similar to correlating RDMs of those ROIs in second-order RSA (Xue et 83 
al., 2013). UNIVAR and RSA, or at least MVPA, have been frequently compared when 84 
describing functional properties of one region of the brain (e.g., see Coutanche, 2013; Davis 85 
et al., 2014; Gilron et al., 2017; Jimura and Poldrack, 2012). A significant finding from these 86 
studies was that changes (across different stimuli) in the activation patterns could be detected 87 
even when conditions were not different in the average univariate activation in a region (Mur 88 
et al., 2009). For example, different speech sounds showed different activation patterns in the 89 
right auditory cortex, but the average-activation of this region across those speech sounds did 90 
not differ (Raizada et al., 2010). These studies have provided valuable insights into the 91 
conceptual and empirical relationships between UNIVAR and MVPA. Similarly, studies have 92 
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used both RSA and FCA, some drawing the same conclusion from the results of RSA and 93 
FCA (e.g., Zeharia et al., 2015), or not (Boets et al., 2013; Bulthé et al., 2018).  94 

A study that directly and simultaneously compares network structures resulting from 95 
RSA with those from UNIVAR and FCA is missing from today's literature. Thus, the current 96 
study explores how the networks from RSA complement the networks from UNIVAR and 97 
FCA when investigating the functional architecture of the brain. Although direct and 98 
simultaneous comparisons between brain network structures based on UNIVAR, RSA and 99 
FCA have not been performed (to our knowledge), we expect at least some convergence. For 100 
example, we hypothesize that brain regions with similar representational similarity structure 101 
would tend to be functionally connected, without excluding the possibility of uniqueness in 102 
the networks resulting from the two methods. Specifically, given the evidence of the 103 
topographic arrangement of the basic sensory cortical areas, such as the visual and 104 
sensorimotor cortex (see Kaas, 1997, for a detailed review), we predict that the way in which 105 
brain networks composed of visual or sensorimotor areas are constructed would be highly 106 
similar in all three methods. In sum, the goal of this study is to explore how the network 107 
structure derived from RSA compares to those from UNIVAR and FCA. To answer this 108 
question, we applied second-order RSA to a previously reported fMRI study (Lee Masson et 109 
al., 2018) and compared the resulting networks with the results obtained from UNIVAR and 110 
intrinsic FCA. In particular, we conducted (partial) correlation and multiple regression 111 
analysis (comparing them to signal-to-noise ratio measurements), controlling for the 112 
confounding influence of anatomical proximity between brain regions of interest on RSA, 113 
UNIVAR and intrinsic FCA results. In addition, we explored our results visually by 114 
implementing multi-dimensional scaling (MDS) and Procrustes transformation methods. 115 

2. Methods 116 

2.1 Datasets 117 

 We reanalyzed data from our previous fMRI study (Lee Masson et al., 2018). All 118 
participants provided written informed consent before the experiment in accordance with the 119 
Declaration of Helsinki. The study was carried out in accordance with the recommendations 120 
of and 12approved by the Medical Ethical Committee of KU Leuven (S53768 and S59577). 121 
In this study, 21 healthy participants observed greyscale videos (see Fig. 1) of social touch 122 
interaction, varying in valence and arousal (Lee Masson and Op de Beeck, 2018). The 123 
experiment included 39 social touch videos, and in addition 36 nonsocial control videos. 124 
Participants carried out an orthogonal attention task: they pressed a button with their left or 125 
right thumb whenever the touch interaction initiator wore a grey or black shirt, depending on 126 
the instruction of that specific run (left for grey, right for black). The stimuli were displayed 127 
for 3 s, followed by an inter-stimulus interval of 3 s during which a fixation cross was 128 
presented and during which the participants could press a button as a response related to the 129 
task. Each run was divided into three blocks of 25 videos. At the start of each block, a 130 
baseline (display of a fixation cross) of 6 s was included. The total duration of each run was 131 
7.80 min. The participants completed six runs. In the following UNIVAR and RSA analyses, 132 
we restrict the analyses to the data from the 39 social touch videos.  133 

Importantly, when creating the videos, we controlled for the visual elements, such as 134 
clothes style and color of the actors so that these do not induce a visually biased neural 135 
response (Lee Masson and Op de Beeck, 2018). For example, having actors wear blue in the 136 
pleasant touch scenes and having actors wear red in unpleasant touch scenes can induce 137 
visual bias related to the clothing color when contrasting the brain response between the 138 
pleasant and unpleasant touch conditions. 139 
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Fig. 1 The experimental procedure. Participants received an instruction on when they should 141 
press a certain button (e.g. press the button with your left thumb when touch interaction 142 
initiator wears black sweatshirt). After a baseline of 6 s, the stimuli were presented for 3 s 143 
always followed by an inter-stimulus interval of 3 s, during which a fixation cross was 144 
presented and participants could press a button. In this example, still frames of three social 145 
touch videos are shown (left: hug, middle: stroke, right: shake). All videos can be found here: 146 
https://osf.io/nq5mf/ 147 

In addition, the scan sessions included runs in which participants received (instead of 148 
observing) pleasant (brush strokes) and unpleasant touch (rubber band snaps) in a block 149 
design (see Lee Masson et al., 2018, for more details). These data were used for the intrinsic 150 
FCA. 151 

2.2 Regions of interest (ROIs) 152 

For our previous study (Lee Masson et al., 2018), we selected 16 a priori defined 153 
ROIs, belonging to four different networks in the brain that proved to be important in 154 
processing observed social touch interactions: the somatosensory-motor network (the parietal 155 
operculum (PO),  Brodmann area (BA) 3, BA1, BA2, BA4 (Rolls et al., 2003)), the social-156 
cognitive network (the middle temporal gyrus (MTG), the precuneus, the superior temporal 157 
gyrus (STG), the temporoparietal junction (TPJ) (Jacoby et al., 2016)), the pain network (the 158 
middle cingulate cortex (MCC), the insula (Gordon et al., 2013; Lamm and Majdandžić, 159 
2015; Morrison et al., 2011), and the visual network given that visual stimuli were used 160 
(BA17, BA18, BA19, BA37, V5) (see Fig. 2). To define these ROIs anatomically, first, we 161 
made masks with various templates from PickAtlas software (Maldjian et al., 2003), SPM 162 
Anatomy toolbox (Eickhoff et al., 2005) and connectivity-based parcellation atlas (Mars et 163 
al., 2012). Second, we extracted all the voxels in the mask per ROI and combined left and 164 
right hemispheres. Afterwards, we examined if there were overlapping voxels among ROIs 165 
(e.g., V5 is located in BA19 and BA37) and removed overlapping voxels from each other in 166 
order to ensure all ROIs are anatomically independent. For further information about these 167 
ROIs and how they were defined, see our previous study (Lee Masson et al., 2018). In 168 
contrast to FCA that often includes a more extensive set of ROIs, the RSA method requires 169 
ROIs to contain meaningful neural signals associated with the experimental conditions. For 170 
this reason, only the aforementioned 16 ROIs, whose spatial neural patterns passed the 171 
MVPA reliability test, were selected (Lee Masson et al., 2018). Briefly, in this reliability test, 172 
runs are split into two halves and the correlation between neural patterns for within- and 173 
between-conditions are compared per ROI. This process is repeated 100 times (to randomly 174 
split the runs into two halves) and these results are then averaged. ROIs are only included if 175 
the correlations for within-condition comparisons are significantly stronger than those for 176 
between-condition comparisons. Neural pattern similarity between different conditions most 177 
likely only reflect noise when neural pattern similarity between the same conditions is low 178 
(Ritchie et al., 2017; for more details on this test and the results see Lee Masson et al., 2018).  179 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/487199doi: bioRxiv preprint 

https://doi.org/10.1101/487199
http://creativecommons.org/licenses/by-nc-nd/4.0/


 180 

Fig. 2 Illustration of the different ROIs in the context of the network they were assigned to a 181 
priori. Top left: somatosensory-motor network ROIs including BA1 (red), BA4 (pink), BA2 182 
(yellow), BA3 (purple) and PO (blue). Top right: social-cognitive network ROIs including 183 
precuneus (red), STG (pink), MTG (yellow) and TPJ (purple). Bottom left: pain network 184 
ROIs including insula (red) and MCC (yellow). Bottom right: visual network ROIs including 185 
BA17 (red), BA37 (pink), BA18 (yellow), BA19 (purple) and V5 (blue). This figure was 186 
made using CONN toolbox 17 (Whitfield-Gabrieli and Nieto-Castanon, 2012)  187 

2.3 Univariate analysis 188 

In our previous study, we processed functional data by using a standard preprocessing 189 
pipeline and by applying a general linear model (GLM) to each subject’s data (Lee Masson et 190 
al., 2018). On top of the regressors of interest (matched to the onset time of each regressor 191 
(duration = 0) of the event-related design of the fMRI observing touch experiment), six head 192 
motion parameters were included in the models as nuisance covariates (Lee Masson et al., 193 
2018). These GLMs were defined with data smoothed with 8 mm FWHM. For detailed 194 
information on how data was preprocessed and how the GLM was applied, see our previous 195 
study (Lee Masson et al., 2018). From these GLMs, we obtained the estimated beta-values 196 
per stimulus of the social condition (N = 39) for all voxels in each ROI. For each stimulus, 197 
we averaged the beta values of all runs, of all voxels within each ROI, and of all participants, 198 
yielding a one-dimensional array with 39 elements in each ROI, reflecting how strongly each 199 
of the 39 videos activated the ROI. These arrays were Pearson correlated for each possible 200 
pair combination of ROIs to investigate the similarity between ROIs’ average BOLD 201 
responses evoked during the observation of social touch and therefore to investigate 202 
clustering/networks of our ROIs with regard to their average activations. We refer to this 203 
clustering as the activation network. 204 

2.4 Representational similarity analysis 205 

 This analysis was based upon a GLMs applied to the fMRI observing touch 206 
experiment that consisted of 75 predictors (one for each video). The preprocessing pipeline 207 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2019. ; https://doi.org/10.1101/487199doi: bioRxiv preprint 

https://doi.org/10.1101/487199
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

for this analysis differed slightly from the one used for univariate analysis: data was 208 
smoothed at 5 mm FWHM. As such, we optimized the preprocessing parameters to fit the 209 
requirements of each analysis (Hendriks et al., 2017). For each ROI, we created a 39 x 39 210 
neural matrix by correlating (Pearson) the multi-voxel patterns between all possible 211 
combinations of pairs of stimuli of the social condition (N = 39) and then averaged this across 212 
subjects (first-order RSA, Kriegeskorte et al., 2008). After, we vectorized the upper diagonal 213 
elements of this group-averaged matrix while discarding the diagonal and lower diagonal 214 
elements, and correlated (Pearson) these vectors for all possible combinations of ROI pairs 215 
(second-order RSA, Kriegeskorte et al., 2008). These comparisons between areas allow us to 216 
investigate the representational similarity between ROIs and therefore to investigate 217 
clustering/networks of our ROIs with regard to the between-condition similarity in multi-218 
voxel activation patterns (Kriegeskorte et al., 2008). We refer to this clustering as the 219 
representation network. More information on the details of how MVPA was applied to fMRI 220 
data can be found in our previous study (Lee Masson et al., 2018). 221 

2.5 Functional connectivity analysis 222 

Functional connectivity analysis, performed in the CONN toolbox 17 (Whitfield-223 
Gabrieli and Nieto-Castanon, 2012), was applied to a different set of fMRI data (wherein 224 
participants received touch) obtained in the same scan sessions. We used two independent 225 
sets of fMRI data to avoid a spurious correlation between the two sets of brain networks 226 
resulting from UNIVAR and FCA. BOLD signal fluctuations may be partially induced by the 227 
presented stimuli, which may result in shared signals between networks derived from the 228 
UNIVAR and FCA methods. In the other direction, spontaneous fluctuations over time may 229 
affect the estimated univariate activation.  230 

Preprocessing was conducted as described in our previous study (Lee Masson et al., 231 
2018), but again optimized to fit the requirements of FCA: no smoothing was carried out to 232 
avoid a spillover effect (Alakörkkö et al., 2017). The outlier scans were detected based on the 233 
global signal spike and motion in the functional data by the Artifact Detection Toolbox 234 
(ART) software package (www.nitrc.org/projects/artifact_detect/). Consequently, standard 235 
denoising methods were applied to remove confounding effects. This step consists of 1) 236 
linearly regressing out 13 principal components of white matter and cerebrospinal fluid 237 
signals, six head motion parameters and their first-order derivatives, all scrubbing covariates 238 
from the artifact detection, and main task effects (rest condition, see below), 2) linear 239 
detrending, and 3) band-pass filtering (0.008-0.09 Hz) that removes slowly fluctuating noise, 240 
such as scanner drift, and the task-induced signal. To calculate intrinsic FC (functional 241 
connectivity), we did not encode task-related information in the experimental design. Instead, 242 
task effect (i.e., receiving touch) was removed from the fMRI time series by including 243 
regressors corresponding to each task condition during denoising step, and the rest condition 244 
was defined (Fair et al., 2007). Previous studies indicated that the intrinsic fluctuations in 245 
BOLD signal would only be weakly affected by task demands and could be separated when 246 
entangled with the task-related signals (Fair et al., 2007; Fox et al., 2006). Several studies 247 
have implemented this approach on task-based fMRI data to yield the intrinsic functional 248 
connectivity network (e.g. Bassett et al., 2011; Boets et al., 2013; Ebisch et al., 2013; Fair et 249 
al., 2007).  250 

For each subject, a GLM was performed to assess bivariate Pearson correlation 251 
coefficients between ROIs’ BOLD time-series. These coefficients were averaged across 252 
subjects. As a result, networks of functionally connected (communicating) regions were 253 
uncovered. We refer to this clustering as the connectivity network. 254 
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2.6 Signal-to-noise ratio measurement 255 

To measure the reliability of the fMRI signal for the activation (from UNIVAR), 256 
representation (from RSA) and connectivity (from FCA) network, we randomly split the 257 
participants into two groups (n = 10 or 11 per group). For each of these analyses, we 258 
correlated the resulting activation, representation, and connectivity network matrices (off-259 
diagonal values) of one group with the matrix of the other group. This process was performed 260 
for a total of 100 iterations (each time randomly splitting the data into two groups). The 261 
correlations were adjusted with the Spearman-Brown split-half reliability formula and then 262 
averaged (across the 100 iterations) for UNIVAR, RSA, and FCA separately. The results 263 
from the between-subject correlations work as a measure of signal-to-noise ratio (SNR), 264 
taking the between-subject variability in the neural data into account, in that it estimates the 265 
maximum correlation we could expect. The correlation between the same types of data from 266 
the two sub-groups (group 1 vs. group 2 in FCA results) should be higher than the correlation 267 
with another type of data (e.g., FCA vs. RSA results). This SNR correlation coefficient was 268 
also squared to obtain the proportion of the variance in the signal that can be explained by 269 
other variables.  270 

2.7 Anatomical proximity 271 

For each ROI per hemisphere, we collected the x-y-z coordinates of its voxels. 272 
Consequently, for each ROI pair, we calculated Euclidian distances for all possible pairs of 273 
voxels between these two ROIs. Among these calculated distances, we use the minimum 274 
value per ROI pair as a measure of the anatomical distance between the two ROIs. Then, we 275 
averaged the distances across the two hemispheres. We also performed supplementary 276 
analyses with distance based on the average rather than the minimum value, which yielded 277 
very similar results (the two indices correlate strongly, r = .81). As a final step, we inverted 278 
these results to have a measure of anatomical proximity instead of distance with the maximal 279 
distance becoming the minimal proximity zero. We refer to these results as the anatomical 280 
proximity network. Dependency of functional connectivity on anatomical distance has been 281 
observed (Salvador et al., 2005). Thus, the anatomical proximity network was included in the 282 
partial correlation and the multiple regression model to rule out the effects of anatomical 283 
proximity when comparing the activation, representation and connectivity network. 284 

2.8 Comparing the activation, representation and connectivity network 285 

2.8.1 (Partial) correlation models 286 

 To understand how similar the activation, representation, connectivity and anatomical 287 
proximity network are, we conducted a rank-order correlational analysis between these 288 
networks. In addition, we also computed the partial Spearman correlation coefficient to 289 
understand the similarities between the two networks while controlling for the remaining 290 
networks. To draw statistical inferences, we conducted the permutation test, wherein one of 291 
the variables of interest (one of the networks, consisting of all possible unique ROI pairs (120 292 
pairs)) was randomly shuffled and then (partially) correlated with the unshuffled variables 293 
(remaining original networks, each consisting of all possible unique ROI pairs (120 pairs per 294 
network)). This process was iterated 1000 times. These permutation tests provide empirical p-295 
values reflecting the proportion of permutations wherein the (partial) correlations with the 296 
shuffled data were larger (or equally large) than the original (partial) correlations. 297 

2.8.2 Multiple regression models  298 

Following up on the (partial) correlation models, we conducted multiple regression 299 
analysis to investigate if the activation, representation or connectivity network respectively, 300 
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could be explained by the other remaining networks. The anatomical proximity network was 301 
also included in all of the multiple regression models. Z-score standardizations were 302 
performed to normalize the data before building a regression equation. Similarly to the 303 
correlational analysis, permutation tests were used to obtain empirical p-values. In the end, 304 
the percentage variance explained by the model was compared to the squared signal-to-noise 305 
ratio of the predicted variables of the model.  306 

2.8.3 Multi-dimensional scaling (MDS) and Procrustes transformations  307 

We conducted multidimensional scaling (MDS) on the activation, representation, and 308 
connectivity network matrices to visualize the networks in a two-dimensional space that 309 
shows the distance between each pair of ROIs based on how dissimilar these ROIs are in 310 
terms of their activation, representation, and connectivity respectively. MDS results of the 311 
representation network were used as a template to which the MDS results of the activation 312 
and connectivity networks were aligned using Procrustes transformations, to visualize the 313 
networks on the same space. 314 

3. Results 315 

3.1 Networks 316 

 In total, we have four matrices (see Fig. 3). For three of the methods (RSA, UNIVAR 317 
and FCA) the values in the matrices are based upon correlational analyses. In each of these 318 
matrices, we had a large range of values. For the representation network, for which 319 
vectorized first-order RSA results were correlated between all ROI pairs, correlations range 320 
from .07 (V5 – insula) to .82 (BA3 – BA4). In the activation network matrix, the correlation 321 
results range from -.01 (precuneus – PO) to .98 (BA3 – BA4). The values of the ROI-to-ROI 322 
connectivity range from -.17 (precuneus – PO) to .83 (BA3 – BA4). The anatomical 323 
proximity network values range from 0 to 67.63. The higher the value, the more closely the 324 
two ROIs are located. As the values are inverted distances, a value of 0 indicates the 325 
minimum anatomical proximity between ROIs (e.g., BA1 – BA17), which in the original 326 
distance was 67.63 mm. A proximity value of 67.63 indicates the maximum anatomical 327 
proximity between ROIs: these ROIs are located right next to each other (e.g., BA1 – BA2).  328 
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Fig. 3 Visualization of the different networks before z-score standardization of the correlation 330 
coefficients. Top left: activation network (UNIVAR), top right: representation network 331 
(RSA), bottom left: connectivity network (FCA), bottom right: anatomical proximity 332 
network. Yellow in the matrix = when two ROIs are very similar in their activation 333 
(UNIVAR results) or their representation (RSA results), are well connected (FCA results), or 334 
are located closely in the brain. Blue in the matrix = when two ROIs are very different in 335 
their activation (UNIVAR results) or their representation (RSA results), are not connected 336 
(FCA results), or are located remotely in the brain. SOMA (red) = somatosensory-motor 337 
network areas, PAIN (yellow) = pain network areas, SOCOG (purple) = social-cognitive 338 
network areas, VISUAL (green) = visual network areas 339 

Each of the matrices was very reliable. The signal-to-noise ratio estimated from the 340 
results of between-subjects correlations was r = 0.92 (squared to obtain explainable variance: 341 
EV = 85%) for the representation network, r = 0.96 (EV = 92%) for the activation network, 342 
and r = 0.97 (EV = 94%) for the connectivity network. As illustrated in Fig. 3, the 343 
representation, the activation, and connectivity networks look highly similar to each other. 344 
For example, the high correlation values between the ROIs in somatosensory areas such as 345 
BA3, BA1, and BA2 are apparent in all of these networks: these ROIs contain similar task-346 
related information (based on RSA results), are activated to a similar level (based on 347 
UNIVAR results) and are functionally linked to each other (based on FCA results). BA4, the 348 
motor area, is strongly correlated to BA3 and BA1 in the representation, activation, and 349 
connectivity network, but only moderately to BA2. Another example is the moderate to high 350 
correlation between visual areas, found in the representation, activation and connectivity 351 
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network. In sum, this finding applies to all the four ROI networks. Areas of different ROI 352 
networks typically show lower correlations, which is again consistent across methods. For 353 
example, the moderate correlations between social-cognitive areas and visual areas can be 354 
found in the representation, activation and connectivity network. 355 

3.2 Comparing networks 356 

 To understand the (dis)similarity between representation, activation, connectivity, and 357 
anatomical proximity networks more quantitatively, we tested the linear relationship among 358 
these networks. The results indicated that all networks are similarly organized in the context 359 
of brain function and anatomy, with the Spearman rank-order correlations (all significant) 360 
ranging from .53 to .79 (see Table 1). In addition, the partial correlation coefficients were 361 
computed between two networks after removing the effect of the other remaining networks. 362 
The results from partial correlation (including all four networks) demonstrated that, after 363 
controlling for the other networks, the activation and connectivity network (rS = .50, p < 364 
.001), the representation and activation network (rS = .34, p < .001), and the representation 365 
and anatomical proximity network (rS = .67, p < .001) still correlate significantly (see Table 366 
2). Conversely, the measured partial correlation between the representation and connectivity 367 
network was no longer significant after ruling out the effects of the other covariates (partial rS 368 
= .10), implying that their association is fully explained by their relationship with other 369 
networks. The partial correlation between the connectivity and anatomical proximity network 370 
(partial rS = .15), and between the activation and anatomical proximity network (partial rS = 371 
.06) was also no longer significant. 372 

 373 

Table 1 The correlations between the activation (UNIVAR), representation (RSA), 374 
connectivity (FCA) and anatomical proximity (Anat. Prox.) network. * = significant 375 
correlation. 376 

 UNIVAR RSA FCA Anat. 

Prox.  

UNIVAR 1 .66* .70* .53* 

RSA .66* 1 .61* .79* 

FCA .70* .61* 1 .55* 

Anat. 

Prox. 
.53* .79* .55* 1 

 377 

Table 2 The partial correlations between the activation (UNIVAR), representation (RSA), 378 
connectivity (FCA) and anatomical proximity (Anat. Prox.) network. * = significant partial 379 
correlation. 380 

 UNIVAR RSA FCA Anat. 

Prox.  

UNIVAR 1 .34* .50* -.10 
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RSA .34* 1 .10 .67* 

FCA .50* .10 1 .15 

Anat. 

Prox. 
-.10 .67* .15 1 

 381 
As an alternative approach, we also implemented multiple regression models. Similar 382 

to the (partial) correlation measurements, these regression models quantify the relations 383 
between the networks, but in addition the regression models provide an estimate of the total 384 
variance in a network that can be explained by all other networks.  385 

A first model tested if the connectivity, activation and anatomical proximity network 386 
significantly predicted the representation network. The coefficient of determination from the 387 
regression equation indicated that these three predictors explained 71.2% of variability in the 388 
representation network (R2 = .712, F(3,116) = 96, p < .001). The squared signal-to-noise ratio 389 
(based on the between-subjects correlation) in the representation network indicated 85% of 390 
the variance to be explainable, leaving approximately 14% of the signal unexplained. In 391 
addition, we calculated the β coefficients to examine the degree to which each predictor 392 
independently contributes to the prediction of the representation network. According to the 393 
results, the anatomical proximity network significantly contributed to the prediction of the 394 
representation network (β = 0.40, p < .001), as did the connectivity network (β = 0.36 p = 395 
.004) and the activation network (β = 0.26, p = .03).  396 
 Similarly, we predicted the connectivity network based on the representation, 397 
activation, and anatomical proximity network, using multiple regression analysis. The results 398 
indicated that the predictors explained 59.6% of variability in the connectivity network (R2 = 399 
.596, F(3,116) = 57, p < .001). The squared signal-to-noise ratio (based on the between-400 
subjects correlation) in the connectivity network indicated 94% of the variance to be 401 
explainable, leaving approximately 34% of the signal unexplained. When examining the 402 
independent contributions of each predictor, we found out that the representation network 403 
significantly contributed to the prediction of the connectivity network (β = 0.51, p = .003), as 404 
did the activation network (β = 0.37, p = .005), but not the anatomical proximity network (β = 405 
-0.07, p = .55).  406 

Lastly, we tested if the representation, connectivity, and anatomical proximity 407 
network significantly predicted the activation network. The results revealed that the 408 
predictors explained 55.8% of variability in the activation network (R2 = .558, F(3,116) = 49, 409 
p < .001). The squared signal-to-noise ratio (based on the between-subjects correlation) in the 410 
activation network indicated 92% of the variance to be explainable, leaving approximately 411 
36% of the signal unexplained. The predictors indicated that the representation network 412 
significantly contributed to the prediction of the activation network (β = 0.41, p = .01), as did 413 
the connectivity network (β = 0.41, p = .001), but not the anatomical proximity network (β = -414 
0.01, p = .91).   415 
 Thus, for each type of network, we find that a lot of the structure can be predicted 416 
from the other networks, but there is also some remaining variance left unexplained. We 417 
visualized this unique signal left in each of these networks after regressing out the signal 418 
explained by the other networks from the representation, activation and connectivity network 419 
respectively (see Fig. 4b). In Fig. 4b, in contrast to Fig. 3 and 4a (which takes the values of 420 
Fig. 3 and z-score standardizes them, for reasons mentioned above), the networks now do not 421 
look similar: they show different patterns.  422 
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Several unique findings concerning correlations between ROI-networks can be 423 
observed in Fig. 4b. For example, social-cognitive brain areas correlate strongly to other 424 
visual areas in the activation network (e.g., r (before z-score standardization) = .69 between 425 
TPJ and BA37) while this is moderate to low in the representational (e.g., r = .24 between 426 
TPJ and BA37) and connectivity network (e.g., r = .01 between TPJ and BA37). This finding 427 
implies that these areas are activated similarly, but do not represent similar information nor 428 
do they communicate with each other. Another example, social-cognitive areas correlate 429 
moderately to somatosensory-motor areas (e.g., r = .32 (representation), r = .59 (activation) 430 
between MTG and BA1), except in the connectivity network (e.g., r = .03 between MTG and 431 
BA1). As a last example, visual area V5 shows a moderate correlation to other brain areas in 432 
the representation network (e.g., r = .39 between V5 and BA19) while a much stronger 433 
correlation is found in the other networks (e.g., r = .76 (activation) r = .61 (connectivity) 434 
between V5 and BA19).  435 
 436 

 437 
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 438 
Fig. 4 a. Visualization of the different networks after z-score standardization of the 439 
correlation coefficients. b. Visualization of the different networks after regressing out the 440 
signal explained by the other networks. In a. and b. Top left: activation network (UNIVAR), 441 
top right: representation network (RSA), bottom left: connectivity network (FCA), bottom 442 
right: anatomical proximity network. Yellow in the matrix = when two ROIs are very similar 443 
in their activation (UNIVAR results) or their representation (RSA results), are well connected 444 
(FCA results), or are located closely in the brain. Blue in the matrix = when two ROIs are 445 
very different in their activation (UNIVAR results) or their representation (RSA results), are 446 
not connected (FCA results), or are located remotely in the brain. SOMA (red) = 447 
somatosensory-motor network areas, PAIN (yellow) = pain network areas, SOCOG (purple) 448 
= social-cognitive network areas, VISUAL (green) = visual network areas 449 

 For visualization purposes, we performed MDS on the three types of dissimilarity 450 
matrices to reconstruct two-dimensional spatial configuration that reflects the proximity in 451 
the matrices. Moreover, Procrustes transformations were performed to align the 452 
configurations. The resulting configurations are shown in Fig. 5. The results confirm the high 453 
similarity (d (Procrustes distance: the difference between the shape of the two networks) 454 
between the activation and representation network = .48, d between the connectivity and 455 
representation network = .34, d between the activation and connectivity network = .42) and 456 
some dissimilarities between the networks as was previously indicated by the (partial) 457 
correlation and multiple regression models. As an example of correspondence between the 458 
three networks, Fig. 5 shows that somatosensory-motor areas are located nearby in all three 459 
networks, implying high similarity in activation and representation and strong inter-regional 460 
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communication among these areas. As an example of a difference between the networks, the 461 
social-cognitive brain areas are places close to visual areas overall in the activation network 462 
(blue in Fig. 5) but not so much in the other networks. It suggests that social cognitive brain 463 
areas and the visual cortex do not represent the same information and that those areas are not 464 
functionally connected despite the similar magnitude of neural response. 465 

 466 

Fig. 5 Procrustes transformed MDS results of the activation (UNIVAR, blue) and 467 
connectivity network (FCA, green) to the MDS results of the representation network (RSA, 468 
red). SOMA (circles) = somatosensory-motor network areas, PAIN (squares) = pain network 469 
areas, SOCOG (diamonds) = social-cognitive network areas, VISUAL (triangles) = visual 470 
network areas 471 

4. Discussion 472 

RSA has recently emerged as a method for investigating how brain regions are 473 
organized into networks. UNIVAR and FCA are two other popular methods for analyzing 474 
fMRI data to understand the functional structure of brain networks. Although two or more of 475 
these methods have been used simultaneously to analyze the same set of data in many studies, 476 
most of them have focused on the properties of each ROI separately. No study, to our 477 
knowledge, directly and simultaneously compared networks derived from RSA with 478 
networks built with UNIVAR and FCA. In the current study, we explored how the structure 479 
of networks built from RSA, UNIVAR and FCA relate to each other after ruling out the 480 
effect of the anatomical location of network nodes (ROIs). We analyzed fMRI data of a 481 
previous study (Lee Masson et al., 2018) with these methods and performed (partial) 482 
correlation and multiple regression analysis on the resulting networks.  483 

The current study reveals that neural networks resulting from RSA, UNIVAR and 484 
FCA are highly similar even after ruling out the effect of anatomical proximity. As predicted, 485 
brain areas within the somatosensory-motor network are similarly activated, represent similar 486 
task-related information, and are intrinsically connected. This applies also to the other sub-487 
networks (pain, social-cognitive and visual). As outlined in the introduction, RSA, UNIVAR 488 
and FCA share theoretical and/or methodological properties that can explain similarities as 489 
observed in this study. The high similarity in the neural networks of RSA and FCA provides 490 
support for the idea that brain areas showing similar stimulus-related selectivity are also 491 
intrinsically connected. Our finding is in line with previous resting-state fMRI studies that 492 
have identified functionally relevant networks, such as the primary visual network, auditory 493 
network, motor network, and cognitive networks, during rest (e.g., Biswal et al., 1995; Fox 494 
and Raichle, 2007; Jung et al., 2018). 495 

On the other hand, our finding suggests that the network structure derived from each 496 
method contains unique signals. To reveal this, the explainable variance of each network 497 
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revealed by SNR estimation was compared with the actual variance explained by the other 498 
networks. These results suggested that the network, derived from each method, contain 499 
idiosyncratic structure that none of the other networks are able to explain. Analyzing the 500 
remaining signal variance that was left unexplained, we were also able to reveal the 501 
idiosyncratic network structure of each method. For example, brain areas in the social-502 
cognitive network are similar to areas in the visual network in terms of neural activation, 503 
whereas neural patterns of those two sub-networks do not represent the same information and 504 
they are not intrinsically connected. Another example are the moderate correlations between 505 
social-cognitive brain areas and somatosensory-motor areas in the activation and 506 
representation network, but not in the connectivity network. 507 

This idiosyncratic structure is important to keep in mind when interpreting a network 508 
structure found with one particular method. Although second-order RSA can be used to 509 
construct brain connectivity, RSA and FCA adopt different approaches shown in their 510 
methodology: correlating RDMs in RSA; correlating the BOLD signal fluctuations in FCA. 511 
Thus, RSA is used for investigating the similarity between brain areas in how they represent 512 
the task-related information while FCA is used for investigating how a series of brain areas 513 
construct the intrinsically connected cortical network. These distinctions allow RSA and FCA 514 
to tap into the functional architecture of the brain from different perspectives as revealed in 515 
the idiosyncratic network structures. 516 

Likewise, the same reasoning can be applied to the relationship between UNIVAR 517 
and FCA, and RSA and UNIVAR. As outlined in the introduction, they are related 518 
theoretically and empirically while they differ in their focus, allowing both similarities and 519 
dissimilarities between the resulting networks.  520 

Such distinctions between the network structures derived from different methods has 521 
also been observed in the recent study of Jung and her colleagues (Jung et al., 2018) 522 
comparing resting-state fMRI and structural connectivity. Although their comparison 523 
involves different methods than ours, they provided some possible explanations that should 524 
be considered in the current study. Quality and nature of the datasets used for three methods 525 
(even from identical data sources, but measured at different times or analyzed in a different 526 
way) may not be equal and different measurement noise may be present (Jung et al., 2018). In 527 
addition, they mention that networks during mental activity are modulated away (slightly) 528 
from intrinsic connections, which is especially relevant to the comparison of RSA with FCA. 529 
Accordingly, our findings of similarities and differences between RSA and FCA network 530 
structure are consistent with the observation that studies using both RSA and FCA lead to 531 
either similar or different conclusions about brain function derived from the two methods 532 
(e.g., Boets et al., 2013; Zeharia et al., 2015). Despite the high similarity across the network 533 
structures derived from the UNIVAR, RSA and FCA methods, given the nature of 534 
idiosyncrasy of each network, we encourage researchers to understand the benefits of each 535 
methodology and what they (do not) detect; and to use them adequately depending on the 536 
research questions.  537 
 As a critical note, we point to several limitations of our current study. First, the 538 
current findings are based on only one task domain (i.e., social touch videos perception), and 539 
our conclusions should be complemented by future studies that include other tasks, such as 540 
moral decision-making tasks, or tasks using other sensory modalities such as auditory and 541 
tactile scenes. RSA and UNIVAR methods may not produce similar network structures in 542 
another task. This could in particular be the case, when having a task with no activation 543 
differences across the conditions but evoking neural pattern selectivity. Second, we selected a 544 
limited number of ROIs rather than including a large number of network nodes. One 545 
important argument for doing this is that the selected brain regions had to include meaningful 546 
task-related signals for performing RSA (see the description of diagonal versus non-diagonal 547 
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measures as a reliability test in choosing ROIs in Methods). The effect of the number and size 548 
of ROIs on the relationships between the networks obtained using RSA, UNIVAR and FCA 549 
can be explored further. Finally, extending the comparisons made in the current study is 550 
another important step to take. Specifically, networks built from second-order RSA and 551 
multivariate functional connectivity could also be compared (Anzellotti and Coutanche, 552 
2018; Coutanche and Thompson-Schill, 2014).  553 

5. Conclusions 554 

The present study provides first-time evidence that cortical network structures derived 555 
from three commonly used neuroimaging approaches (RSA, UNIVAR and FCA) are highly 556 
similar regardless of the structural variations of each network. Importantly, the study also 557 
demonstrates that each of these three networks contains idiosyncratic structure, unexplainable 558 
by the other networks. As such, all three methods are important when investigating the 559 
functional organization of networks in the brain. Improving the understanding of the 560 
relationship between the structures of the networks derived from these methods will allow 561 
researchers to use RSA, UNIVAR and FCA more adequately. 562 
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