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Abstract
High quality reference genomes are an important resource in genomic research projects. A

consequence is that DNA fragments carrying the reference allele will be more likely to map suc-
cessfully, or receive higher quality scores. This reference bias can have effects on downstream
population genomic analysis when heterozygous sites are falsely considered homozygous for
the reference allele.

In palaeogenomic studies of human populations, mapping against the human reference
genome is used to identify endogenous human sequences. Ancient DNA studies usually operate
with low sequencing coverages and fragmentation of DNA molecules causes a large proportion
of the sequenced fragments to be shorter than 50 bp – reducing the amount of accepted
mismatches, and increasing the probability of multiple matching sites in the genome. These
ancient DNA specific properties are potentially exacerbating the impact of reference bias on
downstream analyses, especially since most studies of ancient human populations use pseudo-
haploid data, i.e. they randomly sample only one sequencing read per site.

We show that reference bias is pervasive in published ancient DNA sequence data of pre-
historic humans with some differences between individual genomic regions. We illustrate that
the strength of reference bias is negatively correlated with fragment length. Reference bias
can cause differences in the results of downstream analyses such as population affinities, het-
erozygosity estimates and estimates of archaic ancestry. These spurious results highlight how
important it is to be aware of these technical artifacts and that we need strategies to mitigate
the effect. Therefore, we suggest some post-mapping filtering strategies to resolve reference
bias which help to reduce its impact substantially.

Introduction
The possibility to sequence whole genomes in a cost-efficient way has revolutionized the way how1

we do genetic and population genetic research. Annotated, high-quality reference genomes are a2

cornerstone for resequencing surveys which aim to study the genetic variation and demographic3

history of an entire species. Resequencing studies usually align the sequences of all studied in-4

dividuals to a linear haploid reference sequence originating from a single individual or a mosaic5

of several individuals. In each site, this haploid sequence will only represent a single allele out6

of the entire genetic variation of the species. An inherent consequence is some degree of bias to-7

wards the alleles present in that reference sequence (“reference bias”). Sequencing reads carrying8

an alternative allele will naturally have mismatches in the alignment to the reference genome and9

consequently have lower mapping scores than reads carrying the same allele as the reference. This10

effect increases with genetic distance from the reference genome, which is of particular interest11

when using a reference genome from a related species for mapping (Shapiro & Hofreiter, 2014;12

Gopalakrishnan et al., 2017; Heintzman et al., 2017). Generally, reference bias can influence vari-13

ant calling by missing alternative alleles or by wrongly calling heterozygous sites as homozygous14

reference (Ros-Freixedes et al., 2018) which is known to influence estimates of heterozygosity and15

allele frequencies (Chen et al., 2012; Bryc et al., 2013; Brandt et al., 2015).16

The field of palaeogenomics and the population genomic analysis of DNA obtained from hominin17

remains has led to a number of important insights and groundbreaking results in recent years,18
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including admixture between different hominin groups, migrations of prehistoric humans and the19

evolution of different phenotypes (Günther & Jakobsson, 2016; Slatkin & Racimo, 2016; Nielsen20

et al., 2017; Dannemann & Racimo, 2018; Lazaridis, 2018; Skoglund & Mathieson, 2018). DNA21

preservation poses a major challenge for these studies, as fragmentation causes most authentic22

sequences to be shorter than 100 bp, and deamination damage increases the number of mismatches23

and can even mimic genetic variation at transition sites (Hofreiter et al., 2001; Brotherton et al.,24

2007; Briggs et al., 2007).25

In addition to fragmentation and other post-mortem damages, low coverage data is a major26

limiting factor for ancient DNA studies. Coverages below 1x rarely permit calling diploid genotypes27

so a very common approach is to use “pseudo-haploid” data: at each known single nucleotide28

polymorphisms (SNP) site one sequencing read is picked at random (or following a majority rule)29

in order to represent a haploid genotype of that individual. This approach would not introduce bias30

if the reads were a random representation of the chromosomes carried by the individual. Reference31

bias, however, would introduce some skew towards the reference allele at heterozygous sites. These32

characteristics of ancient DNA and practices used in palaeogenomic studies make them particularly33

vulnerable to reference bias (Prüfer et al., 2010; Schubert et al., 2012). It has been shown that34

pseudo-haploid data can be more biased than imputed genotypes (Martiniano et al., 2017), and35

that reference bias and fragment length artifacts can interfere with phylogenetic classifications36

(Heintzman et al., 2017). Reference bias can influence downstream analyses if these are based on37

estimating allele frequencies in a population, or studying pairwise allele sharing between individuals38

and groups.39

This study investigates the presence and impact of reference bias in studies of prehistoric40

human populations using genomic ancient DNA. We first illustrate its abundance in published41

data from ancient human and archaic hominins, and illustrate how it is influenced by standard42

data processing. We then show how reference bias can influence some basic population genetic43

analyses such as population affinities and heterozygosity. Finally, we discuss some possible data44

filtering strategies in order to mitigate reference bias in ancient DNA studies.45

Results46

Mapping quality filtering47

We first investigate whether reference bias is present in published ancient DNA data. We restrict48

our analysis to known SNPs, as most population genomic analyses are using SNPs and the allele49

frequencies at those positions. In particular, we are only using transversion polymorphisms (to50

avoid the effect of post-mortem deaminations) and sites identified to be polymorphic in a world-wide51

set of modern human populations (Mallick et al., 2016). We investigate supposedly heterozygous52

sites (defined as sites covered by at least 10 reads with at least 25% representing the minor allele)53

in a set of published medium to high coverage human and hominin genomes (Table 1). We note54

that our approach does not include any rescaling of base qualities, as such approaches usually take55

the reference allele into account which may amplify reference bias.56

At a heterozygous site, a DNA extract of an individual should contain the same number of ref-57

erence and alternative fragments. We observe that after mapping to the human reference genome58

the average proportion of alternative alleles is lower than the expected 50 percent for all of the59

anatomically modern humans investigated (Figure 1), regardless of whether they represent SNP60

capture data, damage repaired libraries or standard shotgun sequencing (Table 1). As sequence61

fragments carrying the alternative allele will show an elevated number of mismatches to the refer-62

ence genome, mapping quality seems a natural filter to avoid reference bias. Consistent with this63

expectation, we see a slightly stronger reference bias for stricter mapping quality filters. Lowering64

the mapping quality cutoff can have other detrimental effects, however, for example an enrichment65

of microbial contamination (Renaud et al., 2017) or sequences not uniquely mapping to a particular66

region of the genome. This is somewhat illustrated by the archaic genomes, two Neandertals and67

a Denisovan, which show - on average - a bias towards the alternative allele when no mapping68

quality filter is employed (Figure 1). This suggests that these more distant taxa carry variation in69

the genome which is not captured by the reference genome based on anatomically modern humans,70

in turn causing fragments originating in other parts of the genome to map at the investigated sites.71

As the qualities of the base calls have not been rescaled after mapping to the reference genome, we72

do not see an effect of different minimum base quality thresholds on reference bias (Supplementary73
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Table 1: Information on the published medium to high coverage palaeogenomic and archaeogenomic
data used in this study.

Sample ID (Partial) UDG
treatment$

SNP capture Average
sequenc-
ing depth†

Reference

Stuttgart X 15.8x (Lazaridis et al., 2014)
Loschbour X 17.7x (Lazaridis et al., 2014)
Ust-Ishim X 29.9x (Fu et al., 2014)
sf12 X 64.7x (Günther et al., 2018)
baa001 X 13.2x (Schlebusch et al., 2017)
Kotias 12.5x (Jones et al., 2015)
Bichon 15.4x (Jones et al., 2015)
ne1 18.5x (Gamba et al., 2014)
br2 15.4x (Gamba et al., 2014)
atp016 14.1x (Valdiosera et al., 2018)
Rathlin1 10.9x (Cassidy et al., 2015)
Ballynahatty 10.7x (Cassidy et al., 2015)
I0054 X X 2.4x (Mathieson et al., 2015)
I0103 X X 2.4x (Mathieson et al., 2015)
I0118 X X 1.7x (Mathieson et al., 2015)
I0172 X X 3.4x (Mathieson et al., 2015)
I0408 X X 1.7x (Mathieson et al., 2015)
I0412 X X 1.9x (Mathieson et al., 2015)
I0585 X X 2.4x (Mathieson et al., 2015)
AltaiNeandertal X 45.2x (Prüfer et al., 2014)
VindijaNeandertal X 25.9x (Prüfer et al., 2017)
Denisovan X 26.7x (Meyer et al., 2012)

$ Enzymatic repair of deamination damages
† at analyzed SGDP SNPs, using a minimum mapping quality of 30

Figure 1).74

Investigating pairwise correlations between the proportion of alternative alleles at sites con-75

sidered heterozygous in both individuals shows significantly positive correlations in most cases76

(Supplementary Table 1). This indicates that the strength of reference (and alternative) bias may77

differ regionally across the genome, so there could be an effect of sequence context and uniqueness78

of the specific sequences across the genome. The highest correlations are observed between samples79

from the same study or produced by the same institute suggesting that similar wet lab techniques80

also influence this effect.81

Distribution of bias82

To investigate the distribution of reference bias instead of just averages as above, we modified83

original reads to carry opposite alleles at each SNP site and remapped them. We created a virtual84

read set for the Scandinavian Mesolithic hunter-gatherer sf12 (Günther et al., 2018) containing85

reads for all SNPs identified with mapping quality and base quality of at least 30 in the original86

mapping. No filter was placed on coverage, a SNP was included even if it was only covered by a87

single read. This joint read set of original and modified reads thus had perfectly balanced allele88

ratios for all SNPs. The full set was remapped, and SNPs were grouped based on the observed89

alternative allele fraction among all reads that again mapped to their respective SNPs with mapping90

quality of at least 30.91

In total, 1,157,266 SNPs were analyzed. Out of these, 1,088,802 (94.08%) showed perfect allelic92

balance, with a proportion of alternative alleles of 0.5. About 100 SNPs were also affected by reads93

that mapped back with sufficient quality, but to a different genomic location. In these results, we94

only present proportions based on reads that map back to their original location from the first95

mapping round. The proportion of alternative alleles is summarized in Table 2. Notably, there96

is a subset of SNPs showing alternative, as opposed to reference, bias, and also a subset of SNPs97

where the bias is total, i.e. only one of the two alleles is ever mapped back successfully (within this98
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Figure 1: Reference bias in published genome-wide ancient DNA datasets for different minimum
mapping quality thresholds. The plots show the average proportion of reads at heterozygous
transversion sites (see Methods) representing the alternative allele. Error bars indicate two stan-
dard errors of the mean.

dataset). The distribution across the genome of sites deviating from the balanced case is similar99

to the overall density of the SNPs used. Generally, all chromosomes and chromosomal regions are100

affected.101

Table 2: Proportion of alternative alleles when mapping back original reads and virtual opposite
allele reads for the sf12 individual.

Proportion of alternative alleles # SNPs Percentage
0 11497 0.99%

(0, 0.4) 12962 1.12%
[0.4, 0.5) 37262 3.22%

0.5 1088802 94.08%
(0.5, 0.6] 4172 0.36%
(0.6, 1) 1413 0.12%

1 1158 0.10%

The influence of fragment length102

Most mapping strategies set the number of allowed mismatches relative to the length of the se-103

quenced fragment. Therefore, shorter fragments might show a stronger reference bias than long104

fragments. To investigate this, we used the 57x genome generated for the Scandinavian Mesolithic105

hunter-gatherer sf12 (Günther et al., 2018) and partitioned the data into fragment length bins.106

The large amount of data allows us to still have a sufficient number of SNPs covered at 10x or107
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more for each of the length bins.108

Somewhat expectedly, shorter fragments display a stronger reference bias than longer sequences109

(Figure 2A). Generally, fragment length might be a main driver of reference bias across all samples110

as the mode of each individual’s fragment size distribution is highly correlated with the average111

proportion of alternative alleles at heterozygous sites (Pearson’s r = 0.67, p = 0.0006; Figure 2B).112

This also has an effect on the proportion of sites considered heterozygous among all sites analyzed113

which can be seen as a relative measure for the individual’s heterozygosity (Figure 2C). In fact,114

different fragment length bins of the same individual produce heterozygosity estimates that do115

not overlap in their 95% confidence interval (Figure 2C). This represents a general limitation for116

estimating heterozygosity from ancient DNA data which may to some degree explain the generally117

low diversity estimates for many prehistoric groups (e.g. Skoglund et al., 2014; Kousathanas et al.,118

2017; Scheib et al., 2018). The potential of obtaining significantly different estimates for the same119

population genetic statistic may also have enormous effects on other downstream analyses such as120

population affinities and population structure.121
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Figure 2: Connection between fragment length and reference bias. (A) Proportion of alternative
allele for different fragment length bins in the high coverage individual sf12. (B) Correlation
between average proportion of alternative alleles and the mode of the fragment size distribution
across all investigated individuals. (C) Proportion of heterozygous sites among all sites with
sufficient coverage for different fragment length bins in the high coverage individual sf12. All error
bars indicate two standard errors.

Impact on measures of population affinity122

In order to investigate the influence of reference bias on population affinities, we calculated dif-123

ferent combinations of D statistics of the form D(Chimp,X;Y,Z), where X is a modern human124

population, and Y and Z are two different treatments of the same individual sf12. Therefore, the125

expectation for D is 0, but differences in reference bias between Y and Z could lead to spurious126

allele sharing between population X and a deviation from 0. Negative values of D indicate more127

allele sharing of X with Y while positive values indicate an excess of shared alleles between X128

and Z. The populations X were grouped by continental origin and we calculated the statistics129

separately for whole genome shotgun data (SGDP, Mallick et al., 2016) and genotyped populations130

(HO, Lazaridis et al., 2014).131

We use four different versions of genotypes for sf12. First, we compare pseudo-haploid calls132

(random allele per site with minimum mapping and base quality of 30) to diploid genotype calls133

(Figure 3A and C). This comparison assumes that the diploid calls are less affected by reference134

bias as slight deviations from a 50/50-ratio at heterozygous sites should be tolerated by a diploid135

genotype caller but random sampling would be biased towards the reference allele. This is sup-136

ported by theD statisticD(chimp, reference; sf12_hapl, sf12_dipl) < 0 (Z = −13.5), indicating137

more allele sharing between the reference and the pseudo-haploid calls. For this illustration, we138

are using diploid genotype calls from GATK as we are only looking at the variation at known SNP139

sites. We note that genotype callers specifically developed for ancient DNA (Link et al., 2017;140

Zhou et al., 2017; Prüfer, 2018) are preferable when calling novel variants from ancient DNA data141

as they incorporate post-mortem damage and other ancient DNA specific properties. Second, we142
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compare randomly sampled reads of different fragment length categories (Figure 3B and D) as143

longer (75-80 bp) fragments should exhibit less reference bias than short (35-40 bp) fragments (see144

above), which is supported by the D statistic D(chimp, reference; sf12_short, sf12_long) < 0145

(Z = −20.6), indicating more allele sharing between the reference and pseudo-haploid calls from146

short fragments.147

In general, we observe a deviation from zero in most cases highlighting the effect of reference bias148

on these statistics (Figure 3). Surprisingly, the directions of this bias differ between the HO data149

and the SGDP data, which suggests that different reference data sets are also affected by reference150

bias at different degrees. This represents a potential batch effect which also needs to be considered151

when merging different reference data sets. Affinities to populations of different geographic origin152

vary in their sensitivity to reference bias but little general trends are observable. Western Eurasian153

populations show a strong deviation from 0 in all tests. Notably, African populations show the154

strongest deviation in the short versus long comparison in the SGDP data set while they exhibit155

almost no bias in the same comparison using the HO data. As the biases do not seem to show156

a consistent tendency, we cannot directly conclude that recent ancient DNA papers have been157

systematically biased in some direction. The shifts appear to be dataset and test specific so some158

results could still be driven by spurious affinities due to reference bias.159
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Figure 3: D statistics testing the affinity between different modern populations (X) and two
different treatments of the high coverage individual sf12. The basis for these comparisons are
the modern sequence data of the SGDP panel (A and B) or genotype data from the HO panel
(C and D). Comparisons are done between pseudo-haploid and diploid calls for sf12 (A and C),
and between pseudo-haploid calls from short (35-40 bp) or long (75-80 bp) fragments (B and D).
The x axis represents the geographic origin of population X, diamonds show the mean for each
continental group.

The human reference genome sequence is a mosaic of the genomes of different individuals. The160

geographic origin of the specific segments should have an impact on the population genetic affini-161

ties as the reference allele will more likely be found in specific geographic regions. We obtained162

information on the local ancestry of the human reference genome from Green et al. (2010). Ac-163

cording to this estimate 15.6 % of the reference genome can be assigned to African, 5.0 % to East164

Asian and 30.0 % to European origin while the origin for 49.4 % is uncertain. We re-calculate165

D statistics for the different parts of the genome separately, restricting the analysis to the SGDP166

data. The impact of reference bias differs between the different ancestries (Figure 4). Generally,167
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reference bias is weakest for reference segments of African origin. Notably, African populations168

show the strongest deviations from 0 in this case. Sequences mapping to the European segments of169

the reference show a strong reference bias with slight differences between continental populations.170

Reference bias at the East Asian segments of the reference genome seems intermediate but the D171

statistics also show large variation which may be due to the only small proportion of the reference172

genome that could confidently be assigned to an East Asian origin (Green et al., 2010).173
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Figure 4: D statistics similar to Figure 3 for different parts of the reference genome depending
on their geographic origin (Green et al., 2010). The x axis represents the geographic origin of
population X, diamonds show the mean for each continental group.

Finally, we explore whether reference bias can affect estimates of archaic ancestry. We estimate174

the Neandertal ancestry proportion in sf12 as done by Prüfer et al. (2017):175

α =
f4(sf12,Mbuti;AltaiNea,Chimp)

f4(V indijaNea,Mbuti;AltaiNea,Chimp)

We use eight different combinations of diploid and pseudo-haploid calls for sf12 as well as the176

two Neandertals in this statistic (Table 3). The 95% confidence intervals of all estimates overlap177

but point estimates differ by up to 1.25% when using all pseudo-haploid versus all diploid calls.178

The African segments of the reference genome yield the lowest point estimates (as low as 1.42%)179

– some of these estimates are not even significantly different from 0. These differences highlight180

some of the sensitivities of f4-ratios not just to the choice of reference populations (Petr et al.,181

2018) but also to technical artifacts.182

Potential data filtering strategies183

After establishing the abundance and potential effect of reference bias, we investigated two simple184

post-mapping filtering approaches to mitigate reference bias. The two agents involved in the185

process are the reference genome and the sequence fragments or reads. We investigated 1,407,340186

of the SGDP transversion set of sites with at least 200 bp distance between two neighboring SNPs.187

First, we modified reads that successfully mapped to a SNP site with a match of the reference188

allele to carry the alternative allele. These modified reads were re-mapped to the reference genome189
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Table 3: Percentage of Neandertal ancestry (and standard errors) in sf12 using diploid and pseudo-
haploid calls and different subsets of the human reference genome. Parts of the genome of East
Asian origin were excluded due to their small total size.
Statistic$ Full reference European Reference African Reference

f4(sf12h,Mbuti;AltaiNeah,Chimp)
f4(V indijaNeah,Mbuti;AltaiNeah,Chimp) 3.15± 0.44 3.11± 0.80 2.47± 1.01

f4(sf12h,Mbuti;AltaiNead,Chimp)
f4(V indijaNeah,Mbuti;AltaiNead,Chimp) 2.54± 0.44 2.70± 0.80 1.91± 1.01

f4(sf12d,Mbuti;AltaiNeah,Chimp)
f4(V indijaNeah,Mbuti;AltaiNeah,Chimp) 2.22± 0.43 2.76± 0.77 1.91± 0.98

f4(sf12d,Mbuti;AltaiNead,Chimp)
f4(V indijaNeah,Mbuti;AltaiNead,Chimp) 2.79± 0.43 2.32± 0.76 1.42± 0.98

f4(sf12h,Mbuti;AltaiNeah,Chimp)
f4(V indijaNead,Mbuti;AltaiNeah,Chimp) 2.68± 0.45 2.43± 0.80 2.59± 1.01

f4(sf12h,Mbuti;AltaiNead,Chimp)
f4(V indijaNead,Mbuti;AltaiNead,Chimp) 2.10± 0.44 2.07± 0.79 2.03± 1.00

f4(sf12d,Mbuti;AltaiNeah,Chimp)
f4(V indijaNead,Mbuti;AltaiNeah,Chimp) 2.45± 0.44 2.22± 0.77 2.12± 0.97

f4(sf12d,Mbuti;AltaiNead,Chimp)
f4(V indijaNead,Mbuti;AltaiNead,Chimp) 1.90± 0.44 1.81± 0.76 1.63± 0.97

$ d and h denote diploid and pseudo haploid-calls, respectively

and they passed the filtering if they still mapped to the same position of the genome with no190

indels. Second, we prepared a modified version of the reference genome which carried a third191

base (neither the reference base nor the known alternative allele) at all 1,407,340 sites. A similar192

approach has been used to study ultra-short fragments in sequence data from archaic hominins193

(de Filippo et al., 2018). All reads originally mapping to the SNP sites were re-mapped to this194

modified reference genome, and again only reads that mapped to the same location and without195

indels passed the filtering. Finally, we combined both filters. All scripts used for filtering can be196

found at https://bitbucket.org/tguenther/refbias/197

The filtering approaches increase the average proportion of the alternative allele at homozygous198

sites (Figure 5A). Mapping to a modified reference genome shows a slightly better improvement199

than using modified reads, while combining both yields the best results in most cases. A small200

number of samples shows a 50/50-ratio after filtering but most are still significantly below that201

ratio. This is not surprising as the filtering is only applied to reads that have previously mapped to202

a single reference genome so the data before filtering does not represent a 50/50-ratio, and removing203

some reference allele reads cannot completely account for the non-reference reads lost earlier. This204

is most evident in the data from Mathieson et al. (2015) which was only available as mapped205

reads after running bwa (Li & Durbin, 2009) with lower maximum edit distance parameters (-n206

0.04) than our pipeline which does not leave much room for improvement after filtering. Another207

possible reason for deviation from a 50/50-ratio at heterozygous sites could be low levels of modern208

contamination which may lead to a slight over-representation of the reference allele before mapping209

(Prüfer et al., 2014; Racimo et al., 2016; Prüfer, 2018). Comparing the outcome of the filters to210

different fragment length categories shows a similar pattern: the bias is decreased but some length211

categories still display differences in their relative heterozygosity (Figure 5B).212

Discussion213

Systematic biases are problematic in all types of quantitative research, and it is therefore important214

to be aware of them and alleviate or avoid their effects as much as possible. Different systematic215

biases in next-generation sequencing data have been investigated before (Prüfer et al., 2010; Ross216

et al., 2013), and it is known parameters such as sequencing depth can influence population genomic217

estimates (Crawford & Lazzaro, 2012; Fumagalli, 2013; Korneliussen et al., 2013). Differences in218

sequencing strategies (e.g. read length) and bioinformatic processing have been shown to generate219

batch effects and dramatically affect downstream analyses (Leek et al., 2010; Leigh et al., 2018;220

Shafer et al., 2016; Mafessoni et al., 2018). Another well known bias in population genetics is221

ascertainment bias which arises when the studied variants were ascertained in selected populations222

only, and can substantially impact measurements of heterozygosity and related methods (Albrecht-223

sen et al., 2010). The research community is aware of these potential issues and they are avoided224

by filtering strategies, standardizing bioinformatic pipelines, including controls and accounting for225

systematic biases in downstream analysis.226

The common use of randomly sampled alleles and pseudo-haploid data in palaeogenomic re-227
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Figure 5: Comparison of different post-mapping filtering strategies for high coverage bam files from
anatomically modern humans employing mapping and base quality filters of 30. (A) Average pro-
portion of the alternative allele for the comparison between no additional filters (see also Figure 1),
remapping of reads carrying the reference allele modified to carry the alternative allele (modified
reads), remapping against a modified reference carrying a third allele at the SNP sites, and both
filters together. (B) Influence of filtering on measures of heterozygosity for different fragment sizes
in sf12. Error bars indicate two standard errors.

search can exacerbate the effect of reference bias compared to diploid genotype calls obtained from228

medium to high coverage data. We show that reference bias is able to lead to significant differ-229

ences between estimates of population genetic parameters (heterozygosity), overestimated levels230

of archaic ancestry as well as to cause spurious affinities to certain populations. Mixing different231

mapping parameters or minimum fragment lengths in the same study should generally be avoided.232

Additionally, strong differences of fragment size distributions between different individuals may233

cause spurious affinities due to reference bias. Many estimates from low coverage data are gener-234

ally noisy, but studies show increasing sample sizes and amounts of data which means that subtle235

biases become of increasing importance in the future. Notably, the bias for the whole genome236

(Figure 3) seems less extreme than some of the results for ancestry-specific segments (Figure 4)237

suggesting that the mosaic nature of the human reference genome may reduce the bias to some238

degree as different regions will be biased in different directions. In this respect the human refer-239

ence genome is different from many other species where the reference genome is derived from a240

single individual which would increase the potential impact of reference bias on population genetic241

analysis in other systems.242

Our analysis does not directly indicate a strong direct impact of different wet lab procedures243

on the observed average degree of reference bias. We caution, however, that such an effect may244

exists as indicated by the correlations between samples processed in the same lab (Supplementary245

Table 1). Different library preparation techniques produce different length distributions since246

some approaches are directly targeting shorter fragments which will have an impact on mapping.247

Furthermore, the SNP capture approaches used to generate the data we analyzed uses one bait248

per allele minimizing reference bias before sequencing. Most whole genome or exome capture249

approaches, however, are using baits designed from a single individual which should introduce a250

pre-mapping bias towards the allele carried by that person (Quail et al., 2008; Heinrich et al., 2012;251

Meynert et al., 2013; Lindo et al., 2016). Finally, contamination from another person should tend252
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to introduce the major allele which is likely the reference allele in most cases – a process that will253

also increase reference bias before mapping (Prüfer et al., 2014; Racimo et al., 2016; Prüfer, 2018).254

Our analysis of the distribution of reference bias across the genome for the sf12 individual255

has several repercussions. First, most reads are neutral to changing the allele to its opposing256

counterpart. This leads to a possible alternative filtering strategy. In cases where a pre-defined set257

of variants is acceptable, a quality control should be performed on the study level to filter out SNPs258

which correspond to reads that do not survive this alternative mapping. The exact details of such259

a filter will, again, be dependent on the expected length and degradation of the reads. Another260

important observation is that reference bias does not operate alone. There is also a weaker, but261

very clear, signal of alternative allele bias, affecting roughly 0.6% of the total SNPs. In addition,262

both reference and alternative bias can sometimes be very strong on the level of individual SNPs.263

Even in a dataset with an overall proportion of alternative reads close to 0.5 in heterozygous sites264

overall, subsets of SNPs might perform very differently, again possibly confusing deeper forms of265

analysis that do not only consider genome-wide metrics – for example selection scans or analysis266

of loci involved in certain traits.267

We show, that filtering steps can reduce but not completely eliminate reference bias at SNPs268

after mapping. To fully prevent reference bias, alternative mapping strategies would be needed269

or filtering strategies would have to be developed for all raw data which is not always published.270

Furthermore, these proposed filters require a pre-defined set of variants used for downstream anal-271

ysis and are not suitable for calling novel variants from ancient DNA data. The latter, however,272

will generally be only restricted to high quality and high coverage samples. A recently developed273

genotype caller for ancient DNA data estimates reference bias from the data and uses the estimate274

as a parameter for variant calling (Prüfer, 2018), which seems to work well for samples sequenced275

to coverages of 15x or higher. One could use the filtering steps tested by us in a similar manner to276

estimate what proportion of reads in a library are affected by reference bias which could later be277

used to estimate genotype likelihoods (Nielsen et al., 2011; Wang et al., 2013). As reference bias278

is somewhat predictable and detectable, this offers opportunities to account for it in downstream279

analyses (e.g. Bryc et al., 2013; Wu et al., 2017).280

Alternative mapping strategies such as mapping against genome graphs (Paten et al., 2017;281

Garrison et al., 2018) or multiple reference genomes simultaneously (Schneeberger et al., 2009)282

could be able to eliminate reference bias already in the mapping step. These approaches are not283

broadly established in human genomics yet but their development has huge potential with regard284

to reference bias. Such approaches could also lead to an increase in the total amount of authentic285

data that can be obtained from a library while post-mapping filters will reduce the amount of data286

used for downstream analyses (between 2 and 10 % in our cases). In addition to filtering data287

and standardizing bioinformatic pipelines for all samples used in a study (both published data and288

newly sequenced), we propose simulations as a potential control. Specific ancient DNA simulation289

suites (Renaud et al., 2017) provide the opportunity to simulate data exactly matching fragment290

size and damage patterns of empirical ancient DNA data so one can use them to study if observed291

patterns may be driven by reference bias alone.292

The present study focused mainly on humans but the effect of reference bias extends to other293

species as well. The slight alternative bias in archaic hominins and the different population affinities294

depending on the geographic origin of the reference genome illustrate that increasing evolutionary295

distance can exacerbate reference bias or even cause systematic alternative bias at some sites.296

This suggests that mapping against a reference genome of a related species (in the absence of297

a reference genome for the species in focus) may impact downstream analyses as well (Green298

et al., 2010; Schubert et al., 2012; Shapiro & Hofreiter, 2014; Gopalakrishnan et al., 2017), but the299

population genetic bias may be weaker as the reference genome employed usually represents an300

outgroup of equal distance to all individuals in the studied species.301

Conclusion302

Our analysis highlights that reference bias is pervasive in ancient DNA data used to study pre-303

historic populations. While the strength of the effect differs between applications and data set,304

it is clear that reference bias has the potential to create spurious results in population genomic305

analyses. Furthermore, even when the overall presence of bias is limited, it is important to assess306

whether subsets of variants are prone to strong systematic bias, including the possible presence of307

alternative bias.308
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We are entering a time where sample sizes in ancient DNA studies reach one hundred and309

beyond, while the questions focus on more and more detailed patterns and subtle differences. At310

the same time, sampling starts to involve older remains and remains from more challenging en-311

vironments – both of which are usually associated with poor preservation and shorter fragments.312

Therefore it seems crucial to avoid reference bias or other biases such as batch effects or ascertain-313

ment biases as much as possible, and to develop and apply computational strategies to mitigate314

the impact of these issues.315

Materials and Methods316

Data sets and bioinformatic processing317

We selected medium to high coverage data from 22 different individuals representing data generated318

by different research groups with different wet lab strategies, covering different geographic regions319

and time periods (Table 1). For anatomically modern human samples, we tried to use data as raw320

as possible but some publications only provided the data after mapping and filtering. The general321

pipeline for these samples was identical to previous studies (Günther et al., 2015, 2018). Reads322

were mapped to the 1000 genomes version of the human reference genome hg19 using bwa (Li &323

Durbin, 2009) with non-default parameters -l 16500 -n 0.01 -o 2. Subsequently, PCR duplicates324

and fragments shorter than 35 bp were filtered (Kircher, 2012).325

We restricted our analysis to a set of known transversion variants to avoid an effect of post-326

mortem damage. We selected 107,404 transversions from the Human Origins panel (Patterson327

et al., 2012; Lazaridis et al., 2014) as well as 1,693,337 transversions which were at at least 5%328

allele frequency in the public data of the Simons Genome Diversity Project (SGDP, Mallick et al.,329

2016). To detect reference bias, we are looking at supposedly heterozygous sites where one would330

expect reads to map in a 50/50-ratio on average if no bias existed. We define a heterozygous site331

as a SNP for which we observe at least ten reads with between 25 to 75% of those representing332

the alternative allele. These reads are assessed using samtools mpileup (version 1.5, Li et al., 2009)333

employing the -B option to turn off base quality rescaling.334

For the high coverage genome of sf12 (Günther et al., 2018) as well as the high coverage archaic335

genomes (Meyer et al., 2012; Prüfer et al., 2014, 2017) we also generated diploid genotype calls336

following the pipeline described in Günther et al. (2018). Briefly, base qualities of all Ts in the337

first five base pairs of each read as well as all As in the last five base pairs were set to 2. Picard338

version 1.118 (Broad Institute, 2016) was used to add read groups to the files followed by indel339

realignment with GATK 3.5.0 (McKenna et al., 2010) based on reference indels identified in phase340

1 of the 1000 genomes project (Auton et al., 2015). Finally, diploid genotypes were called with341

GATK ’s UnifiedGenotyper employing the parameters -stand_call_conf 50.0, -stand_emit_conf342

50.0, -mbq 30, -contamination 0.02 and –output_mode EMIT_ALL_SITES using dbSNP version343

142 as known SNPs. Genotype calls not flagged as low quality calls at investigated SNP sites were344

extracted from the VCF files using vcftools (Danecek et al., 2011).345

Population genetic tests346

In order to investigate the population genetic effect of reference bias, we calculated D and f347

statistics (Patterson et al., 2012). These statistics are based on pairwise allele sharing, so they348

should be sensitive to spurious allele sharing due to reference bias. D statistics were calculated349

with popstats (Skoglund et al., 2015), f4 ratios were calculated ADMIXTOOLS (Patterson et al.,350

2012), and standard errors were calculated employing a weighted block jackknife with a block size351

of 5 Mbp. We used the chimpanzee reference genome as an outgroup.352

Acknowledgements353

We are grateful to Arielle Munters, Federico Sanchez, Mattias Jakobsson, and other members of the354

Human Evolution research program for discussions and comments as well as the attendees of various355

early presentations on this topic for their input and encouragement to turn it into a manuscript. We356

also thank Arielle Munters for initial data processing and Shop Mallick for sharing the local ancestry357

information for the human reference genome. The computations were performed on resources358

provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science359

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/487983doi: bioRxiv preprint 

https://doi.org/10.1101/487983
http://creativecommons.org/licenses/by/4.0/


(UPPMAX) under projects sllstore2017087, uppstore2018139, SNIC 2018/8-106 and 2018/8-239.360

TG was supported by grants from the Swedish Research Council Vetenskapsrådet and The Royal361

Physiographic Society of Lund (Nilsson-Ehle Endowments), as well as a Knut och Alice Wallenbergs362

Stiftelse grant to Mattias Jakobsson. CN was supported by a grant from the Swedish Research363

Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS).364

References365

Albrechtsen A, Nielsen FC, Nielsen R (2010) Ascertainment Biases in SNP Chips Affect Measures366

of Population Divergence. Molecular Biology and Evolution, 27, 2534–2547.367

Auton A, Abecasis GR, Altshuler DM, et al. (2015) A global reference for human genetic variation.368

Nature, 526, 68–74.369

Brandt DYC, Aguiar VRC, Bitarello BD, Nunes K, Goudet J, Meyer D (2015) Mapping Bias370

Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project371

Phase I Data. G3: Genes, Genomes, Genetics, 5, 931–941.372

Briggs AW, Stenzel U, Johnson PL, et al. (2007) Patterns of damage in genomic DNA sequences373

from a Neandertal. Proceedings of the National Academy of Sciences, 104, 14616–14621.374

Broad Institute (2016) Picard tools. https://broadinstitute.github.io/picard/.375

Brotherton P, Endicott P, Sanchez JJ, et al. (2007) Novel high-resolution characterization of ancient376

DNA reveals C> U-type base modification events as the sole cause of post mortem miscoding377

lesions. Nucleic acids research, 35, 5717–5728.378

Bryc K, Patterson NJ, Reich D (2013) A Novel Approach to Estimating Heterozygosity from379

Low-Coverage Genome Sequence. Genetics, S. genetics.113.154500.380

Cassidy LM, Martiniano R, Murphy EM, et al. (2015) Neolithic and Bronze Age migration to381

Ireland and establishment of the insular Atlantic genome. Proceedings of the National Academy382

of Sciences, S. 1–6.383

Chen X, Listman JB, Slack FJ, Gelernter J, Zhao H (2012) Biases and Errors on Allele Frequency384

Estimation and Disease Association Tests of Next-Generation Sequencing of Pooled Samples.385

Genetic Epidemiology, 36, 549–560.386

Crawford JE, Lazzaro BP (2012) Assessing the accuracy and power of population genetic inference387

from low-pass next-generation sequencing data. Frontiers in Genetics, 3, 66.388

Danecek P, Auton A, Abecasis G, et al. (2011) The variant call format and VCFtools. Bioinfor-389

matics (Oxford, England), 27, 2156–2158.390

Dannemann M, Racimo F (2018) Something old, something borrowed: admixture and adaptation391

in human evolution. Current Opinion in Genetics & Development, 53, 1–8.392

de Filippo C, Meyer M, Prüfer K (2018) Quantifying and reducing spurious alignments for the393

analysis of ultra-short ancient DNA sequences. BMC Biology, 16, 121.394

Fu Q, Li H, Moorjani P, et al. (2014) Genome sequence of a 45,000-year-old modern human from395

western Siberia. Nature, 514, 445–449.396

Fumagalli M (2013) Assessing the Effect of Sequencing Depth and Sample Size in Population397

Genetics Inferences. PLOS ONE, 8, e79667.398

Gamba C, Jones ER, Teasdale MD, et al. (2014) Genome flux and stasis in a five millennium399

transect of European prehistory. Nature Communications, 5, 5257.400

Garrison E, Sirén J, Novak AM, et al. (2018) Variation graph toolkit improves read mapping by401

representing genetic variation in the reference. Nature Biotechnology.402

Gopalakrishnan S, Samaniego Castruita JA, Sinding MHS, et al. (2017) The wolf reference genome403

sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC404

Genomics, 18, 495.405

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/487983doi: bioRxiv preprint 

https://doi.org/10.1101/487983
http://creativecommons.org/licenses/by/4.0/


Green RE, Krause J, Briggs AW, et al. (2010) A draft sequence of the Neandertal genome. Science406

(New York, N.Y.), 328, 710–22.407

Günther T, Jakobsson M (2016) Genes mirror migrations and cultures in prehistoric Europe-a408

population genomic perspective. Current Opinion in Genetics & Development, 41, 115–123.409

Günther T, Malmström H, Svensson EM, et al. (2018) Population genomics of Mesolithic Scan-410

dinavia: Investigating early postglacial migration routes and high-latitude adaptation. PLoS411

biology, 16, e2003703.412

Günther T, Valdiosera C, Malmström H, et al. (2015) Ancient genomes link early farmers from413

Atapuerca in Spain to modern-day Basques. Proceedings of the National Academy of Sciences414

of the United States of America, 112, 11917–11922.415

Heinrich V, Stange J, Dickhaus T, et al. (2012) The allele distribution in next-generation sequencing416

data sets is accurately described as the result of a stochastic branching process. Nucleic Acids417

Research, 40, 2426–2431.418

Heintzman PD, Zazula GD, MacPhee RD, et al. (2017) A new genus of horse from Pleistocene419

North America. eLife, 6.420

Hofreiter M, Jaenicke V, Serre D, Haeseler Av, Pääbo S (2001) DNA sequences from multiple421

amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic acids422

research, 29, 4793–4799.423

Jones ER, Gonzalez-Fortes G, Connell S, et al. (2015) Upper Palaeolithic genomes reveal deep424

roots of modern Eurasians. Nature communications, 6, 8912.425

Kircher M (2012) Analysis of high-throughput ancient DNA sequencing data. In Methods in426

Molecular Biology (Clifton, N.J.), Bd. 840, S. 197–228.427

Korneliussen TS, Moltke I, Albrechtsen A, Nielsen R (2013) Calculation of Tajima’s D and other428

neutrality test statistics from low depth next-generation sequencing data. BMC bioinformatics,429

14, 289.430

Kousathanas A, Leuenberger C, Link V, Sell C, Burger J, Wegmann D (2017) Inferring Heterozy-431

gosity from Ancient and Low Coverage Genomes. Genetics, 205, 317–332.432

Lazaridis I (2018) The evolutionary history of human populations in Europe. Current Opinion in433

Genetics & Development, 53, 21–27.434

Lazaridis I, Patterson N, Mittnik A, et al. (2014) Ancient human genomes suggest three ancestral435

populations for present-day Europeans. Nature, 513, 409–413.436

Leek JT, Scharpf RB, Bravo HC, et al. (2010) Tackling the widespread and critical impact of batch437

effects in high-throughput data. Nature Reviews Genetics, 11, 733–739.438

Leigh DM, Lischer HEL, Grossen C, Keller LF (2018) Batch effects in a multiyear sequencing439

study: False biological trends due to changes in read lengths. Molecular Ecology Resources, 0.440

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform.441

Bioinformatics (Oxford, England), 25, 1754–1760.442

Li H, Handsaker B, Wysoker A, et al. (2009) The Sequence Alignment/Map format and SAMtools.443

Bioinformatics (Oxford, England), 25, 2078–2079.444

Lindo J, Huerta-Sánchez E, Nakagome S, et al. (2016) A time transect of exomes from a Native445

American population before and after European contact. Nature Communications, 7, 13175.446

Link V, Kousathanas A, Veeramah K, Sell C, Scheu A, Wegmann D (2017) ATLAS: analysis tools447

for low-depth and ancient samples. bioRxiv, S. 105346.448

Mafessoni F, Prasad RB, Groop L, Hansson O, Prüfer K, McLysaght A (2018) Turning vice into449

virtue: Using Batch-Effects to Detect Errors in Large Genomic Datasets. Genome Biology and450

Evolution.451

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/487983doi: bioRxiv preprint 

https://doi.org/10.1101/487983
http://creativecommons.org/licenses/by/4.0/


Mallick S, Li H, Lipson M, et al. (2016) The Simons Genome Diversity Project: 300 genomes from452

142 diverse populations. Nature, 538, 201–206.453

Martiniano R, Cassidy LM, Ó’Maoldúin R, et al. (2017) The population genomics of archaeological454

transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-455

based methods. PLoS genetics, 13, e1006852.456

Mathieson I, Lazaridis I, Rohland N, et al. (2015) Genome-wide patterns of selection in 230 ancient457

Eurasians. Nature, 528, 499–503.458

McKenna A, Hanna M, Banks E, et al. (2010) The Genome Analysis Toolkit: A MapReduce459

framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–460

1303.461

Meyer M, Kircher M, Gansauge MT, et al. (2012) A high-coverage genome sequence from an archaic462

Denisovan individual. Science (New York, N.Y.), 338, 222–226.463

Meynert AM, Bicknell LS, Hurles ME, Jackson AP, Taylor MS (2013) Quantifying single nucleotide464

variant detection sensitivity in exome sequencing. BMC Bioinformatics, 14, 195.465

Nielsen R, Akey JM, Jakobsson M, Pritchard JK, Tishkoff S, Willerslev E (2017) Tracing the466

peopling of the world through genomics. Nature, 541, 302–310.467

Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation468

sequencing data. Nature Reviews Genetics, 12, 443.469

Paten B, Novak AM, Eizenga JM, Garrison E (2017) Genome graphs and the evolution of genome470

inference. Genome Research, 27, 665–676.471

Patterson N, Moorjani P, Luo Y, et al. (2012) Ancient Admixture in Human History. Genetics,472

192, 1065–1093.473

Petr M, Pääbo S, Kelso J, Vernot B (2018) The limits of long-term selection against Neandertal474

introgression. bioRxiv, S. 362566.475

Prüfer K (2018) snpAD: An ancient DNA genotype caller. Bioinformatics.476

Prüfer K, Filippo Cd, Grote S, et al. (2017) A high-coverage Neandertal genome from Vindija Cave477

in Croatia. Science, 358, 655–658.478

Prüfer K, Racimo F, Patterson N, et al. (2014) The complete genome sequence of a Neanderthal479

from the Altai Mountains. Nature, 505, 43–9.480

Prüfer K, Stenzel U, Hofreiter M, Pääbo S, Kelso J, Green RE (2010) Computational challenges481

in the analysis of ancient DNA. Genome Biology, 11, R47.482

Quail MA, Kozarewa I, Smith F, et al. (2008) A large genome center’s improvements to the Illumina483

sequencing system. Nature Methods, 5, 1005–1010.484

Racimo F, Renaud G, Slatkin M (2016) Joint estimation of contamination, error and demography485

for nuclear DNA from ancient humans. PLoS genetics, 12, e1005972.486

Renaud G, Hanghøj K, Willerslev E, Orlando L (2017) gargammel: a sequence simulator for ancient487

DNA. Bioinformatics, 33, 577–579.488

Ros-Freixedes R, Battagin M, Johnsson M, et al. (2018) Impact of index hopping and bias towards489

the reference allele on accuracy of genotype calls from low-coverage sequencing. bioRxiv, S.490

358085.491

Ross MG, Russ C, Costello M, et al. (2013) Characterizing and measuring bias in sequence data.492

Genome Biology, 14, R51.493

Scheib CL, Li H, Desai T, et al. (2018) Ancient human parallel lineages within North America494

contributed to a coastal expansion. Science, 360, 1024–1027.495

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/487983doi: bioRxiv preprint 

https://doi.org/10.1101/487983
http://creativecommons.org/licenses/by/4.0/


Schlebusch CM, Malmström H, Günther T, et al. (2017) Southern African ancient genomes estimate496

modern human divergence to 350,000 to 260,000 years ago. Science (New York, N.Y.).497

Schneeberger K, Hagmann J, Ossowski S, et al. (2009) Simultaneous alignment of short reads498

against multiple genomes. Genome Biology, 10, R98.499

Schubert M, Ginolhac A, Lindgreen S, et al. (2012) Improving ancient DNA read mapping against500

modern reference genomes. BMC Genomics, 13, 178.501

Shafer ABA, Peart CR, Tusso S, et al. (2016) Bioinformatic processing of RAD-seq data dramat-502

ically impacts downstream population genetic inference. Methods in Ecology and Evolution, 8,503

907–917.504

Shapiro B, Hofreiter M (2014) A paleogenomic perspective on evolution and gene function: new505

insights from ancient DNA. Science (New York, N.Y.), 343, 1236573.506

Skoglund P, Mallick S, Bortolini MC, et al. (2015) Genetic evidence for two founding populations507

of the Americas. Nature, 525, 104–108.508

Skoglund P, Malmstrom H, Omrak A, et al. (2014) Genomic Diversity and Admixture Differs for509

Stone-Age Scandinavian Foragers and Farmers. Science, 344, 747–750.510

Skoglund P, Mathieson I (2018) Ancient Human Genomics: The First Decade. Annual Review of511

Genomics and Human Genetics, 19, null.512

Slatkin M, Racimo F (2016) Ancient DNA and human history. Proceedings of the National Academy513

of Sciences of the United States of America, 113, 6380–6387.514

Valdiosera C, Günther T, Vera-Rodríguez JC, et al. (2018) Four millennia of Iberian biomolecular515

prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proceedings516

of the National Academy of Sciences, S. 201717762.517

Wang Y, Lu J, Yu J, Gibbs RA, Yu F (2013) An integrative variant analysis pipeline for accurate518

genotype/haplotype inference in population NGS data. Genome Research, 23, 833–842.519

Wu SH, Schwartz RS, Winter DJ, Conrad DF, Cartwright RA (2017) Estimating error models for520

whole genome sequencing using mixtures of Dirichlet-multinomial distributions. Bioinformatics,521

33, 2322–2329.522

Zhou B, Wen S, Wang L, Jin L, Li H, Zhang H (2017) AntCaller: an accurate variant caller523

incorporating ancient DNA damage. Molecular Genetics and Genomics, 292, 1419–1430.524

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/487983doi: bioRxiv preprint 

https://doi.org/10.1101/487983
http://creativecommons.org/licenses/by/4.0/

