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Abstract 
Loss-of-function (LoF) mutations associated with disease don’t manifest equally in different           
individuals, a phenomenon known as incomplete penetrance. The impact of the genetic            
background on incomplete penetrance remains poorly characterized. Here, we systematically          
assessed the changes in gene deletion phenotypes for 3,786 gene knockouts in four             
Saccharomyces cerevisiae strains and 38 conditions. We observed 16% to 42% of deletion             
phenotypes changing between pairs of strains with a small fraction conserved in all strains.              
Conditions causing higher WT growth differences and the deletion of pleiotropic genes showed             
above average changes in phenotypes. We further illustrate how these changes affect the             
interpretation of the impact of genetic variants across 925 yeast isolates. These results show              
the high degree of genetic background dependencies for LoF phenotypes. 
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Introduction 
While a mutation can be associated with specific disorders it has long been observed that not all                 
individuals carrying the disease variant will manifest it. Even for diseases caused by mutations              
in a single gene (i.e. monogenic disorders) incomplete penetrance is frequent, presumably due             
to differences in the genetic background ​(Kammenga 2017; Hou et al. 2018)​. Modulators of              
penetrance of disease causing variants have been identified for many human diseases ​(Cohen             
et al. 2005; Flannick et al. 2014; Chen et al. 2016) as well as loss-of-function (LoF) mutations in                  
different model organisms ​(Hamilton & Yu 2012; Chari & Dworkin 2013; Vu et al. 2015; Chow et                 
al. 2016; Mullis et al. 2018)​. This impact of the genetic background on the phenotypic               
consequence of LoF mutations affects our ability to predict phenotypes based on genetic             
variants. In ​S. cerevisiae and ​E. coli​, gene deletion phenotypes have been extensively             
measured for all genes across hundreds of stress conditions ​(Hillenmeyer et al. 2008; Nichols et               
al. 2011)​. However, genes carrying putative LoF mutations in different strains are only weakly              
predictive of expected gene deletion phenotypes ​(Jelier et al. 2011; Galardini et al. 2017; Wagih               
et al. 2018)​. Understanding the extent and the mechanisms by which the effect of LoF variants                
depend on the genetic background is critical for the development of personalized medicine. 

While there are many known examples of background dependencies on LoF mutations            
few comprehensive studies have addressed this phenomenon. Studies in ​S. cerevisiae have            
shown that 5% of essential genes are dispensable between two closely related strains ​(Ryan et               
al. 2012) and that deletion phenotypes of 7 chromatin-associated genes show quantitative            
differences across 2 genetic backgrounds that could be mapped via segregant analysis ​(Mullis             
et al. 2018)​. In a systematic RNAi studies in ​C. elegans​, 20% of the 1,400 genes tested had                  
different mutant phenotypes across two backgrounds and natural variation in gene expression            
accounted for some of the observed differences ​(Vu et al. 2015)​. Recently, gene deletion              
libraries were generated for 3 other backgrounds of ​S. cerevisiae ​(Busby et al. 2018) other than                
the original reference lab strain library ​(Winzeler et al. 1999)​. Growth measurements of these              
knockout libraries in the presence of statin identified significant differences in gene deletion             
phenotypes across the 4 genetic backgrounds. The availability of these libraries allows for the              
systematic study of the impact of the genetic background on gene deletion phenotypes. 

Here we have measured the condition specific growth phenotypes for 4 ​S. cerevisiae             
deletion collections in a panel of 38 perturbations. The phenotypes show a large variation              
across the genetic backgrounds with an average between 16 to 42% gene-condition phenotype             
associations changing in each strain across all pairwise comparisons. Genes with the largest             
number of strain dependent changes of phenotypes had above average number of genetic and              
physical interactions suggestive of a role of genetic interactions in these changes. Conditions             
eliciting variable growth rates among the wild-type strains tended to have also the largest              
number of strain specific variation in gene deletion phenotypes. Finally, we have measured the              
growth profiles of a panel of 1,006 ​S. cerevisiae natural isolates ​(Peter et al. 2018) across the                 
same conditions, identifying several variants associated with differences in growth that we            
linked to causal genes through the gene deletion analysis.   
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Results 
 
Condition specific gene deletion phenotypes for 38 conditions in 4 ​​S. cerevisiae            
genetic backgrounds  
We measured growth phenotypes for 17,186 total gene knockouts in 4 ​S. cerevisiae genetic              
backgrounds (S288C, UWOPS87-2421, Y55, YPS606) with 3786 gene deletions measured in           
all backgrounds. The four strains used are genetically diverse with an average of 5.4 to 5.9                
SNPs/kb relative to the lab “reference” strain S288C ​(Winzeler et al. 1999; Busby et al. 2018 ​,                
Figure 1A ​​). The deletions were arrayed as colonies in a 1536 agar plate format and were                
robotically pinned onto agar plates containing the 38 different conditions (Methods, ​Figure 1B​​).             
Colony size at the endpoint was used as a proxy for fitness and deviation from the expected                 
growth was calculated, taking account the replicate measurements, using the s-score ​(Collins et             
al. 2006; Kapitzky et al. 2010; Nichols et al. 2011, ​Figure 1B ​​). Positive and negative s-scores                
indicate gene deletions that confer resistance and sensitivity to a given condition, respectively.             
The list and description of the 38 conditions is available in ​Supplementary Table 1​​. These               
include environmental stresses (e.g. heat, high osmolarity, DNA damage), drugs (e.g.           
caspofungin, clozapine), metabolic conditions (e.g. amino-acid starvation) or combinations of          
stressors.  

In total we measured 876,956 gene-condition phenotypic interactions that are provided           
as ​Supplementary Material 1​​. The assay used is highly reproducible as measured by the              
correlation of the s-scores using either 12 conditions that were replicated in 2 batches (​Figure               
1C​​, Pearson’s r=0.744 p-value<1E-50) or 2,293 genes that are spotted as replicates on the              
plates at different locations (​Figure 1D​​, Pearson’s r=0.811 p-value<1E-50). The correlation of            
phenotypic scores for pairs of genes recapitulates known functional relationships          
(​Supplementary Figure 1 ​​), further confirming the high quality of the screening data. We             
observed large differences in the profile of gene deletion phenotypes for the 4 different strains               
(​Figure 1E ​​) that can be quantified taking into account the high reproducibility of the assay. 
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Figure 1 - Chemical genomics screen across four S. cerevisiae strains. A) Core genome phylogeny of part of the                   
Saccharomyces Genome Resequencing Project (SGRP) yeast isolates; coloured dots indicate the four strains whose              
KOs library was screened in this study. B) Schematic of the chemical genomics screen; each strain’s KO library was                   
robotically plated on 1536 solid agar plates and each KO colony size was used as a proxy for fitness in each                     
condition. C) Reproducibility of the S-scores using the two batches used in the screening. D) Reproducibility of the                  
S-scores using genes having multiple independent colonies plated in the screening. E) Clustered heatmap of the                
whole chemical genomics screen; each subsection belongs to an individual strain’s KO library. Grey cells indicate                
missing values.   
 
Quantification of genetic background differences of deletion phenotypes 
The gene deletion phenotype scores for the 38 conditions were correlated across pairs of              
strains as a measure of similarity of their phenotypic profiles and plotted as a distribution for all                 
genes in ​Figure 2A​​. On average the similarity of phenotype scores of the same gene knockout                
in different strains is only marginally higher than the observed for the correlation of deletion               
phenotype scores for random pair of genes (​Figure 2A​​). The lack of correlation could be               
explained by the large fraction of KOs with no strong response across the four strains, resulting                
in differences in quantitative scores dominated by technical variability. In line with this, the              
similarity of phenotypes across strains increases for gene knockouts having larger numbers of             
significant deletion phenotypes (​Figure 2A​​).  

In order to identify statistically significant differences of phenotypes we used an empirical             
null model that takes into account the variance of the assay and the mean dependence of the                 
variance for the s-score ​(Bandyopadhyay et al. 2010 ​, Methods, ​Supplementary Figure 2 ​​). For             
each pair of strains we identify the gene deletion phenotypes that were significantly shared              
(​Figure 2B​​, black) or exclusive (​Figure 2B​​, red) to each genetic background. Even though a               
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part of the observed changes might be false positives, we are confident that the homogeneity in                
experimental conditions as well as excluding uncertain cases from the analysis (​Methods​​) helps             
reducing these cases to a small number. We then used these significantly shared/exclusive             
phenotypes, excluding all other phenotypes (​Figure 2B​​, grey), to calculate the fraction of             
shared/exclusive phenotypes for each pair of strains. We performed all pairwise comparisons            
and for each strain we then calculated the average fraction of shared phenotypes with the other                
3 strains (​Figure 2C), which ranged from 58% for S288C to 84% for Y55. This fraction drops                 
further for phenotypes significantly conserved across more strains with 22% to 51% observed in              
3 strains and 9% to 24% of gene-deletion phenotypes significantly conserved in all 4              
backgrounds (​Figure 2C​​)​. ​​These highly conserved phenotypes include very central genes           
relevant for the corresponding responses such as sensitivity to osmotic stress (ΔHOG1), drug             
efflux (ΔPDR5) and amino acid biosynthesis (ΔADE, ΔMET, ΔSER, ΔTRP), among others            
(​Supplementary Table 2​​). ​​A small fraction (3% to 5%) of the phenotype that are not conserved                
between pairs of strains show a reversal in sign whereby the deletion causes resistance to the                
stress in one background but increased sensitivity in another background (​Supplementary           
Table 3 ​​). We observed the strongest reversal for ΔMET5 exposed to amino acid starvation,              
which has a strong sick phenotype in YPS and UWOP, but shows increased resistance when               
knocked out in S288C. Since the S288C KO library is based on the BY4741 ΔMET17 ​(Cherry et                 
al. 2012) strain, a potential explanation for this phenotype reversal could be a positive genetic               
interaction between MET5 and MET17. We observed few changes in these proportions when             
varying the significance threshold for calling phenotypes, indicating the robustness of this trends             
(​Supplementary Figure 3 ​​).  

We next focused on the gene knockouts that had the largest number of background              
dependent changes in phenotypes. We ranked all gene deletions according to the proportion of              
changes over all tested phenotypes (​Figure 2D​​, ​Supplementary Table 4​​) and observed that             
the genes that change their deletion phenotypes at least once (N=242) had also a higher               
number of genetic and physical interactions partners based on data collected in the Biogrid              
database ​(Chatr-Aryamontri et al. 2017) for the S288C lab strain (​Figure 2E​​). This suggests that               
gene pleiotropy is correlated with the probability that a deletion phenotype will depend on the               
genetic background. These genes were also enriched in GO terms related to endosomal             
transport (q-value=0.006), mitochondrion organization (q-value=0.007), cellular respiration       
(q-value=0.007) and cell wall organization or biogenesis (q-value=0.009, ​Supplementary Table          
5​​). These genes were not more likely than others to show expression changes across the 4                
yeast strains (Fisher’s exact test p-value > 0.05, ​Supplementary Material 2​​). 
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Figure 2 - Systematic assessment of genetic background dependencies of gene deletion phenotypes​​. A)              
Average S-score Pearson’s correlation between the same genes (orthologs, solid line) and random gene pairs               
(shaded distribution) across all the 38 conditions and four strains. Genes are stratified by the number of conditions in                   
which they show a significant phenotype across the four strains. B) S-score scatterplots for each pairwise strain                 
comparison, highlighting conserved phenotypes (black points), significant changes (red points) and gene-condition            
relationships for which no call can reliably be made (grey points). C) Fraction of deletion phenotypes in each strain                   
conserved with other stains in pairwise, three-way and four-way comparisons. D) Gene exclusiveness: a measure of                
each gene propensity to change its chemical genomics profile across strains. The top 10 genes’ names are reported.                  
E) Genes with high exclusiveness (> 0) tend to have a higher number of negative genetic and physical interactions                   
(as reported in the biogrid database). 
 
Condition specific wild-type growth differences contribute to variance in gene          
deletion phenotypes 
For each condition, we counted the number of changes in deletion phenotypes observed across              
genetic backgrounds (​Figure 3A and ​Supplementary Figure 4 ​​). We compared these changes            
with the average growth rate differences of the 4 WT strains (i.e. no knockout) in the same                 
conditions (​Figure 3B ​​and ​Supplementary Figure 4 ​​). We noticed that some conditions having             
large number of changes corresponded to cases where a significant growth difference was             
observed for the WT strains. For example, S288C grows poorly under maltose relative to the               
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other strains ​(Chow et al. 1989) (​Figure 3B​​) and also showed the largest number of exclusive                
gene deletion phenotypes (​Figure 3A​​), the same was observed for caffeine. In contrast, the              
high salt (osmotic shock) conditions, S288C had the highest WT growth and the smallest              
number of phenotype differences. While this was not the case for all conditions there is a                
significant trend where a slower WT strain growth in a condition is associated with a larger                
number of strain specific knockout phenotypes (​Figure 3C​​, Pearson’s r=-0.21, p-value=0.02).  

We analyzed in more detail some conditions with large changes in phenotypes. For high              
salt, that elicits an osmotic stress, deleting the two central kinases of the osmotic shock pathway                
(HOG1 and PBS2) generally impaired growth in all backgrounds, as expected. This pathway             
has two upstream branches converging on PBS2/HOG1 ​(Brewster et al. 1993; Hohmann 2009)​.             
These branches can be redundant and thus show few phenotypes under osmotic stress.             
However, the STE50 deletion shows striking differences causing increased sensitivity in YPS            
background, resistance in the Y55 and no phenotype in S288C and UWOP. Similarly to STE50,               
we identified 10 more genes with strain specific phenotypes in high salt condition (​Figure 3D​​).               
Some of these genes are related to osmosensing (STE50, RVS161), ER function (DSC2,             
GEA1) and metabolism (MRS4, TRP3). 

For growth under maltose the two strains with the best WT growth (UWOP and Y55) also                
had strong growth defects when maltose induced genes, present in two clusters, were deleted              
(​Figure 3E ​​). It is known that S288C does not grow effectively in maltose due to inactivation of                 
the maltose activator proteins in the MAL loci ​(Chow et al. 1989)​. It is therefore expected that                 
deleting MAL genes (i.e. maltose induced genes) causes no further decrease in growth in              
maltose negative strains such as S288C but has a strong impact on MAL positive strains such                
as Y55 and UWOP. Similar to S288C, the YPS strain appears to also be a maltose negative                 
strain. The poor growth under maltose then creates additional vulnerabilities to the cell,             
rendering essential a large number of genes involved in non-fermentable growth under maltose             
for S288C (​Figure 3E​​). Interestingly the same set of genes are required for S288C to grow in                 
glycerol, suggesting that S288C should grow poorly under glycerol, although this did not             
translate in a strong growth defect of the WT under this condition (​Figure 3B​​).  
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Figure 3 - Wild type condition specific growth differences are associated with the degree of gene deletion                 
phenotype differences ​​. A) Barplots reporting the average number of gain and sick phenotypes that are specific to                 
each strain across all pairwise comparisons. B) Wild type fitness of each strain relative to S288C across the same                   
conditions as in panel A; each dot represents a specific replicate where colony sizes were measured. C) Relationship                  
between the wild type fitness relative to S288C and the number of conditionally essential genes relative to S288C;                  
each dot represents a strain-condition replicate as in panel B. D) Changes in gene deletion phenotypes for growth on                   
osmotic stress conditions. The top heatmap contains genes belonging to the HOG pathway, while the bottom one                 
those genes whose growth phenotypes varies the most between Y55 and YPS. E) Conditional gene essentiality                
changes for growth on glycerol and maltose. The top heatmap contains the MAL genes, while the bottom one those                   
genes whose growth phenotypes vary the most between S288C and the other three strains. 
 
Quantitative trait analysis of condition specific growth differences in a panel of            
1,006 ​​S. cerevisiae​​ strains 
To test whether our the gene deletion phenotypes data in different genetic backgrounds could              
be used to better understand the impact of natural variation on phenotypes, we performed a               
quantitative trait analysis (QTL) across 47 conditions using a panel of 925 ​S. cerevisiae natural               
isolates ​(​i.e. the fraction of the tested 1,006 strains with available genotype data, ​Peter et al.                
2018)​. Growth measurements, fitness measurements and phenotype calculations were         
performed as for the deletion libraries (​Methods​​). The s-score measurements used (​Figure 4A             
and ​Supplementary Figure 5 ​​) represents, as above, condition specific growth phenotype for            
each strain where a genetic background can specifically affect growth under a given condition.              
Using the genomic variants we identified a total of 151,673 common single nucleotide             
polymorphisms (SNPs, minor allele frequency > 5%). In addition, we predicted the impact of              
missense variants in each coding region and calculated a probability of LoF for each gene in                
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each strain ​(Jelier et al. 2011; Galardini et al. 2017)​; this could be regarded as a gene disruption                  
or gene burden score. We then performed a QTL analysis for each condition using the common                
SNPs, the gene burden score, the gene copy-number variation (CNV) and the            
presence/absence patterns of genes as predictors (​Methods​​). In total we found 579 significant             
associations, with the largest number of associations observed for growth under Amphotericin B             
and caffeine (​Figure 4B​​), both known to have an impact on the cell wall. Both conditions are                 
also unlikely to be present in the natural environment and therefore genetic variants causing              
growth defects under these conditions are less likely to be selected against. Common SNPs had               
the highest number of significant associations (365, 0.005%), followed by gene           
presence/absence (159, 0.805%), gene burden score (29, 0.047%) and CNVs (26, 0.060%). 

For each condition we obtained a list of genes associated with growth differences from              
the gene deletion analysis and crossed it with the variants, and their linked genes, associated               
with growth differences across the 925 yeast strains. Unexpectedly, we found no significant             
enrichment between the gene-condition associations obtained from the QTL analysis and the            
gene-condition associations found in the gene deletion experiments (Fisher’s exact test p-value            
> 0.05). Despite the lack of overall enrichment, several QTL associations can be validated by               
the gene deletion information (​Figure 4C​​, Supplementary Table 6​​). For example, 141 strains             
had a high gene burden score in the PDR5 locus, which had a significant association with                
growth in the presence of Cyclohexamide. Deletion of this ABC transporter is known to cause               
multidrug resistance and showed Cyclohexamide dependent deletion phenotypes in all 4           
backgrounds (​Figure 4D​​). The presence of two SNPs in two other transporters, cadmium             
transporting P-type ATPase (PCA1) and a membrane Na+/Pi cotransporter (PHO89) were           
linked to growth under cadmium chloride and had also significant gene deletion phenotypes in              
at least 3 of the strains (​Figure 4E​​). A SNP close to BRP1 showed an association with growth                  
under high salt stress which is supported by BRP1 deletion phenotypes in 2 strains. However,               
several other cases had fewer support. For example, the absence of the ADH1 gene in 450                
strains showed an association with anaerobic growth in the presence of amphotericin B.             
Deletion of this gene shows a strong phenotype for this condition only when knocked out in Y55.                 
We found a total of 22 gene~condition associations overlapping between the QTL and KO              
analysis with most overlaps observed with gene deletion phenotypes exclusive to a single             
genetic background.  
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Figure 4 - Genes linked to growth phenotypes via QTL analysis in 925 natural yeast isolates. A) S-score                  
heatmap of the yeast natural isolates across 34 conditions that were also used in the KO screening. B) Number of                    
variants significantly associated (p-value < 1E-6) with phenotypic variation in each growth condition. C) Number of                
associated variants that overlap (i.e. are in a 3kbp window) with a conditionally essential gene in the same condition,                   
in any of the four KO libraries. D-G) Manhattan plots showing examples of overlaps between associated variants and                  
the KO screening. The top plot shows the associations between variants and growth in the natural isolates as a                   
function of the -log​10 of the association p-value, while the four bottom plots show the strength of the KO phenotypes                    
across the four yeast strains, as a function of the -log​10 of the corrected s-score p-value. Sections shaded in grey                    
indicate the overlap between associations and KO data. Position in the yeast chromosome is reported in kilobase                 
units. 
 
Discussion 
Our results show that the genetic background has a strong impact on gene deletion phenotypes               
in ​S. cerevisiae​. The fraction of significant differences across two individuals (18 to 40%) is               
similar to the fraction of changes observed for RNAi phenotypes for two strains of ​C. elegans                
(​20%, ​Vu et al. 2015)​. The fraction of shared phenotypes decreases further for the common set                
observed across all strains (N=73) with typically <25% significantly shared phenotypes across            
the 4 strains. Analysis of additional backgrounds would be needed to fully access the fraction of                
gene deletion phenotypes that is independent of the genetic background.  

The large-scale analysis allowed us to search for general trends associated with the             
observed differences. Strains having a slower WT growth in a given condition also tended to               
have a larger number of gene deletion phenotypes in those conditions, suggesting that in such               
conditions the poor growing strains have more modes of failure and are impacted by a larger                
number of gene deletions. Growth in maltose serves as a good example of how existing genetic                
variation can interact with LoF mutations. The S288C strain, has genetic variants that cause it to                
not be able to grow well in maltose and therefore, in this condition, becomes reliant on genes                 
required for non-fermentable growth. It remains a challenge to be able to find similar              
justifications for how the genetic background interacts with the gene deletions for other             
conditions but those identified here could be further studied using a segregant analysis as              
previously done by Mullis and colleagues ​(Mullis et al. 2018)​. 
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Some genes had a higher proportion of changes of their deletion phenotypes. These             
tended also to have an above average number genetic and physical interactions. The             
interaction assays used as the basis for this analysis have been conducted in the S288C               
background strain but they nevertheless likely reflect the degree of pleiotropy of each gene. One               
interpretation of this result would be that genes that are involved in multiple processes are more                
likely to have also larger number of changes in deletion phenotypes since there will be many                
ways by which the genetic background difference may interact with the loss-of-function of these              
genes. Of the four strains, the reference strain (S288C) stands out as the one where specific                
gene-condition associations are the most abundant when compared to the other three strains:             
58% versus ~80%. This observation combined with other idiosyncrasies specific to this strain             
(Mortimer & Johnston 1986; Winston et al. 1995; Brachmann et al. 1998)​, such as growth in the                 
presence of maltose, indicates that observations made on a domesticated individual might not             
necessarily reflect natural populations.  

Lastly, we performed a QTL analysis using 925 strains for the same conditions and using               
the same experimental set-up. We were expecting that variants associated with differential            
growth in a given condition were linked to genes that also caused gene deletion phenotypes in                
the same condition. Overall we found no such enrichment which may relate to the fact that                
natural isolates are likely to have few LoF variants, in particular associated to conditions that are                
experienced in the environment. The total number of strains used is likely also to be very limiting                 
since there are typically very few strains showing strong growth differences across any specific              
condition. Larger number of strains or segregant analysis ​(Bloom et al. 2013; Cubillos et al.               
2013) could be used in the future to further study the relationship between natural variants and                
deletion phenotypes. Despite an overall lack of enrichment, our results suggest that            
interpretation of the impact of genetic variants using the gene deletion information available for              
a single genetic background is unlikely to be comprehensive.  

In summary our results suggest that interpretation of the impact of genetic variants on              
the phenotypes of individuals would likely need detailed gene-phenotype information in more            
genetic backgrounds than that of a model individual. 
 
 
Methods 
 
Strains used 
Mat​a haploid KO libraries in the genetic backgrounds of S288C ​(Winzeler et al. 1999 ​, 4’889               
KOs), UWOPS87-2421 (abbreviated as UWOP, 4’014 KOs), Y55 (4’190 KOs) and YPS606            
(Busby et al. 2018, abbreviated as YPS, 4’093 KOs) were used to assess if different genetic                
backgrounds have an effect on gene deletion phenotypes. These libraries were maintained on             
YPD+G418 prior to screening in 384 colony format. The 1’006 natural isolate strain collection ​(​a               
kind gift from Gianni Liti, ​Peter et al. 2018)​, was maintained on YPD in 384 colony format prior                  
to screening. 
 
Chemical genomic analysis 
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Growth of KO libraries, and 925 strain collection was evaluated on concentrations of chemical              
and environmental stress conditions (​Supplementary Table 1​​) that inhibit the growth of S288C             
by approximately 40%. The libraries were maintained and pinned with a Singer RoTor in 1536               
colony format. Synthetic complete ​(Kaiser et al. 1994) media was used with or without the stress                
condition, incubated at 30°C (unless temperature was a stress) for 48h or 72h, and imaged               
using a SPIMAGER (S&P Robotics) equipped with a Canon Rebel T3i digital camera. 

The growth measurements were performed in three separate batches with overlapping           
sets of conditions to judge for variation of the method. The first batch of the chemical genomic                 
screening was carried out with the S288C deletion collection and used the following conditions:              
anaerobic, amphoteracin B, nystatin, DMSO, 2,4,D, glycerol, maltose, hepes buffered medium,           
caffeine, 6-AU, paraquat, 39 ​o​C, sorbitol. Batch two was carried out with the deletion collections              
in the four genetic backgrounds (S288C, Y55, YPS606 and UWOPS87-2421) and contained all             
(13) of the conditions from batch 1 plus: 5-FU, doxorubicin, cadmium chloride, caspofungin,             
clozapine, Nickel sulfate, clioquinol, high glucose (20%), minimal medium, nitrogen starvation           
medium, cyclohexamide, sodium chloride 0.4M and 0.6 M, and the duel stress conditions             
sodium chloride 0.4 and 0.6M plus 39 ​o​C, 6-AU plus 39 ​o​C and amphoterician B plus anaerobic               
growth. The two batches were carried out as separate experiments. 
 
Chemical genomics data analysis 
Raw plate images were cropped using ImageMagick to exclude the plate plastic borders. Raw              
colony sizes were extracted from the cropped images using gitter ​(Wagih & Parts 2014) v1.1.1,               
using the “autorotate” and “noise removal” features on. Poor quality plates were flagged when              
no colony size could be reported for more than 5% of colonies (poor overall quality) or when no                  
colony size could be reported for more than 90% of a whole row or column (potential grid                 
misalignment); known empty spots in each plate where used to flag incorrect plates. Overall less               
than 5% of all pictures have been discarded (175/4221, 4.15%). Conditions with less than three               
replicates across the two experiment batches were excluded from further processing. Raw            
colony sizes for the remaining conditions were used as an input for the EMAP algorithm ​(Collins                
et al. 2006)​, with default parameters except the minimum colony size which was set to 5 pixels.                 
The algorithm computes an S-score, which indicates whether the growth of each KO is deviating               
from the expected growth in each condition. The raw s-scores were further quantile normalized              
in each condition. Significant loss-of-function and gain-of-function phenotypes were highlighted          
by transforming the s-scores in z-scores, given that the s-scores in each condition follow a               
normal distribution. P-values were derived using the survival function of the normal distribution             
and corrected using an FDR of 5% (false discovery rate). The whole dataset, comprising              
876,956 gene-condition interactions is available as ​Supplementary Material 1​​. 

The overall relative fitness of the three non-reference strains (Y55, UWOP and YPS)             
against the S288C reference was computed as follows: 
 

φstrain = median(S )strain
median(S )S288C
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where is the median normalized colony size. The normalized colony size is edianm (S)             
computed in each plate by first applying a surface correction step, followed by a border               
correction step. The surface correction is applied to reduce the impact of spatial abnormalities              
on colony sizes; in short, the second-degree polynomials of the row and column indices are               
computed in a matrix, which is then qr factorized. The resulting matrix is used to construct an                 
ordinary least squares linear model between the factorized matrix and the corresponding       Q       
vector of raw colony sizes. The surface normalized colony sizes are then computed as follows: 
 

Ssurface = Sraw − S
︿

+ Sraw  
 
where is the size prediction from the ordinary least squares model. The surface corrected S

︿

             
colony sizes ( ) are further corrected to take into account the border effect, meaning the  Ssurface              
difference in size between colonies in the two outermost rows and columns with respect of the                
rest of the plate. The border correction is computed as follows: 
 

Sborder = median(S )outer

S ·median(S )outer inner  

 
where is the median size of colonies on the outer border of the plate and edianm (S )outer               

is the median size of colonies in the rest of the plate. The overall fitness isedianm (S )inner                  
computed only in those cases where the plates belonging to the four strains’ KO libraries have                
been screened at the same time, in order to make the comparison robust to changes in                
experimental conditions. The relative fitness measures are available in ​Supplementary Table           
7​​. 

To test whether the four KO libraries are able to recapitulate known gene functional              
relationships, we tested if gene pairs belonging to the same functional groups tended to have               
correlated S-score vectors in each of the four yeast strains. Two functional relationships sets              
were used: the CYC2008 protein complexes set ​(Pu et al. 2009) and Kegg modules belonging               
to ​S. cerevisiae ​(Muto et al. 2013)​. The KOs common to all four libraries were selected and for                  
each strain only those that had at least one phenotype with corrected p-value below 0.01 were                
used to compute the Pearson correlation of S-scores between each gene pair. The ability of               
these gene-gene correlations to recapitulate the known functional relationships was assessed           
by constructing Receiver Operator Characteristic and Precision-Recall curves, using the known           
relationships as the true positives set and 10 random gene pairs sets with same numerosity as                
the true set as true negative set. 

The conservation or similarity of gene deletion phenotypes across the four yeast strains             
was assessed computing the Pearson’s correlation between the s-score profiles across all            
conditions of the same genes in all pairs of strains and then computing the average of these                 
values. Genes were stratified by the average number of conditions in which they show either a                
loss-of-function or a gain-of-function phenotype across the four strains. Random gene pairs            
were used as background. 
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Reproducibility of chemical genomics screens 
The reproducibility of the chemical genomics screen was assessed in two separate ways. The              
first method assessed the technical reproducibility of the s-scores across the two batches in              
which the screen was conducted. The raw pictures were divided according to the batch of origin                
and the EMAP algorithm ​(Collins et al. 2006) was used to compute a set of S-scores for each                  
batch. For the 13 conditions that were tested in both batches the S-score correlation was               
computed. We refer to this analysis as both technical and biological because the inoculates are               
derived from the same source plate but at very different times (​Supplementary Material 3​​).              
Biological replicability was assessed using 2,293 KOs that are pinned exactly twice across the              
library.  
 
Significant changes in conditional gene essentiality 
Significant changes in chemical genomics profiles between any two strains were computed            
following a previously published approach that also used s-scores ​(Bandyopadhyay et al. 2010)​.             
The two set of s-scores computed as part of the batch replicate analysis were used as a null                  
model for the absence of changes in s-scores, as a way to estimate the degree of expected                 
variation observed across different experiments. Since the variance in S-scores is higher at             
higher absolute s-score values, this has to be taken into account when calling significant              
differences; a sliding window approach was applied when constructing the null model. Given the              
two set of s-scores the following vectors were computed: 
 

N sum =  − S|| batch1 + Sbatch2
|
|  

 
N sub = S|| batch1 − Sbatch2

|
|  

 
where and are the S-scores from the replicate batches, respectively. The sliding Sbatch1  Sbatch2           
window was then applied to , dividing the vector in 100 slices with at least 20 observation     N sum             
in each one and recording the mean ( ) and standard deviation ( ) of for each slice.       N sub     σsub   N sub    
For each strain pairwise comparison and were recorded for each matching slice and     N sum  N sub        
the corresponding and were extracted from the null distribution using a linear  N sub   σsub          
interpolation. A normal distribution with mean and standard deviation was then      N sub     σsub    
constructed around each slice and the cumulative distribution of the normal function was used              
to derive a p-value to indicate significant differences. The p-value was FDR corrected and              
incoherent differences were assigned a corrected p-value of 1; specifically, those cases where             
both strains have a significant phenotype but corrected p-value lower < 0.01 (150 comparisons              
over 875,833) and cases where both strains do not show a significant phenotype but corrected               
p-value lower < 0.01 (26 comparisons over 875,833). The full dataset comprising 875,834             
comparisons is available as ​Supplementary Material 4​​. 
When looking at the proportion of significant loss-of-function or gain-of-function phenotypes that            
each strain shares with the other strains, we considered those comparisons were the focal              
strain had a significant gain-of-function or loss-of-function phenotype and corrected p-value <            
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0.01 (phenotype not shared) and were both strains had a significant phenotype and corrected              
p-value >= 0.01 (shared phenotype); all other comparisons were not considered. 

Each gene’s propensity to change its conditional essentiality profile across the six            
strains’ pairwise comparisons ( , exclusive phenotype propensity) was computed as follows:E  
 

 E = P exclusive
(P +P )exclusive shared

 

 
where is the number of loss-of-function or gain-of-function phenotypes that vary P exclusive           
significantly (corrected p-value < 0.01), while is the number of loss-of-function or      P shared        
gain-of-function phenotypes in both strains of the comparison that do not vary significantly             
(corrected p-value >= 0.01). A gene whose > 0 was considered with “high exclusiveness”       E        
(​Supplementary Table 4 ​​). 
Variable genes in Figure 3D and 3E were selected based on a corrected p-value cutoff of 1E-4                 
in at least one comparison. 
 
GO terms enrichment analysis 
Gene gene ontology (GO) annotations were downloaded from the SGD database ​(Cherry et al.             
2012)​, while the GO slim yeast dataset was downloaded from the gene ontology website              
(Ashburner et al. 2000; The Gene Ontology Consortium 2017)​. GO terms enrichments were             
assessed using goatools ​(Klopfenstein et al. 2018) v0.8.2, using a FDR-corrected p-value            
threshold of 0.01. 
 
Transcriptomics analysis 
Yeast were grown to and OD of 0.4 and total RNA was extracted using the MasterPure Yeast                 
RNA purification Kit (Biozym, Epicentre). The samples were quality tested on the Fragment             
analyzer (AATi/Agilent) using the Standard sensitivity RNA kit (AATi/Agilent), 600 ng of total             
RNA was used for library preparation. The libraries were prepared using the Truseq Stranded              
mRNA kit (Illumina) using a Beckman Fxp liquid handler system. Sequencing was carried out on               
an Illumina NextSeq 500 in 75 single end mode. 

Raw single-ended Illumina reads were trimmed to remove the TruSeq3 adaptors using            
trimmomatic ​(Bolger et al. 2014) v0.36. Trimmed reads were pseudo-aligned to the yeast             
reference genome transcripts (downloaded from the SGD database, ​Cherry et al. 2012 ​) using             
kallisto ​(Bray et al. 2016) v0.44.0 with the sequence based bias correction and using an               
average fragment length of 130bp (70bp standard deviation). Differential gene expression           
analysis between each each strain and S288C was performed using DESeq2 ​(Love et al. 2014)               
v3.8. Raw reads are available in the GEO database with accession number GSE123118. 
 
Natural isolates growth assay 
Raw plate images were cropped using ImageMagick to exclude the plate plastic borders. Raw              
colony sizes were extracted from the cropped images using gitter ​(Wagih & Parts 2014) v1.1.1,               
using the “autorotate” and “noise removal” features on. Poor quality plates were flagged when              
no colony size could be reported for more than 5% of colonies (poor overall quality) or when no                  
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colony size could be reported for more than 90% of a whole row or column (potential grid                 
misalignment). Conditions with less than three replicates were excluded from further processing.            
Raw colony sizes for the remaining conditions were used as an input for the EMAP algorithm                
(Collins et al. 2006)​, with default parameters except the minimum colony size which was set to 5                 
pixels. The computed raw s-scores were further analysed as reported in the “Chemical             
genomics data analysis” section. 
 
Genome-wide association study of the yeast natural isolates 
The genetic variants found in the yeast natural isolates collection (SNPs/InDels, CNVs and             
genes presence/absence patterns) were downloaded from      
http://1002genomes.u-strasbg.fr/files/ on October 4th 2018. SNPs and InDels were normalized          
and filtered to retain variants with at least 5% minor allele frequency (common variants), using               
bcftools ​(Li et al. 2009) v1.9. Rare variants (SNPs with minor allele frequency <= 5%) were                
included computing their impact on gene function, using the “gene disruption score” described in              
previous studies ​(Jelier et al. 2011; Galardini et al. 2017)​. In short, common nonsynonymous              
and nonsense variants were kept, together with genes presence/absence patterns; the impact            
of nonsynonymous variants was predicted using the SIFT ​(Ng & Henikoff 2001) and FoldX              
(Guerois et al. 2002) algorithms, when applicable. The individual predictions were translated to             
their probability of being neutral ( ) based on a collection of variants with known impact     P neutral           
(Jelier et al. 2011)​, using the following transformations: 
 

(neutral ) P SIFT =  1
(1 + e )−(−1.312 ln(SIFT  + 1.598E ) + 4.104)−5  

 
(neutral ) P FoldX =  1

(1 + e )−(0.218 FoldX  + 0.074)  

 
where and are the scores of each individual predictor. Nonsense variants were IFTS  oldX  F           
assigned a value of 0.99 if they appeared in the last 5% of the protein sequence, 0.01  P neutral                
otherwise. The overall likelihood that gene function was affected by common variants ( ,            P (AF )  
or gene disruption score) was computed as follows: 
 

(AF ) 1 (neutral)P =  −  ∏
k

i = 1
P i  

 
where is the totality of nonsynonymous and nonsense variants observed in each gene. When k              
both SIFT and FoldX predictions were available, priority was given to SIFT scores;             
nonsynonymous variants with neither predictions available were assigned the highest observed           

value. If a gene was considered as absent a value of 0.99 was assigned. TheP neutral          P (AF )       
gene disruption score is available in ​Supplementary Material 5​​. The CNVs, gene            
presence/absence patterns and digitized gene disruption scores (1 if > 0.9, 0 otherwise)         P (AF )      
were encoded in a VCF (Variant Calling Format) file together with the common variants and               
recoded using plink ​(Purcell et al. 2007)​ v1.90b4. 
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A genome-wide association analysis has been carried out to highlight common and rare             
variants associated with growth variability across the yeast natural isolates, using the LMM             
(Linear Mixed Model) implemented in limix ​(Lippert et al. 2014) v2.0.0a3. Missing values were              
mean imputed and the model was applied to each growth condition independently. The kinship              
matrix was computed using the strains’ phylogenetic tree from the original yeast natural isolates              
publication ​(Peter et al. 2018)​. Intersections between associated variants and genes present in             
the KO libraries were recorded using a 3kbp window centered around each gene. Gene              
annotations were retrieved from the SGD database ​(Cherry et al. 2012)​. Enrichments were             
tested using the Fisher’s exact test. 
 
Reproducibility 
Most of the code used to process the data is available at the following URL:               
https://github.com/mgalardini/2018koyeast. The code is mostly based on the python         
programming language, using the following libraries: numpy ​(Oliphant 2006) v1.15.2, scipy           
(Oliphant 2007) v1.1.0, pandas ​(McKinney & Others 2010) v0.23.4, scikit-learn ​(Pedregosa et            
al. 2011) v0.20.0, statsmodels ​(Seabold & Perktold 2010) v0.9.0, biopython ​(Cock et al. 2009)              
v1.71, dendropy ​(Sukumaran & Holder 2010) v4.4.0. Reproducibility was ensured through the            
use of snakemake ​(Köster & Rahmann 2018) v4.7.0. Data was visualized inside jupyter             
notebooks using jupyter ​(Kluyver et al. 2016) v4.4.0 using the matplotlib ​(Hunter 2007) and              
seaborn ​(Waskom et al. 2018)​ plotting libraries version 3.0.0 and 0.9.0, respectively. 
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Supplementary figures 

 
Supplementary Figure 1 - Benchmarking of s-scores. A) Receiver operating characteristic (ROC) curves and B)               
Precision-Recall curves for two gene functional interactions sets across the four KO libraries. Numbers between               
parentheses in A) represent the Area Under the Curve (AUC).  
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Supplementary Figure 2 - Calling significant differences in s-scores. A) Null model to call significant s-scores                
differences. B) All strains pairwise comparisons, indicating s-scores that change significantly between each pair. C)               
Overview of all strains pairwise comparisons; “changes to ignore” refers to significant changes (corrected p-value <                
0.01) that are inconsistent (see Materials and methods).  
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Supplementary Figure 3 - General invariance of shared phenotypes when varying the significance threshold.              
Proportion of shared phenotypes for different s-scores significance thresholds on calling phenotypes.  
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Supplementary Figure 3 - Condition specific changes in gene essentiality and fitness. A) Average number of                
KO phenotypes that are exclusive to a particular strain across all strains pairwise comparisons. Conditions order is                 
the same as panel B. B) Wild type fitness of each strain relative to S288C across all conditions; each dot represents a                      
specific replicate where colony sizes were measured..  
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Supplementary Figure 4 - Growth profiles of the 925 yeast natural isolates. A) Clustermap of s-scores for the                  
whole set of conditions in which the natural isolates were tested in. B) Number of significantly (p-value < 1E-6)                   
associated variants across the same conditions as in panel A.  
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Supplementary Materials 
 
Supplementary Table 1: ​​list of conditions used to profile the KO libraries 
Supplementary Table 2: ​​list of gene-condition associations conserved across the 4 KO 
libraries 
Supplementary Table 3: ​​list of gene-condition associations that show a phenotypes reversal 
between pairs of strains 
Supplementary Table 4: ​​exclusiveness measure for all genes tested for their ability to change 
their phenotype 
Supplementary Table 5: ​​GO terms enriched for genes with high exclusiveness 
Supplementary Table 6: ​​intersections between gene KO and QTL hits 
Supplementary Table 7: ​​fitness of the Y55, YPS and UWOP strains relative to S288C 
 
Supplementary Material 1: ​​KO libraries s-scores 
Supplementary Material 2: ​​differential expression of the Y55, YPS and UWOP strains 
compared to S288C in physiological conditions and in the presence of caffeine 
Supplementary Material 3: ​​KO libraries s-scores divided by batch in order to assess 
reproducibility 
Supplementary Material 4: ​​systematic assessment of changes in gene conditional essentiality 
for each possible strains’ pair 
Supplementary Material 5: ​​gene burden score for common variants in 1,011 strains across 
5,699 genes 
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