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Abstract

In shotgun proteomics, the amount of information that can be extracted from label-free quan-
tification experiments is typically limited by the identification rate and the noise level of the quan-
titative signals. This generally causes a low sensitivity in differential expression analysis on protein
level. Here, we propose a quantification-first approach that reverses the classical identification-first
workflow. Specifically, we introduce a method, Quandenser, that applies unsupervised clustering
on both MS1 and MS2 level to summarize all analytes of interest without assigning identities. This
prevents valuable information from being discarded prematurely in the identification process and
allows us to spend more effort on the identification process due to the data reduction achieved
by clustering. Applying this methodology to a dataset of partially known composition, we could
now employ open modification and de novo searches to identify multiple analytes of interest that
would have gone unnoticed in traditional pipelines. Furthermore, Quandenser reports error rates
on feature level which we integrated into our probabilistic protein quantification method, Triqler,
to propagate error probabilities from feature level all the way to protein level. Quandenser/Triqler
outperformed the state-of-the-art method MaxQuant/Perseus, consistently reporting more differ-
entially abundant proteins, even in a clinical dataset where none were discovered previously. Com-
pellingly, in all three clinical datasets investigated, the differentially abundant proteins showed
enrichment for functional annotation terms.

Introduction

In mass spectrometry-based proteomics, label-free quantification (LFQ) is one of the most compre-
hensive methods to analyze protein concentrations in complex mixtures. Its main advantage is that
it allows for comparisons in large sample cohorts and can, hence, handle complex experimental de-
signs [2]. Currently, LFQ and quantitative proteomics in general are struggling to obtain sufficient
coverage of the proteome [3] and also suffer from low sensitivity for differentially expressed proteins
at false discovery rate thresholds [24]. While this can partially be attributed to inherent limitations
in the methodology of mass spectrometry, it is, to a high degree, caused by the inadequacy of our
current data analysis pipelines. We also note that LFQ is sometimes seen as cumbersome, as con-
trary to, for instance, isobaric labeling, one is not guaranteed a readout for an identified peptide in
each sample. Frequently, this is resolved by missing value imputation but this introduces a multitude
of issues [33, 18]. Novel methods for LFQ data analysis are necessary to address these problems in
sensitivity and specificity.

Two well-recognized issues regarding the sensitivity of LFQ pipelines are that many MS1 features
remain unassigned to peptides [34] or even to MS2 spectra [22] and that a large number of fragment
spectra remain unidentified [26]. Matches-between-runs (MBR) has proven to be an effective technique
to propagate MS2 information to the MS1 features [5, 34, 1] and clustering of MS2 spectra from large
repositories has allowed us to zoom in on frequently unidentified spectra for peptide identification [11].
Unsupervised clustering of MS2 spectra also significantly reduces the number of MS2 spectra that need
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to be searched [8, 10, 29]. This allows more computationally expensive searches to be conducted such as
partial digestions, variable modification searches, open modification searches or even de novo searches.

Moreover, as a first step, conventional data analysis pipelines match the individual sample’s fragmen-
tation spectra to peptide sequences with search engines [5, 34], a procedure that already limits the
number of peptides and proteins that can be quantified. More than the limitation in numbers, such
an identification-first strategy has some undesirable properties. For instance, if one would want to
search the data again with an open modification search engine, all quantification would have to be
redone. Yet, in reality, the underlying experimental quantitative data does not change due to a new
search engine result, just our interpretation thereof.

By using unsupervised clustering of MS1 features, we can capture the underlying quantitative informa-
tion from the features. We can assign MS2 spectra to such clusters but postpone their interpretation
to a later stage. Such a quantification-first approach allows us to focus our efforts on improving the
coverage by investigating frequently unidentified features without having to go through the costly
process of repeated iterations of identification and quantification.

On the other hand, specificity is often compromised by the multitude of thresholds in the various
steps of a quantification pipeline, which cause a lack of error control and do not properly account for
error propagation [28]. Also, missing value imputation is known to induce false quantification accu-
racy [13]. We have previously introduced a Bayesian method, Triqler [28], for protein quantification
that propagates error rates of the different steps in protein quantification and compensates for missing
readouts in a Bayesian manner. Two features that Triqler did not include yet were the error rates of
the association of MS1 features with MS2 spectra, and support for MBR.

Here, we introduce a new method, Quandenser (QUANtification by Distillation for ENhanced Sig-
nals with Error Regulation), that we subsequently interface to Triqler to substantially increase the
sensitivity of the LFQ analysis pipeline. Quandenser condenses the quantification data by applying
unsupervised clustering on both MS1 and MS2 level and thereby paves the way for a quantification-
first approach. The algorithm combines the unknowns from both levels into a condensed set of MS1
features and MS2 spectra that are likely to be interesting for further investigation. Specifically, Quan-
denser incorporates MBR for MS1 features to increase sensitivity and uses MS2 spectrum clustering
to decrease the number of spectra to be searched. Importantly, it also provides feature-feature match
error rates which can be used as input to Triqler to account for the errors as a result of the MBR step.

Methods

Data sets

We downloaded RAW files for 3 datasets. The first dataset was a set of partially known composition
with the UPS1 protein mixture spiked in at different concentrations in a yeast background (PRIDE
project: PXD002370, 9 RAW files) [9]. We also downloaded RAW files for three clinical datasets. The
first was a dataset studying bladder cancer [17] (PRIDE project: PXD002170, 8 RAW files), which
will henceforth be referred to as the Latosinska dataset. The second was a dataset studying Hepatitis
C Virus-associated hepatic fibrosis [4] (PRIDE project: PXD001474, 27 RAW files), which will be
referred to as the Bracht dataset. The third dataset concerned a recent advancement in nanoscale
proteomics applied to type 1 diabetes [35] (PRIDE project: PXD006847, 18 RAW files), which will
be referred to as the Zhu dataset.

For the UPS-Yeast mixture, a UPS1 protein mixture was spiked into a 1 µg yeast background at
respectively 25, 10 and 5 fmol concentration, with triplicates for each concentration. The Latosinska
dataset featured 8 samples of tumor tissues of non-muscle invasive (stage pTa, n = 4) and muscle-
invasive bladder cancer cases (stage pT2+, n = 4), without technical replicates. The Bracht dataset
featured 27 samples of biopsies from patients with HCV-associated hepatic fibrosis, classified in a low
fibrosis group (n = 13) and a high fibrosis group (n = 14), without technical replicates. The Zhu
dataset featured 18 samples with 10 − −100 cells each of human pancreatic islet section with nine
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samples from a type 1 diabetes donor and nine from a non-diabetic control donor, without technical
replicates.

Prior to processing the runs with Quandenser, all RAW files were converted to mzML format with
ProteoWizard [15], where we applied peak picking both on MS1- and MS2-level.

Quandenser

An overview of the Quandenser process is given in Figure 1. First, MS1 features were detected with
Dinosaur v1.1.3 [27] and assigned to the MS2 spectra that were obtained inside the retention time and
precursor isolation window. We will refer to a combination of an MS1 feature and an MS2 spectrum as
a mass-charge state. Next, clustering of MS2 spectra was applied with MaRaCluster v0.05 [29]. One
advantage of applying MS2 clustering first was that we could align retention times between two runs
through pairs of spectra that end up in the same cluster. This alignment was done by fitting a spline
function using iteratively reweighted least squares regression (IRLS). The IRLS algorithm provided
protection against outliers that might have resulted from incorrect clusterings. We then estimated the
standard deviation of the aligned retention times, which gave us a way to select a reasonable window
to search for matching precursors (by default, 5 standard deviations), instead of having this window
user-specified, as is usually needed.

Quandenser

RAW files

MaRaCluster

MS1 feature 
grouping

RT alignment

Dinosaur Consensus 
spec. builder

Search 
engine

Triqler

Convert to 
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Diff. exp.
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Figure 1: Workflow within Quandenser and its employment in the protein quantification
pipeline. Blue boxes represent existing software packages, some of which are directly integrated in
the Quandenser package, green boxes represent in-house packages, gray boxes represent intermediate
results or files and the yellow box represents any search engine(s) of choice.

Retention times were aligned pair-wise between runs using a minimum spanning tree based on the
similarity of chromatography runs [25]. For each pair-wise retention time alignment, the MS1 features
discovered by Dinosaur from the two corresponding runs were matched based on a set of features,
such as the difference between the observed and aligned retention time and precursor mass difference.

Decoy features were generated by shifting the precursor m/z by 5 × 1.000508 Th. We noted that the
probability of observing a certain precursor mass is constrained by its composition of amino acids and
therefore the probability of a match quickly tapers off when non-integer offsets are employed. Adding
the random mass perturbation would, therefore, give an underestimation of the true FDR. Using these
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decoy features, we estimated error probabilities of these feature-feature matches through Percolator
v3.02 [30]. We filtered out feature-feature matches with a posterior error probability (PEP) above 0.25,
and at the same time retained the information of the error probabilities to be used as input to Triqler.
For features for which no corresponding feature could be found in the opposite run, we searched for
previously missed features using the targeted mode of Dinosaur, again scored by Percolator according
to the same scheme as above. If a feature still had no match, a placeholder feature, representing a
missing value, was added at the corresponding precursor mass and aligned retention time.

The MS1 features were grouped by feature-feature matches from the pair-wise alignments using single-
linkage clustering, resulting in MS1 feature groups. The feature groups that had a missing value in
more than M runs were filtered out. Subsequently, for each feature group, we selected all MS2 spectra
that were previously assigned to a feature in the group and assigned the MS2 spectrum’s corresponding
cluster from MaRaCluster to the feature group. We then scored each match between a feature group
and a spectrum cluster according to the following score:

s =
R∑

r=1

I(cr ≥ 1) · log2(Ir),

where r = 1, . . . , R indicates the run index, I is the indicator function that is 1 if the condition holds
and 0 otherwise, cr are the number of spectra in the spectrum cluster that can be linked to the feature
for run r, and Ir is the intensity of the feature in run r. For each spectrum cluster, we only retained

the feature groups with s ≥ max{sg | g ∈G}
2 , with G the set of all feature groups associated with the

spectrum cluster. The idea behind this filter is that the MS1 feature intensity is a good predictor of
the dominant peptide species in the MS2 spectrum. This filter typically more than halved the number
of mass-charge states that had to be searched, while maintaining or even increasing the number of
peptide identifications due to the reduction of tested hypotheses.

Finally, Quandenser produces (1) a list of MS1 feature groups with their corresponding MS2 spectrum
clusters, and (2) a spectrum file with, for each spectrum cluster, its consensus spectrum together with
the mass-charge states of the assigned feature groups. The spectrum file can be any of the file formats
that are supported by Proteowizard, such as mzML and mgf, and can then be processed by the user’s
search engine of choice.

Peptide and protein identification and quantification

For the UPS-yeast mixture, we created a concatenated FASTA file containing both the UPS1 proteins
(https://www.sigmaaldrich.com/, accessed: 2018 Jan 17) and the Swiss-Prot database for yeast
(http://www.uniprot.org/, accessed: 2016 Mar 15). The Latosinska, Bracht and Zhu sets were
searched against the Swiss-Prot database for human (accessed: 2015 Nov 12). We created concatenated
target-decoy databases as input to the search engines.

We used several search engines both as standalone packages as well as part of a cascade search ap-
proach [14]. We employed Tide [6], through the interface of the Crux 2.1 [21] package, and used
Percolator v3.02 [30] to post-process the resulting PSMs. All parameters in Tide and Percolator were
left to their default values, except for allowing up to 2 oxidations for all datasets. Furthermore, we
used MODa v1.51 [23] and MSFragger (build 20170103.0) [16] for open modification searches. We
extracted several relevant features of the respective search results with in-house python scripts and
subsequently processed the PSMs with Percolator v3.02. Finally, we also used Novor v1.05.0573 [20]
for de novo searches as a discovery tool and searched the resulting sequences with BLAST through
the UniProtKB website. We did no statistical analysis on the Novor results.

After the search engine search, the output file from Quandenser and the search engine results can
be combined into an input file to Triqler v0.1.4 with a python script available from the Quandenser
repository (bin/prepare_input.py). This step includes the option for retention time-dependent
normalization [34] which is the default option and was also applied to all datasets presented here. For
the UPS-Yeast dataset, we allowed M = 3 missing values, for the Latosinska set we used M = 4, for
the Bracht set M = 7 and for the Zhu set M = 11.
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Some adaptations to Triqler were necessary to deal with the changes and additions to the pipeline.
Firstly, the feature-feature match PEPs are used explicitly as an extra input to the feature node in
Triqler’s probabilistic graphical model (Supplementary Figure S1). Triqler then proceeds in normal
fashion to calculate relative protein expression levels and finally outputs a list of differentially expressed
proteins. Secondly, there is the issue of a many-to-many relation between feature groups and spectrum
clusters. This requires a choice of feature group for each spectrum cluster, and, vice versa, a choice of
spectrum clusters for each feature group. To resolve this, Triqler first selects the feature group with
the best search engine score. Subsequently, if a feature group still has multiple peptides associated
with it, Triqler chooses the peptide with the best combined PEP of the search engine PEP and the
feature-feature match PEPs. Finally, to deal with open modification search results, we have to guard
ourselves against assigning correct peptides with incorrect (small) modifications to feature groups.
To prevent this, we only select the best peptide identification per protein for each spectrum cluster,
under the assumption that the search engine will score the true peptide sequence, with or without
modification, the highest.

As a comparison, we also analyzed the datasets with MaxQuant v1.6.1.0 [5], starting from the RAW
files, followed by differential expression analysis with Perseus v1.6.1.3 [32]. We used the default
parameters in MaxLFQ, except for allowing up to 2 oxidations and allowed the use of these modified
peptides for quantification. For the differential expression analysis with Perseus, we filtered out decoy
proteins and proteins with more than M missing values per dataset as stated above. We then log2
transformed the intensities, used missing value imputation with the default parameters and used
Welch’s t-test with different values of S0 (0.0, 0.3, 0.7, 1.0), where higher values of S0 will increasingly
prevent small fold changes from being selected as significant [31]. The results reported in the main text
are for S0 = 0.3, unless stated otherwise, as these generally gave the best trade-off between sensitivity
and specificity.

Finally, we used DAVID 6.8 [12] to find significant functional annotation terms for the sets of differen-
tially expressed proteins found by Quandenser/Triqler and MaxQuant/Perseus. We used the proteins
identified at 5% protein-level identification FDR as the background set and thresholded the significant
terms at a 5% Benjamin-Hochberg corrected FDR.

Results

We evaluated the performance of our quantification-first method, Quandenser, with different search
engines followed by differential expression analysis with Triqler. We used one regular search engine,
Tide, one open modification search engine, MODa and subsequently, we investigated a combination
of them both, i.e. Tide and MODa in a cascade search setting. We compared these approaches to
MaxQuant/Perseus with matches-between-runs (MBR) and also to applying Triqler directly to the
MS2 search results, without clustering on MS1 and MS2 level with Quandenser but with feature
detection using Dinosaur.

UPS-Yeast dataset

The UPS-Yeast dataset consisted of a total of 535k MS2 spectra. Assigning the MS1 features detected
by Dinosaur to the MS2 spectra resulted in 934k mass-charge states, that were subsequently used
as input to MaRaCluster. Allowing up to M = 3 missing values, resulted in 132k feature groups of
which 49k were assigned to at least one spectrum cluster. Due to the possibility of multiple feature
groups being assigned to a spectrum cluster, 109k mass-charge states (12% of the original number of
mass-charge states), corresponding to 61k consensus spectra, remained to be searched by the search
engine. Without the intensity scoring thresholds, 98k feature groups were assigned to at least on
spectrum cluster and 238k mass-charge states would have to be searched.

Processing the Quandenser output with Triqler (--fold_change_eval=0.8) resulted in higher sensi-
tivity compared to applying Triqler directly on the search results without clustering and at the same
time controlled the FDR below the reported FDR of 5%, which MaxQuant/Perseus with MBR failed
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to do (Table 1). We also observed that MaxQuant/Perseus had trouble controlling the FDR, regardless
of the value for the S0 parameter (Supplementary Table S1).

UPS1 spike-in concentration [fmol] 25 vs 10 25 vs 5 10 vs 5
Max. true positives 48 48 48
Method tp fp tp fp tp fp

Quandenser/Triqler

- Tide 43 1 45 1 35 0

- MODa 40 0 41 2 29 0

- Tide + MODa cascade 43 0 45 0 35 0

Tide + Triqler (without Quandenser/MBR) 40 0 40 0 34 0

MaxQuant/Perseus MBR (S0 = 0.3) 39 9 42 15 36 1

Table 1: Quandenser combined with Triqler achieves a high sensitivity on the UPS-Yeast
dataset, while still maintaining control of the FDR. The table lists the number of true and
false positive significantly differentially expressed proteins at a 5% reported FDR threshold. Other
values for S0 for Perseus (S0 = 0.0, 0.7, 1.0) resulted in inferior results.

To demonstrate the advantages of reducing the number of spectra and mass-charge states that need
to be searched, we ran the unidentified consensus spectra through an open modification search with
MODa using the cascade search approach [14]. We can see a clear increase in the number of feature
groups that were assigned a peptide and more modest, but still significant, increases in the number of
unique peptides and proteins (Supplementary Figure S2). However, the cascade search did not result
in an increased sensitivity on the spiked-in proteins, as the newly discovered peptides were either
modified versions of already identified peptides or came from already identified proteins (Table 1).

Interestingly, searching with MODa without searching with Tide first actually decreased the sensitivity
on the spiked-in proteins relative to only searching with Tide, even though more unique peptides were
identified than by Tide. This is likely a result of the lower sensitivity of open modification searches on
unmodified peptides, as a result of the increased search space. We indeed discovered several unmodified
peptides from UPS proteins that were confidently identified by Tide but not picked up by MODa. In
this engineered dataset the modified peptides did seem to follow the correct expression pattern in the
vast majority of the cases. In general, however, we should be careful about using modified peptides
for quantification, as they are not guaranteed to follow the protein’s expression pattern. On the other
hand, quantifying modified peptides can be of great interest for understanding biological processes.

We also tried out MSFragger with its large precursor tolerance (±500 Da) as an alternative open
modification search engine. It produced more identifications than MODa, reducing the number of
unidentified consensus spectra to around 40%, but also produced several dubious modifications. MS-
Fragger could, therefore, be a good source for finding candidate peptide identifications, but some extra
verification seems to be required for the moment.

To illustrate the utility of MS2 clustering, we used Novor on the 20 most frequently occurring unidenti-
fied spectra, followed by a BLAST search [19]. Using this approach, we found 2 distinct peptides from
a capsid of a known yeast virus (UniProtKB: P32503 / GAG SCVLA) and another 2 distinct peptides
from lysyl endopeptidase (UniProtKB: Q9HWK6 / LYSC PSEAE), the latter of which might have
been used for improved protein digestion, although this was not mentioned in the original manuscript.
All but one of these largest 20 unidentified spectrum clusters were identified as peptides from the 2
above-mentioned proteins or as modifications of already identified peptides of high-abundant proteins
(Supplementary Table S2).

Furthermore, the benefit of having clustered on MS1 level allowed us to zoom in on feature groups
without peptide identifications, but with the same expression pattern as the UPS proteins. For this,
we calculated the cosine distance between the expected expression pattern and the observed expression
pattern, omitting missing values from the calculation, and selected the 200 feature groups with the
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smallest cosine distance (Figure 2, Supplementary Table S3). Of these 200 feature groups, 58 were
identified through closer inspection as, often modified, UPS peptides and often came from chimeric
spectra. One helpful approach in identifying these chimeric spectra was by filtering out the fragment
peaks of an already identified peptide species and applying another open modification search [7].

Interestingly, we also found 68 feature groups which had consensus spectra that contained many
fragments (≥ 25) between 100 and 200 Da that, based on their accurate masses, were carbohydrates
or hydrocarbons and did not contain any nitrogen atoms (Supplementary Table S4). In total, we
found 1 724 of these types of spectrum clusters, which mainly eluded towards the end of the runs.
Furthermore, their expression pattern typically seemed to follow the UPS expression pattern (Figure 2)
and MS2 spectra associated with these feature groups generally remained unidentified. Based on their
precursor mass differences and late retention times, these feature groups most likely originated from
polyethylene glycols (PEG), which might have been present as a contaminant in the UPS samples. The
putative identifications of a yeast virus, lysyl endopeptidase, and PEGs are examples that demonstrate
that Quandenser gives its users the capability to identify unknown either abundant or differentially
abundant compounds in their samples.

Of the remaining feature groups, 50 were from analytes with low precursor mass (< 1000 Da), mostly
charge 1 ions, which are generally hard to identify. For 8 feature groups, the UPS expression pattern
was a result of deisotoping errors where isotopes of a UPS peptide were incorrectly counted towards
the intensity of the feature. Finally, 13 feature groups remained unidentified and did not fit into any
of the above categories, but usually had spectra that showed clear signs of chimericity or only had
fragment ions spanning less than half of the peptide backbone making them hard to identify.
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Figure 2: The number of feature groups and their origin as a function of dissimilarity to
the UPS1 spike-in concentrations. The histogram displays the number (left pane) and relative
number (right pane) of feature groups as a function of the cosine distance relative to the UPS1 spike-
in concentrations. The vast majority of the identified feature groups had an expression pattern that
conformed to their origin. Still, a large proportion of feature groups remained unidentified, including
a group that was tentatively identified as polyethylene glycols (PEGs), which exhibited an expression
pattern similar to the UPS1 proteins. The cosine distance between the yeast and UPS concentrations
was 0.16 and we can indeed observe that the majority of the yeast peptides center around that value.

Clinical datasets

The Latosinska dataset consisted of 413k MS2 spectra, resulting in 991k mass-charge states after
MS1 feature detection by Dinosaur. Allowing up to M = 4 missing values and filtering based on the
intensity score, we were left with 83k feature groups, of which 47k had at least one spectrum cluster
associated with them. This corresponded to 122k consensus spectra and 183k mass-charge states to be
searched, just 18% of the original number of mass-charge states. This dataset contained a relatively
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large number of singleton clusters, i.e. clusters with only one spectrum, that could be identified. Such
singleton clusters illustrate the benefit of quantification across runs as a criterion, opposed to requiring
one fragment spectrum per run.
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Figure 3: With Quandenser/Triqler we generally discovered more differentially expressed
proteins and enriched functional annotation terms than when not using Quandenser.
Notably, we found enriched functional annotation terms for the Bracht set for which no
enrichments were previously found. The left plots show the number of differentially expressed
proteins at 3 FDR thresholds. The plots on the right show the number of significant functional
annotation terms we discovered with DAVID using the sets obtained in the left plots. Note that the
FDR reported in the plots on the right refer to the differential expression FDR and not the functional
annotation term FDR, which was kept fixed at 5%. The MaxQuant MBR series refer to the analyses
done with MaxQuant with matches-between-runs followed by statistical analysis with Perseus.

Searching the consensus spectra with Tide and/or MODa resulted in more identifications compared to
MaxQuant on all levels (Supplementary Figure S2). Subsequent processing with Triqler (--fold_change_eval=0.8),
resulted in more enriched functional annotation terms than applying Triqler directly on the MS2
search results (Figure 3, Supplementary Table S5). There was a noticeable advantage for a cascaded
Tide+MODa search, both in terms of the number of differentially expressed proteins, as well as in
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the number of enriched functional annotation terms. The original study found only a single protein
at a 5% differential expression FDR and 77 proteins with a p value below 0.05. These 77 proteins did
not show any term enrichment in DAVID. The significant proteins called by MaxQuant/Perseus at
the three FDR thresholds nor the 142 proteins with a p value below 0.05 showed any enriched terms
either.

The Bracht dataset contained 1.01M MS2 spectra, which were assigned a total of 1.47M mass-charge
states after feature detection. We allowed up to M = 7 missing values, which resulted in 69k feature
groups in total and 45k with at least one spectrum cluster. This left 106k consensus spectra, with
150k mass-charge states to be searched, which was only 10% of the original number of mass-charge
states.

Again, we observed an increase in the number of identifications on all levels compared to MaxQuant
(Supplementary Figure S2). Analysis of the Tide search results with Triqler (--fold_change_eval=0.5;
the fold change threshold used in the original study was log2(1.5) = 0.58) resulted in multiple differ-
entially expressed proteins for all three searches, even at as low as 5% FDR (Figure 3). Conversely,
neither the original study nor MaxQuant/Perseus found any differentially expressed proteins at 5%
FDR. Moreover, functional annotation analysis with DAVID actually resulted in several significant
terms for the 10% and 20% FDR thresholds (Supplementary Table S6).

Notably, in the original paper, 7 proteins with a p value below 0.05 and high fold change differences
were subjected to verification through gene expression analysis, as well as targeted analysis with
MRM. The 4 proteins that showed a consistent relationship with increasing fibrosis stages in both
experiments (FBLN5, LUM, COL14A1 and MFAP4) were all discovered at 10% FDR, as was one
protein that showed significance in the gene expression analysis but only partial statistical significance
in the MRM analysis (TAGLN). The 2 proteins with the least consistent relation of expression levels
with increasing fibrosis stages (CSRP2 and CNN2) were not discovered at 10% FDR, though CSRP2
was called significant at 20% FDR. In the original study, these 2 proteins actually obtained a lower
p value than the other 5 proteins, and Quandenser/Triqler, thus, seemed to give a better ordering of
these 7 proteins.

Finally, we wanted to test the applicability of the method to the Zhu dataset, that contained samples
of a small number (10–100) of cells. This dataset comprised 593k MS2 spectra, assigned to 1.02M
mass-charge states. We allowed up to M = 11 missing values, resulting in 73k feature groups of
which 52 have at least one spectrum cluster. This left 117k consensus spectra, corresponding to 187k
mass-charge states to be searched, 18% of the original number. We set the log2 fold change threshold
--fold_change_eval=1.0 in Triqler, corresponding to the threshold employed in the original study.

The number of identified feature groups and unique peptides were much closer between Quandenser and
MaxQuant for this particular set (Supplementary Figure S2). Nevertheless, Quandenser/Triqler man-
aged to discover more significant proteins across all tested FDR thresholds compared to MaxQuant/Perseus
(Figure 3). Using Tide as a search engine, we found 703 significant proteins at 2% FDR, consider-
ably more than the 304 proteins at the same FDR found in the MaxQuant/Perseus analysis of the
original study. Again, we found enriched functional annotation terms associated to several sets of
significant proteins using Quandenser/Triqler (Supplementary Table S7). No enriched terms could be
found for MaxQuant/Perseus analysis, neither from the original study nor from our own reanalysis.
Interestingly, using Triqler without Quandenser appeared more sensitive in the functional annotation
enrichment analysis, as did using stricter FDR thresholds.

Discussion

Here, we demonstrated the utility of a quantification-first approach in which we cluster both MS1
features and MS2 spectra prior to identifying spectra, peptides and proteins of interest. Not only
does this approach provide several new ways of obtaining unidentified analytes of interest, but by
combining Quandenser with Triqler, we discovered substantially more differentially expressed proteins
and enriched functional annotation terms than MaxQuant/Perseus.
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The clustering steps further unveil the potential of integrated quantification and identification error
models such as Triqler. Using matches-between-runs with feature-feature match error rates substan-
tially increases the proteome coverage while still controlling the differential expression FDR. Quan-
denser/Triqler showed remarkable increases in the number of differentially expressed proteins which
compellingly enriched for functional annotation terms. Moreover, the clustering of MS2 spectra prior
to identification allows a wide variety of, potentially computationally expensive, search strategies to be
applied to the quantification data without the need for repeating the quantification steps. Especially
with regards to the constant stream of new search engines, this provides an easy way for users to
efficiently interrogate their data.

We showed that clustering of MS2 spectra was effective in increasing the coverage of the proteome, both
by means of reducing of the number of spectra that need to be searched by one order of magnitude,
as well as by focusing on the largest clusters that remained unidentified. By using MODa as an open
modification search in a cascaded search after a regular database search with Tide, the number of
identified consensus spectra was increased by 47% for the UPS-Yeast dataset, 14% for the Latosinska
dataset, 20% for the Bracht dataset and 17% for the Zhu dataset. Not surprisingly, across all datasets,
the identification rate for large clusters (> 80% for cluster size ≥ 16) was much higher than for small
clusters (< 50% for cluster size ≤ 7). Furthermore, de novo searches on large MS2 spectrum clusters
of the UPS-Yeast dataset resulted in the identification of peptides and proteins not present in the
database.

One of the benefits of combining clustering on MS1 level with clustering on MS2 level is that we can
include quantification information in the selection of MS2 spectrum clusters of interest. Specifically,
this addresses a frequently observed phenomenon in MS2 spectrum clustering in which the majority of
the clusters only contain a single spectrum, known as singleton clusters [8, 10, 29]. On the one hand,
these could be the result of poor quality MS2 spectra or spurious MS2 fragmentation events, which
are often irrelevant and should preferably not be matched by a search engine. On the other hand,
they could be low abundant peptides rarely selected for fragmentation. Doing the quantification prior
to identification allowed us to get rid of the vast majority of uninteresting singleton clusters, due to
them not having an MS1 feature in most of the runs. Instead, the Quandenser workflow retained the
fragment spectra from the analytes that were quantified across several runs, that is, it extracted the
data points the experimenter would care about most.

Alternatively, we could use similarity of feature groups’ expression patterns as an indication that they
originated from the same group of proteins. For instance, in the UPS-Yeast dataset, we identified a
major part of the unidentified analytes that had a similar expression to the spiked-in UPS proteins
as modified UPS proteins. This was made possible by the fact that the number of hypotheses was
drastically reduced to just the set of 48 UPS proteins. Unfortunately, this technique cannot directly be
used to increase the number of peptides available for protein quantification, as we would introduce a
bias by only identifying peptides that already have a similar quantification pattern to the proteins that
we searched for. It is, however, still a way to obtain more knowledge about peptides and modifications
we might be missing out on. Simultaneously, this approach revealed an interesting group of analytes
that covaried with the UPS proteins and most likely originated from polyethylene glycols. Although
further investigation is required to confirm this, these analytes would not have come to our attention
if we had used the traditional identification-first approach.

Several improvements could still be made to increase the sensitivity of Quandenser and the quantification-
first pipeline in general. For example, in a small number of cases (< 5%) the intensity score filter
removed the correct feature group from a spectrum cluster due to a high-intensity analyte in the neigh-
borhood. In most of the cases, the peptide was still identified through other spectrum clusters and no
sensitivity was lost. However, we could use retention time differences between the MS2 spectra in the
spectrum cluster and the MS1 features in the feature group to mitigate this. Furthermore, almost half
of the spectrum clusters were assigned to at least two feature groups, even after the intensity score
filter. This suggests that a large proportion of these spectra contain fragments ions from multiple
peptide species. Indeed, by filtering out the fragment peaks of an already identified peptide species,
we identified a second peptide species in a number of cases. Applying this technique to entire datasets

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/488015doi: bioRxiv preprint 

https://doi.org/10.1101/488015
http://creativecommons.org/licenses/by/4.0/


will be a subject for further investigation.

The quantification-first approach in label-free protein quantification, thus, provides an attractive al-
ternative to the traditional identification-first approach. Through the use of unsupervised clustering,
we condensed the data into a comprehensive format that retained the relevant information and thereby
allow the researcher to spend more time on a reduced set of hypotheses. By subsequently propagating
the feature-level error rates to probabilistic protein quantification methods, the bounds of sensitivity
and specificity in LFQ are extended considerably. Already, we can see the benefits of this approach
in terms of coverage and sensitivity using the techniques presented here, but many more modes of
interpretation are available, ready to be applied.
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