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Abstract

In shotgun proteomics, the information extractable from label-free quantification experiments
is typically limited by the identification rate and the noise level in the quantitative data. This gen-
erally causes a low sensitivity in differential expression analysis on protein level. Here, we propose
a quantification-first approach for peptides that reverses the classical identification-first workflow.
This prevents valuable information from being discarded prematurely in the identification stage and
allows us to spend more effort on the identification process. Specifically, we introduce a method,
Quandenser, that applies unsupervised clustering on both MS1 and MS2 level to summarize all
analytes of interest without assigning identities. Not only does this eliminate the need for redoing
the quantification for each new set of search parameters and engines, but it also reduces search
time due to the data reduction by MS2 clustering. For a dataset of partially known composition,
we could now employ open modification and de novo searches to identify analytes of interest that
would have gone unnoticed in traditional pipelines. Moreover, Quandenser reports error rates for
feature matching, which we integrated into our probabilistic protein quantification method, Triqler.
This propagates error probabilities from feature to protein level and appropriately deals with the
noise in quantitative signals caused by false positives and missing values. Quandenser+Triqler
outperformed the state-of-the-art method MaxQuant+Perseus, consistently reporting more differ-
entially abundant proteins at 5% FDR: 123 vs. 117 true positives with 2 vs. 25 false positives in a
dataset of partially known composition; 62 vs. 3 proteins in a bladder cancer set; 8 vs. 0 proteins
in a hepatic fibrosis set; and 872 vs. 661 proteins in a nanoscale type 1 diabetes set. Compellingly,
in all three clinical datasets investigated, the differentially abundant proteins showed enrichment
for functional annotation terms.

The source code and binary packages for all major operating systems are available from https:

//github.com/statisticalbiotechnology/quandenser, under Apache 2.0 license.

Introduction

In mass spectrometry-based proteomics, label-free quantification (LFQ) is one of the most compre-
hensive methods to analyze protein concentrations in complex mixtures. Its main advantage is that
it allows for comparisons in large sample cohorts and can, hence, handle complex experimental de-
signs [2]. Currently, LFQ and quantitative proteomics in general, are struggling to obtain sufficient
coverage of the proteome [3] and also suffer from low sensitivity for differentially abundant proteins
at false discovery rate thresholds [33]. While this can partially be attributed to inherent limitations
in the methodology of mass spectrometry, it is, to a high degree, caused by the inadequacy of our
current data analysis pipelines. We also note that LFQ is sometimes seen as cumbersome, as con-
trary to, for instance, isobaric labeling, one is not guaranteed a readout for an identified peptide in
each sample. Frequently, this is resolved by missing value imputation but this introduces a multitude
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of issues [45, 22]. Novel methods for LFQ data analysis are necessary to address these problems in
sensitivity and specificity.

Two well-recognized issues regarding the sensitivity of LFQ pipelines are that many MS1 features
remain unassigned to peptides [46] or even to MS2 spectra [29] and that a large number of fragment
spectra remain unidentified [37]. Match-between-runs (MBR) has proven to be an effective technique
to propagate MS2 information to the MS1 features [5, 46, 1] and clustering of MS2 spectra from large
repositories has allowed us to zoom in on frequently unidentified spectra for peptide identification [13].
Unsupervised clustering of MS2 spectra also significantly reduces the number of MS2 spectra that need
to be searched [10, 12, 39]. This allows more computationally expensive searches to be conducted
such as partial digestions, variable modification searches, open modification searches or even de novo
searches. Generally, clustering of fragment spectra was recently demonstrated to give better sensitivity
to LFQ experiments [14].

A less highlighted issue concerning sensitivity is that conventional data analysis pipelines match the
individual sample’s spectra to peptide sequences with search engines as a first step [5, 46]. This step
directly limits the number of peptides and proteins that can ultimately be quantified. Moreover, such
an identification-first strategy has some undesirable properties. For instance, if one would want to
search the data again with an open modification search engine or a newly acquired spectral library,
all quantification would have to be redone. Yet, in reality, the underlying experimental quantitative
data does not change due to a new search engine result, just our interpretation thereof. By using
unsupervised clustering of MS1 features, we can capture this underlying quantitative information of
the analytes. We can assign MS2 spectra to such clusters but postpone their interpretation to a later
stage. Such a quantification-first approach for peptides allows us to focus our efforts on improving
the coverage by investigating frequently unidentified features without having to go through the costly
process of repeated iterations of identification and quantification [44, 23, 31, 9].

We note that the term quantification-first refers to the quantification of peptides, as the quantification
of proteins requires some form of identification. Furthermore, current quantification-first approaches
often apply significance filters for the differentially abundant peptide signals before peptide and protein
identification [31, 9]. However, we refrain from applying such a filter, as this can easily introduce
quantification biases on protein level because it discards evidence in support of the null hypothesis.
Whenever practically possible, significance tests should be withheld until the final steps of any data
processing pipeline, as they introduce unnecessary bifurcations, resulting in loss of data.

Conversely, specificity is often compromised by the multitude of thresholds in the various steps of
a quantification pipeline, which cause a lack of error control and do not properly account for error
propagation [40]. Also, missing value imputation is known to induce false quantification accuracy [16].
We have previously introduced a hirarchical Bayesian model [], Triqler [40], for protein quantification
that propagates error rates of the different steps in protein quantification and compensates for missing
readouts in a Bayesian manner. Triqler provides a natural means to link the quantification to the
identification process. However, two features that Triqler did not include yet were the error rates of
the association of MS1 features with MS2 spectra and support for MBR.

Here, we introduce a new method, Quandenser (QUANtification by Distillation for ENhanced Sig-
nals with Error Regulation), that we subsequently interface to Triqler to substantially increase the
sensitivity of the LFQ analysis pipeline. Quandenser condenses the quantification data by applying
unsupervised clustering on both MS1 and MS2 level and thereby paves the way for a quantification-
first approach. The algorithm combines the unknowns from both levels into a condensed set of MS1
features and MS2 spectra that are likely to be interesting for further investigation. Specifically, Quan-
denser incorporates a method similar to match-between-runs for MS1 features to increase sensitivity
and uses MS2 spectrum clustering to decrease the number of spectra to be searched. Importantly,
Quandenser addresses the false transfer problem [24] by providing feature-feature match error rates
using decoy features and a novel automated weighting scheme to separate true from false matches.
These error rates can be used as input to Triqler to account for the errors as a result of the MBR step.

The main advancement of our pipeline of Quandenser with Triqler comes from the combination of a
match-between-runs approach with a Bayesian error model, which results in compelling gains in the
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number of significant proteins while maintaining control over the differential abundance FDR. Addi-
tionally, the clustering approach provides a conceptually pleasing solution to some of the bottlenecks
in protein quantification analysis by producing a reduced set of hypotheses to test for. Not only does
this facilitate easy re-searching and open modification searches on the data, but it also allows us to
zoom in on previously unexplored parts of our data that, for example, are frequently recurring but
remain consistently unidentified or follow a quantitative behavior of potential interest.

Methods

Datasets

We downloaded RAW files for 4 engineered datasets to characterize the reliability and sensitivity
of our pipeline. The first dataset was a set of partially known composition with the UPS1 protein
mixture spiked in at different concentrations in a yeast background (PRIDE project: PXD002370, 9
RAW files, Only the files C-25fmol-R* QEx2 *, D-10fmol-R* QEx2 *, and E-5fmol-R* QEx2 * were
used) [11]. The other 3 sets were mixtures of two proteomes spiked in at different ratios. The first
comes from a benchmark comparing quantitative accuracy and coverage between the commonly used
LFQ and TMT methods using a sample of yeast spiked into a human background [32] (PRIDE project:
PXD007683, 11 LFQ RAW files). Second, we analyzed the data from a benchmark for MS1 label-free
quantification where E. coli was spiked into a HeLa background at 4 concentrations [35] (PRIDE
project: PXD001385, 12 RAW files), which will be referred to as the Shalit hela-ecoli dataset. Finally,
we processed the data from the recent BoxCar method, where again E. coli was spiked into a HeLa
background at two different ratios [28] (PRIDE project: PXD006109, 12 RAW files, only the files for
the mixture of E. coli with HeLa were considered, both from the Shotgun and the BoxCar runs), which
will be referred to as the BoxCar hela-ecoli dataset.

We also downloaded RAW files for three clinical datasets. The first was a dataset studying bladder
cancer [21] (PRIDE project: PXD002170, 8 LFQ RAW files), which will henceforth be referred to
as the Latosinska dataset. The second was a dataset studying Hepatitis C Virus-associated hepatic
fibrosis [4] (PRIDE project: PXD001474, 27 RAW files), which will be referred to as the Bracht
dataset. The third dataset concerned a recent advancement in nanoscale proteomics applied to type
1 diabetes [48] (PRIDE project: PXD006847, 18 RAW files), which will be referred to as the Zhu
dataset.

For the UPS-yeast mixture, a UPS1 protein mixture was spiked into a 1 µg yeast background at
respectively 25, 10 and 5 fmol concentration, with triplicates for each concentration. For the human-
yeast mixture, yeast lysate was spiked in at 10% (n = 3), 5% (n = 4) and 3.3% (n = 4) total
protein concentration into a human cell lysate (SH-SY5Y) background. For the Shalit hela-ecoli
mixture, 3, 7.5, 10 and 15 ng of E.coli lysate was spiked into a HeLa digest background of 200 ng
in triplicates. For the BoxCar hela-ecoli mixture, E. coli lysate was mixed in 1 : 2 and 1 : 12 ratios
in a HeLa lysate in triplicates. The Latosinska dataset featured 8 samples of tumor tissues of non-
muscle invasive (stage pTa, n = 4) and muscle-invasive bladder cancer cases (stage pT2+, n = 4),
without technical replicates. The Bracht dataset featured 27 samples of biopsies from patients with
HCV-associated hepatic fibrosis, classified in a low fibrosis group (n = 13) and a high fibrosis group
(n = 14), without technical replicates. The Zhu dataset featured 18 samples with 10–100 cells each
from human pancreatic islet thin sections with nine samples from a type 1 diabetes donor and nine
from a non-diabetic control donor, without technical replicates.

Prior to processing the runs with Quandenser v0.02, all RAW files were converted to mzML format
with ProteoWizard [18] (ver 3.0.10765), where we applied peak picking both on MS1- and MS2-level,
except for the Bracht set, where peak picking was only applied on MS2-level. For the BoxCar runs of
the BoxCar dataset, MS1 BoxCar windows were combined into new MS1 spectra using an in-house
python script.
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Quandenser

An overview of the Quandenser process is given in Figure 1. First, MS1 features were detected
with Dinosaur v1.1.3 [38] and assigned to the MS2 spectra that were obtained inside the retention
time and precursor isolation window. We will refer to a combination of an MS1 feature and an MS2
spectrum as a spectrum-feature match. Next, clustering of MS2 spectra was applied with MaRaCluster
v0.05 [39]. One advantage of applying MS2 clustering first was that we could align retention times
between two runs through pairs of spectra that end up in the same cluster. This alignment was
done by fitting a spline function to the medians from 100 bins of the sorted retention times using
iteratively reweighted least squares regression (IRLS). The IRLS algorithm protected against outliers
that might have resulted from incorrect clusterings. We then estimated the standard deviation of the
aligned retention times, which gave us a way to dynamically select a reasonable window to search for
matching precursors (by default, 5 standard deviations), instead of having this window specified with
a fixed time interval, as is usually done.

Retention times were aligned pair-wise between runs using a minimum spanning tree based on the
similarity of chromatography runs [34, 5]. This tree was traversed twice, once from bottom to top
and a second time from top to bottom. This ensured that MS1 feature information was distributed
between all pairs of runs, not only the pairs connected in the tree. For each pair-wise retention time
alignment, the MS1 features discovered by Dinosaur from the two corresponding runs were matched
based on a set of numeric features, such as the difference between the observed and aligned retention
time and precursor mass difference. At the same time, we matched MS1 features against decoy MS1
features [46], which were generated by shifting the precursor m/z of all MS1 features discovered by
Dinosaur by 5 ·1.000508 Th in one of the runs. For a more detailed description of these decoy features
and what constitutes good decoy features, see Supplementary Section 5. These decoy MS1 features
correctly mimicked incorrect target MS1 features in a target-decoy competition setting (Supplementary
Figure S10). Also, we noted that the probability of observing a certain precursor mass is constrained
by its composition of amino acids and, therefore, the probability of a match quickly tapers off when
non-integer multiples of 1.000508 were employed as shifts (Supplementary Figure S10f).

The MS1 feature characteristics, e.g. the precision of precursor m/z and retention time, can vary
significantly between samples. We designed Quandenser to allow different amounts of flexibility when
matching MS1 features between different runs. We achieved this by automatically weighting the nu-
meric features using Percolator v3.02 [41]. This perhaps surprising use of Percolator - which normally
is used for quality assessments of peptide-spectrum matches - allowed us to avoid fixed thresholds for
individual numeric features, and instead derive error probabilities for feature-feature matches. This
approach is an extension of the approach employed by DeMix-Q [46], where Percolator now provides
a more natural means to feature weighting as well as probabilistic scoring.

We retained feature-feature matches with a posterior error probability (PEP) below 0.25, which typ-
ically controls the FDR well below 5%. These PEPs were also used as input to Triqler to control
for false matching. For features for which no confident corresponding feature could be found in the
opposite run, we used a match-between-runs approach by searching for previously missed features
using the targeted mode of Dinosaur, again scored by Percolator according to the same scheme as
outlined above. If a feature still had no match, a placeholder feature, representing a missing value,
was added at the corresponding precursor mass and aligned retention time.

The MS1 features were grouped by feature-feature matches from the pair-wise alignments using single-
linkage clustering, resulting in MS1 feature groups. The feature groups that had a missing value in
more than M runs were filtered out. Subsequently, for each feature group, we selected all MS2 spectra
that were previously assigned to a feature in the group and assigned the MS2 spectrum’s corresponding
cluster from MaRaCluster to the feature group. We then scored each match between a feature group
and a spectrum cluster according to the following score:

s =

R∑
r=1

I(cr ≥ 1) · log2(Ir),
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where r = 1, . . . , R indicates the run index, I is the indicator function that is 1 if the condition holds
and 0 otherwise, cr are the number of spectra in the spectrum cluster that can be linked to the feature
for run r, and Ir is the intensity of the feature in run r. For each spectrum cluster, we only retained

the feature groups with s ≥ max{sg | g ∈G}
2 , with G the set of all feature groups associated with the

spectrum cluster. The idea behind this filter is that the MS1 feature intensity is a good predictor of
the dominant peptide species in the MS2 spectrum. This filter typically more than halved the number
of spectrum-feature matches that had to be searched, while maintaining or even increasing the number
of peptide identifications due to the reduction of tested hypotheses.

Finally, Quandenser produces (1) a list of MS1 feature groups with their corresponding MS2 spectrum
clusters, and (2) a spectrum file with, for each spectrum cluster, its consensus spectrum together with
the spectrum-feature matches of the assigned feature groups. The spectrum file can be any of the file
formats that are supported by Proteowizard, such as mzML and mgf, and can then be processed by
the user’s search engine of choice.

Peptide and protein identification and quantification

For the UPS-yeast mixture, we created a concatenated FASTA file containing 6769 records from
both the UPS1 proteins (https://www.sigmaaldrich.com/, accessed: 2018 Jan 17) and the Swiss-
Prot database for yeast (http://www.uniprot.org/, accessed: 2016 Mar 15). For the human-yeast
mixture, we created a concatenated FASTA file with 26914 entries from the Swiss-Prot databases
of human (accessed: 2016 Mar 15) and yeast (accessed: 2015 Nov 12). For the Shalit hela-ecoli
mixture, we used the FASTA file provided in the PRIDE repository containing 24557 sequences from
the Swiss-Prot databases of human (accessed: 2014 Jun) and E. coli (accessed: 2014 Aug). For the
BoxCar hela-ecoli mixture, we created a concatenated FASTA file with 24753 proteins of the Swiss-
Prot proteins of human (accessed: 2019 Sep 6) and E. coli (accessed: 2019 Apr 11). The Latosinska,
Bracht and Zhu sets were searched against the Swiss-Prot database for human containing 20193 records
(accessed: 2015 Nov 12). We generated decoy sequences by reversing the amino acid sequences and
created concatenated target-decoy databases as input to the search engines.

We used several search engines both as standalone packages as well as part of a cascade search ap-
proach [17]. We employed Tide [6], through the interface of the Crux 2.1 [27] package, and used
Percolator v3.02 [41] to post-process the resulting PSMs. For all datasets, all parameters in Tide
and Percolator were left to their default values (i.e. tryptic cleavages, fixed carbamidomethylations
of cysteine and --mz-bin-width=1.000508), except for allowing up to 2 methionine oxidations, up
to 2 missed cleavages, and ±10 ppm precursor tolerance. Furthermore, we used MODa v1.51 [30]
and MSFragger (build 20170103.0) [19] for open modification searches. We extracted several relevant
features of the respective search results with in-house python scripts and subsequently processed the
PSMs with Percolator v3.02. Finally, we also used Novor v1.05.0573 [26] for de novo searches as a
discovery tool and searched the resulting sequences with BLAST through the UniProtKB website. We
did no statistical analysis on the Novor results.

After the search engine search, the feature groups output file from Quandenser and the search engine
results were combined into an input file to Triqler v0.1.4 with a python script available from the
Quandenser repository (bin/prepare_input.py). This step includes the option for retention time-
dependent normalization [46] which is the default option and was also applied to all datasets presented
here. The number of missing values allowed for each feature group, M , was chosen to reflect the
parameters chosen by the authors of the original manuscripts, or, if unavailable, we allowed between
1
4 and 1

3 of the runs to have missing values. For the UPS-yeast dataset, we allowed M = 3 missing
values, for the human-yeast mixture we used M = 4, for the Shalit hela-ecoli mixture M = 3 and for
the BoxCar hela-ecoli set we analyzed all 12 runs together with Quandenser and the respective search
engine(s), but then analyzed the 6 shotgun runs and the 6 BoxCar runs separately with Triqler using
M = 3. As for the clinical datasets, we used M = 4 for the Latosinska set, M = 7 for the Bracht set
and M = 11 for the Zhu set. Although the number of allowed missing values has a significant impact
on sensitivity, testing different values of M on the human-yeast mixture showed that the FDR could
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still be controlled within reasonable bounds, i.e. below 10% empirical FDR at 5% reported FDR, even
when allowing more than 70% of the runs to have missing values (Supplementary Table S32).

The use of Triqler’s hierarchical Bayesian model to combine the quantitative signals of the spectrum-
feature matches into protein quantities offers a great way to integrate away undesired variation. The
algorithm will in effect down-weight any of a protein’s constituent peptides with a quantification
pattern that contradicts its other peptides. In this aspect, Triqler resembles our previously published
method, Diffacto [47], which uses factor analysis to obtain a similar effect. However, Triqler expands
on this idea with the integration of identification errors, a more intuitive way to impute missing values
and posterior probabilities that facilitate better interpretation of the results.

Some adaptations to Triqler were necessary to deal with the additions to the pipeline. Firstly, the
feature-feature match PEPs are used explicitly as an extra input to the feature node in Triqler’s
probabilistic graphical model (Supplementary Figure S1). Secondly, there is the issue of the many-
to-many relation between feature groups and spectrum clusters. Note that a spectrum cluster can be
associated with multiple identified peptide sequences due to the chimericity of the spectrum. In the
end, only one peptide identification can be associated with each feature group. To resolve this, for
each unique peptide sequence identification of the spectrum cluster, Triqler first assigns the feature
group with the best search engine score. Subsequently, if a feature group still has multiple peptide
identifications, Triqler chooses the peptide sequence with the best combined PEP of the search engine
PEP and the feature-feature match PEPs.

Finally, to deal with open modification search results, we have to guard ourselves against assigning
correct peptides with incorrect (small) modifications to feature groups. To prevent this, we only select
the best peptide identification per protein for each spectrum cluster, under the assumption that the
search engine will score the true peptide sequence, with or without modification, the highest. Triqler
then proceeds in normal fashion to calculate relative protein expression levels and finally outputs a
list of differentially abundant proteins, based on the posterior distributions of the log2 fold change
between treatment groups of the protein concentrations.

As a comparison, we also analyzed the datasets with MaxQuant v1.6.1.0 [5], starting from the RAW
files, followed by differential expression analysis with Perseus v1.6.1.3 [43]. We used the default pa-
rameters in MaxLFQ, except for allowing up to 2 oxidations and allowed the use of these modified
peptides for quantification. For the differential expression analysis with Perseus, we filtered out decoy
proteins and proteins with more than M missing values per dataset as stated above. We then log2
transformed the intensities, used missing value imputation from a down-shifted gaussian with the
default parameters and used a two-sided Welch’s t-test with different values of S0 (0.0, 0.3, 0.7, 1.0),
where higher values of S0 will increasingly prevent small fold changes from being selected as signif-
icant [42]. The results reported in the main text are for S0 = 0.3 unless stated otherwise, as these
generally gave the best trade-off between sensitivity and specificity.

Additionally, we analyzed the protein group-level output of MaxQuant with the Empirical Bayesian
Random Censoring Threshold model (EBRCT) [20]. This method deals with missing values in a
similar way to Triqler, using the assumption that low abundant analytes are more likely to produce
missing values. The main difference is that it operates on protein group-level input and is thus a
simpler approach. We adapted the R scripts provided in the supplementary materials of the original
publication to output the posterior estimations for the group means and the group means’ standard
deviations, which we then used to compute fold change posterior distributions.

Finally, we used DAVID 6.8 [15] to find significant functional annotation terms for the sets of dif-
ferentially abundant proteins found by Quandenser+Triqler and MaxQuant+Perseus. We used the
proteins identified at 5% protein-level identification FDR as the background set and thresholded the
significant terms at a 5% Benjamin-Hochberg corrected FDR.
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Data availability

RAW files for all 7 datasets analyzed are available without restrictions from the PRIDE reposi-
tory: UPS-yeast mixture (PXD002370), human-yeast mixture (PXD007683), Shalit hela-ecoli mixture
(PXD001385), BoxCar hela-ecoli mixture (PXD006109), Latosinska dataset (PXD002170), Bracht
dataset (PXD001474) and the Zhu dataset (PXD006847).

Code availability

The source code and binary packages for all major operating systems are available from https:

//github.com/statisticalbiotechnology/quandenser, under Apache 2.0 license. An installation
guide and instructions on how to run the full pipeline including Triqler are included in the Supple-
mentary Materials.

Results

We evaluated the performance of our quantification-first method, Quandenser, with different search
engines followed by differential expression analysis with Triqler. We used one regular search engine,
Tide, one open modification search engine, MODa and subsequently, we investigated a combination of
them both, i.e. Tide and MODa in a cascade search setting. We compared these quantification-first
setups to three identification-first setups, (1) MaxQuant+Perseus with match-between-runs (MBR),
(2) MaxQuant+EBRCT with MBR and (3) Tide followed by Triqler, without clustering on MS1 and
MS2 level nor MBR but with feature detection using Dinosaur. In the following, whenever MaxQuant
is mentioned as a method, this is presumed to include MBR.

For the engineered datasets we verified the reported differential abundance FDRs by comparing it
to the observed differential abundance FDR. To calculate the latter, spiked-in proteins reported as
differentially abundant with the correct fold change sign were counted as true positives. All other
proteins reported as differentially abundant, i.e. spiked-in proteins with the wrong fold change sign
and background proteins, were counted as false positives.

Furthermore, we used the UPS-yeast dataset to illustrate some benefits of clustering the data before
analysis by a search engine. The low complexity of the UPS spike-in fraction allowed us to verify
our findings with high confidence. Then, we used the human-yeast proteome mixture to characterize
the benefits of each of the steps in our pipeline, as its higher complexity allowed better separation
of the performance figures. The two hela-ecoli mixtures were then used to further demonstrate the
applicability of the method in different experimental setups. Finally, we analyzed 3 clinical datasets to
characterize our pipeline’s behavior in real-world applications. A summary of the datasets, including
the employed parameters and reduction in the number of searched MS2 spectra through clustering by
Quandenser can be found in Supplementary Table S34.

All analysis was performed on a quad-core (Intel i7-4790K, 4.00GHz) machine with 32 GB of memory
running Ubuntu 18.04. Conversion from RAW to mzML format with ProteoWizard took less than
10 minutes per dataset using 4 cores. Both Quandenser and MaxQuant were run using all 4 cores as
well. For MaxQuant, we used Mono on Linux, which was reported to be at least as fast as MaxQuant
on Windows [36]. On the tested datasets, running Quandenser was typically about twice as fast as
MaxQuant, with respective runtimes in the range of 1−3 hours compared to 2−5.5 hours. Quandenser
does not include a search engine step, but processing the consensus spectra with Tide and Triqler took
less than 15 minutes per dataset. The open modification searches with MODa on the consensus spectra
for each of the clinical datasets took about 15− 18 hours using 4 cores. One should bear in mind that
running MODa without applying clustering would have taken between 4 and 6 days.

UPS-yeast dataset

The UPS-yeast dataset consisted of a total of 535k MS2 spectra. Assigning the MS1 features detected
by Dinosaur to the MS2 spectra resulted in 934k spectrum-feature matches. Allowing up to M = 3
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missing values, resulted in 121k feature groups of which 50k were assigned to at least one spectrum
cluster. As multiple spectrum clusters could be assigned to a feature group, 109k spectrum-feature
matches (12% of the original number of spectrum-feature matches), corresponding to 61k consensus
spectra, remained to be searched by the search engine.

Subsequently, we processed the Quandenser and search engine outputs with Triqler and obtained poste-
rior distributions of the fold changes between sample groups (Supplementary Figure S8). To illustrate
what information Triqler uses and how it arrives at these posterior distributions, we have added a
detailed example for one of the UPS proteins in Supplementary Section 1.1. Triqler differs from conven-
tional statistical tests in that it integrates the probabilities of the fold change exceeding a given thresh-
old instead of calculating a probability of the observed data given a fold change of zero (a p value).
For the UPS-yeast dataset, we selected this log2 fold change to be 0.8 (--fold_change_eval=0.8),
which is just below the lowest spike-in ratio in the 10 vs 5 fmol comparison. Processing the Quan-
denser output with Triqler resulted in higher sensitivity compared to applying Triqler directly on
the search results without clustering and at the same time controlled the FDR below the reported
FDR of 5%, whereas MaxQuant+Perseus and MaxQuant+EBRCT failed to do so, producing observed
FDRs of up to 26% and 18% respectively (Table 2, Supplementary Table S1). We also observed that
MaxQuant+Perseus had trouble controlling the FDR, regardless of the value for the S0 parameter
(Supplementary Table S1).

To demonstrate the advantages of reducing the number of spectra and spectrum-feature matches that
need to be searched, we ran the unidentified consensus spectra through an open modification search
with MODa using the cascade search approach [17]. This open modification search took about 4 hours
using 4 cores, whereas applying such a search with the same number of cores without clustering by
Quandenser would have taken well over a day. We could see a clear increase in the number of feature
groups that were assigned a peptide and more modest, but still significant, increases in the number of
unique peptides and proteins (Figure 2). However, the cascade search did not result in an increased
sensitivity on the spiked-in proteins, as the newly discovered peptides were predominantly modified
versions of already identified peptides or came from already identified proteins (Supplementary Table
S1).

Interestingly, searching with MODa without searching with Tide first actually decreased the sensitivity
on the spiked-in proteins relative to only searching with Tide, even though more unique peptides were
identified than by Tide. This is likely a result of the lower sensitivity of open modification searches on
unmodified peptides, as a result of the increased search space. We indeed discovered several unmodified
peptides from UPS proteins that were confidently identified by Tide but not picked up by MODa. In
this engineered dataset the modified peptides did seem to follow the correct abundance pattern in the
vast majority of the cases. In general, however, we should be careful about using modified peptides
for quantification, as they are not guaranteed to follow the protein’s abundance pattern. On the other
hand, quantifying modified peptides can be of great interest for understanding biological processes.

We also tested MSFragger with its large precursor tolerance (±500 Da) as an alternative open modifica-
tion search engine. It produced more identifications than MODa, reducing the number of unidentified
consensus spectra to around 40%, but also produced several dubious modifications. MSFragger could,
therefore, be a good source for finding candidate peptide identifications, but some extra verification
seems to be required for the moment.

To illustrate the utility of MS2 clustering, we used Novor on the 20 most frequently occurring uniden-
tified spectra, followed by a BLAST search [25]. This interest was motivated by the fact that the
identification rate for large clusters (> 80% for cluster size ≥ 16) was much higher than for small
clusters (< 50% for cluster size ≤ 7). Using this approach, we found 2 distinct peptides from a capsid
of a known yeast virus (UniProtKB: P32503 / GAG SCVLA) and another 2 distinct peptides from
lysyl endopeptidase (UniProtKB: Q9HWK6 / LYSC PSEAE), the latter of which might have been
used for improved protein digestion, although this was not mentioned in the original manuscript.
All but one of these largest 20 unidentified spectrum clusters were identified as peptides from the 2
above-mentioned proteins or as modifications of already identified peptides of high-abundant proteins
(Supplementary Table S2).
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Furthermore, the benefit of having clustered on MS1 level allowed us to zoom in on feature groups
without peptide identifications, but with the same abundance pattern as the UPS proteins. For this, we
calculated the cosine distance between the expected abundance pattern and the observed abundance
pattern, omitting missing values from the calculation, and selected the 200 feature groups with the
smallest cosine distance (Figure 3, Supplementary Table S3). Of these 200 feature groups, 58 were
identified through closer inspection as, often modified, UPS peptides and often came from chimeric
spectra. One helpful approach in identifying these chimeric spectra was by filtering out the fragment
peaks of an already identified peptide species and applying another open modification search [8].

Interestingly, we also found 68 feature groups that had consensus spectra that contained ≥ 25 frag-
ments between 100 and 200 Da. Based on the accurate masses of these fragments, these were carbohy-
drates or hydrocarbons and did not contain any nitrogen atoms (Supplementary Table S4). In total,
we found 1 724 of these types of spectrum clusters, which mainly eluted towards the end of the runs.
Their abundance pattern typically followed the UPS abundance pattern (Figure 3) and MS2 spectra
associated with these feature groups generally remained unidentified. Based on their precursor mass
differences and late retention times, these feature groups likely originated from polyethylene glycols
(PEG), which might have been present as a contaminant in the UPS samples.

The putative identifications of a yeast virus, lysyl endopeptidase, and PEGs are examples that demon-
strate that Quandenser gives its users the capability to identify unknown either abundant or differ-
entially abundant compounds in their samples by targeting their spectra for identification. Possibly,
these analytes could have been detected by other means, e.g. by using spectral libraries of known
contaminants. However, for less engineered samples, Quandenser’s ability to help the user identifying
unknown compounds can turn out to be indispensable.

Of the remaining 71 feature groups, 50 were from analytes with low precursor mass (< 1000 Da),
mostly charge 1 ions, which are generally hard to identify. For 8 feature groups, the UPS abundance
pattern was a result of deisotoping errors where isotopes of a UPS peptide were incorrectly counted
towards the intensity of the feature. Finally, 13 feature groups remained unidentified and did not fit
into any of the above categories, but usually had spectra that showed clear signs of chimericity or only
had fragment ions spanning less than half of the peptide backbone making them hard to identify.

Proteome mixture datasets

We processed all 3 proteome mixture (human-yeast, Shalit hela-ecoli, BoxCar hela-ecoli) datasets
with Quandenser, followed by the aforementioned search engine strategies and protein quantification
using Triqler (--fold_change_eval=0.5, just below the lowest spike-in ratio of log2(1.5) = 0.6).
We consistently observed control of the differential abundance FDR and higher sensitivity relative to
MaxQuant+Perseus and MaxQuant+EBRCT (Table 2, Supplementary Table S1) as well as reasonable
estimates for the posterior distributions of fold changes (Supplementary Figure S9).

For the human-yeast mixture, for the 10 vs 5, 10 vs 3.3 and 5 vs 3.3 comparisons respectively, we found
24%, 46% and 85% more significant differentially abundant proteins with Quandenser+Tide+Triqler
than in the MaxQuant+Perseus analysis of the original study (Supplementary Table S1). Compared to
our own analysis with MaxQuant+Perseus, we obtained 13%, 16% and 175% more significant differen-
tially abundant proteins. However, more importantly, in contrast to our pipeline, MaxQuant+Perseus
and MaxQuant+EBRCT, again, did not control the differential abundance FDR, with respectively up
to 10% and 21% observed differential abundance FDRs.

For the Shalit hela-ecoli set, no results were presented in the original study to which we could compare
our results. Compared to our own analysis with MaxQuant+Perseus, we obtained an increase of at
least 50% in the number of true positives in 4 out of 6 comparisons (Supplementary Table S1).
The observed differential abundance FDRs for Quandenser+Tide+Triqler, MaxQuant+Perseus and
MaxQuant+EBRCT were at most 6%, 6% and 13% respectively.

For the BoxCar hela-ecoli set, we used the MaxQuant+Perseus results deposited to PRIDE by the
original authors. As the original study used a database that included Swiss-Prot and TrEMBL and
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we only used the Swiss-Prot part, the results are not directly comparable. Nevertheless, under the
assumption that most protein groups from Swiss-Prot with TrEMBL correspond to a single Swiss-
Prot entry, Quandenser+Tide+Triqler obtained a comparable sensitivity for the BoxCar runs, but
an increase of 35% for the Shotgun runs relative to the MaxQuant+Perseus results presented in the
original study (Supplementary Table S1). Both methods managed to control the differential abundance
FDR for the one-sided tests. For the two-sided tests, our pipeline controlled the differential abundance
FDR for the BoxCar runs, but had an 18% observed differential abundance FDR for the Shotgun runs.
However, the MaxQuant+Perseus analysis produced observed differential abundance FDRs of 71% and
50% respectively.

Due to the complex interplay of several parts of our pipeline it is hard to pinpoint exactly where
the increased performance originates from. Nevertheless, we attempted to gain insights into the
individual contributions of each of the steps by introducing several artificial filters on our identified
feature groups that mimic the exclusion of certain parts of our pipeline. Specifically, we investigated
the performance difference of including or excluding MS1 feature clustering, MS2 spectrum clustering
and a peptide-level FDR threshold.

As a base case, we tested an approach that mimicked a typical input for a protein quantification
method, that is, input on which no clustering was performed. For this, we evaluated the performance
of our pipeline if we only used the feature groups that were (1) identified below 1% peptide-level FDR
before MS2 clustering and (2) for which the number of missing values was ≥ M before MS1 cluster-
ing. In other words, we only retained feature groups for which at most M runs did not have an MS2
spectrum with the peptide identified. This approach is very similar to the pipeline Tide+Triqler with-
out Quandenser/MBR from Table 2, with the addition of a peptide-level FDR threshold. We indeed
observed a very similar performance of these two approaches (Supplementary Tables S1 and S33).

Second, we added to this set the feature groups for which at most M runs did not have an MS1
feature after applying MS1 clustering, still at 1% peptide-level FDR. The number of feature groups
doubled, or even tripled, for all datasets through this addition, while maintaining high specificity
(Supplementary Figure S13, Supplementary Table S33). This can mostly be attributed to the large
reduction in missing values (Supplementary Figure S12) and is in line with what has previously been
observed with several match-between-runs approaches [5, 46, 1].

Third, we included feature groups that had a peptide-level FDR below 1% after MS2 spectrum cluster-
ing. Although MS2 clustering has proven to be a valuable tool in increasing coverage of low abundant
peptides [14], in our case, the MS1 clustering step already rescued these cases based on the MS1
features. Therefore, it was not very surprising that few feature groups were added in this step and
that the addition of these feature groups had relatively little impact on sensitivity and specificity
(Supplementary Figure S14, Supplementary Table S33). Nonetheless, MS2 spectrum clustering plays
an important role in reducing the number of hypotheses and also is necessary for the intensity score
filter introduced above. This filter relies on the MS2 spectrum clusters to select the most likely set of
MS2 spectra for a given MS1 feature group.

Lastly, we investigated the influence of lower confident peptide identifications by adding the feature
groups with a peptide-level FDR between 1% and 10%. This represented an appreciable number of
feature groups and resulted in a modest increase in sensitivity (Supplementary Figure S15, Supple-
mentary Table S33).

As has previously been observed, we found that many MS2 spectra remain unidentified and that a large
number of MS1 feature groups remain without an assigned MS2 spectrum. The MS1 feature groups
without identification at 1% peptide-level FDR constituted between 50% and 75% of all MS1 feature
groups with MS2 spectrum, whereas adding MS1 feature groups without MS2 spectrum typically
triples the number of feature groups (Supplementary Figure S16, Supplementary Table S33). As one
could expect, the datasets with the highest proportions of unidentified MS2 spectra after the regular
database search, also had the biggest increases in identifications by adding the open modification search
results, bringing the identification rate across all datasets close to 50% (Supplementary Figure S5).
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Clinical datasets

The Latosinska dataset consisted of 413k MS2 spectra, resulting in 991k spectrum-feature matches
after MS1 feature detection by Dinosaur. After filtering based on the intensity score, we were left
with 83k feature groups, of which 47k had at least one spectrum cluster associated with them. This
corresponded to 122k consensus spectra and 183k spectrum-feature matches to be searched, just 18%
of the original number of spectrum-feature matches. This dataset contained a relatively large number
of singleton clusters, i.e. clusters with only one spectrum. This highlights one of the benefits of doing
quantification before identification in Quandenser. We can retain singleton clusters for which we can
find MS1 features in multiple runs while discarding the singleton clusters for which this is not the
case.

Searching the consensus spectra with Tide and/or MODa resulted in more identifications compared to
MaxQuant on all levels (Figure 2). We are aware that the increase in quantified proteins can partly be
explained by MaxLFQ’s requirement of having at least two peptides to quantify a protein. However,
this is exactly the type of loss of sensitivity due to throwing evidence away prematurely in an attempt
to artificially control the error rate that we try to address here. As we demonstrate in earlier work,
Triqler can call proteins with only one peptide as differential abundant if the information from both
the identification and quantification is very reliable.

Subsequent processing with Triqler (--fold_change_eval=0.8), resulted in more enriched functional
annotation terms than applying Triqler directly on the MS2 search results (Figure 4, Supplementary
Tables S5, S6, S7, S8, S9, S10, S11, S12, S13). There was a noticeable advantage for a cascaded
Tide+MODa search, both in terms of the number of differentially abundant proteins, as well as in the
number of enriched functional annotation terms. The original study found only a single protein at a
5% differential abundance FDR and 77 proteins with a p value below 0.05. These 77 proteins did not
show any term enrichment in DAVID. The significant proteins called by MaxQuant+Perseus at the
three FDR thresholds nor the 63 proteins with a p value below 0.05 showed any enriched terms either.

The Bracht dataset contained 1.01M MS2 spectra, which were assigned a total of 1.47M spectrum-
feature matches after feature detection. Processing with Quandenser resulted in 69k feature groups
in total and 45k with at least one spectrum cluster. This left 106k consensus spectra, with 150k
spectrum-feature matches to be searched, which was only 10% of the original number of spectrum-
feature matches.

Again, we observed an increase in the number of identifications on all levels compared to MaxQuant
(Figure 2). Analysis of the Tide search results with Triqler (--fold_change_eval=0.5; the fold
change threshold used in the original study was log2(1.5) = 0.58) resulted in multiple differentially
abundant proteins for all three searches, even at as low as 5% FDR (Figure 4). Conversely, neither
the original study nor MaxQuant+Perseus found any differentially abundant proteins at 5% FDR.

In the original paper, 7 proteins with a p value below 0.05 and high fold change differences were
subjected to verification through gene expression analysis, as well as targeted analysis with MRM.
Notably, the 4 proteins that showed a consistent relationship with increasing fibrosis stages in both
experiments (FBLN5, LUM, COL14A1, and MFAP4) were all discovered at 10% FDR, as was one
protein that showed significance in the gene expression analysis but only partial statistical significance
in the MRM analysis (TAGLN). The 2 proteins with the least consistent relation of expression levels
with increasing fibrosis stages (CSRP2 and CNN2) were not discovered at 10% FDR, though CSRP2
was called significant at 20% FDR. In the original study, these 2 proteins actually obtained a lower
p value than the other 5 proteins, and Quandenser+Triqler, thus, seemed to give a better ordering of
these 7 proteins.

Moreover, functional annotation analysis with DAVID actually resulted in several significant terms for
the 10% and 20% term-FDR thresholds (Supplementary Table S14, S15, S16, S17, S18, S19, S20, S21,
S22). Compellingly, several terms related to the extracellular matrix were found significant, which
was also pinpointed as a entity of interest in the original paper based on earlier studies.

Finally, we wanted to test the applicability of the method to the Zhu dataset, which contained samples
of a small number (10–100) of cells. This dataset comprised 593k MS2 spectra, assigned to 1.02M
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spectrum-feature matches. Processing with Quandenser resulted in 73k feature groups of which 52k
had at least one spectrum cluster. This left 117k consensus spectra, corresponding to 187k spectrum-
feature matches to be searched, 18% of the original number. We set the log2 fold change threshold
--fold_change_eval=1.0 in Triqler, corresponding to the threshold employed in the original study.

The number of identified feature groups and unique peptides were closer between Quandenser and
MaxQuant for this particular set (Supplementary Figure S6). Nevertheless, Quandenser+Triqler man-
aged to discover more significant proteins across all tested FDR thresholds compared to MaxQuant+Perseus
(Figure 4). Using Tide as a search engine, we found 703 significant proteins at 2% FDR, considerably
more than the 304 proteins at the same FDR found in the MaxQuant+Perseus analysis of the original
study. Again, we found enriched functional annotation terms associated to several sets of significant
proteins using Quandenser+Triqler (Supplementary Table S23, S24, S25, S26, S27, S28, S29, S30,
S31). No enriched terms could be found for MaxQuant+Perseus analysis, neither from the original
study nor from our own reanalysis. Interestingly, using Triqler without Quandenser appeared more
sensitive in the functional annotation enrichment analysis, as did using stricter FDR thresholds.

Discussion

Here, we demonstrated the utility of a quantification-first approach in which we cluster both MS1
features and MS2 spectra prior to identifying spectra, peptides, and proteins of interest. While the
idea to quantify features without an explicit identity is well explored in the literature [44, 31, 9], we here
have demonstrated the idea’s usefulness in combination with clustering. Not only does this approach
provide several new ways of obtaining unidentified analytes of interest, but by combining Quandenser
with Triqler, we discovered substantially more differentially abundant proteins and enriched functional
annotation terms than MaxQuant+Perseus.

We demonstrated that clustering was effective in increasing the coverage of the examined samples. By
first reduced sets of spectra, we could apply relatively computationally expensive search strategies.
First, an open modification search increased the number of identified consensus spectra by 47% for
the UPS-yeast dataset and 14 − 20% for the clinical datasets. Second, de novo searches on large
MS2 spectrum clusters of the UPS-yeast dataset resulted in the identification of peptides and proteins
not present in the database. Third, the similarity of feature groups’ abundance patterns across runs
indicate that they originated from the same group of proteins. By restricting the search to the 48
UPS proteins we found that many analytes with a similar abundance to the spiked-in proteins were
modified UPS peptides. Unfortunately, such targeted searches easily cause false reinforcement of
protein quantities, but it does reveal peptides and modifications we are missing out on. This approach
also revealed a group of analytes that covaried with the UPS proteins, likely to be polyethylene glycols.
These analytes would not have come to our attention in a traditional identification-first approach. Our
intention was not to demonstrate that the modification and de novo searches we applied here are the
best way of achieving increased proteome coverage. Rather, our analysis presents a first look into the
part of the proteome that normally is ignored, with hopefully many more discoveries yet to come.

Another benefit of combining clustering on MS1 with MS2 level is that we can include quantification
information in the selection of MS2 spectrum clusters of interest. This addresses a frequently observed
phenomenon in MS2 spectrum clustering in which the majority of the clusters only contain a single
spectrum, known as singleton clusters [10, 12, 39]. These could be spurious MS2 fragmentation
events, which should preferably not be matched by a search engine. On the other hand, these could
be low abundant peptides rarely selected for fragmentation. The Quandenser workflow can separate
these cases by only retaining fragment spectra from analytes that were quantified across several runs.
Furthermore, by using the agreement of the MS2 spectra within an MS2 spectrum cluster regarding
which MS1 feature group was most likely targeted, we managed to set up the efficient intensity score
filter, which drastically reduced the number of hypotheses with few false negatives.

The clustering steps further unveil the potential of integrated quantification and identification error
models such as Triqler. Particularly, using matches-between-runs with feature-feature match error
rates contributes to controlling the differential abundance FDR. Notably, even though the number of
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peptide and protein identifications favors our method, we want to emphasize that it is quantitative
reliability that is key in the end. By using statistical models with error propagation instead of sets of
(arbitrary) thresholds, our pipeline consistently achieved control of the differential abundance FDR,
whereas both MaxQuant+Perseus and MaxQuant+EBRCT markedly failed to do so.

The functional enrichment term analysis by DAVID showed promising results on the clinical datasets,
finding enriched terms for all three sets where MaxQuant+Perseus repeatedly showed no term enrich-
ments. However, care should be taken in interpreting these results as the methods used here might
introduce biases that analysis tools such as DAVID are sensitive to. For example, our method allows
the quantification of proteins with only a single confident peptide in which the prior still has a strong
influence. These proteins are far less likely to reach the differential abundance significance threshold
but are still included in the background of identified proteins. Ideally, one would feed the posterior
distributions directly into a downstream (Bayesian) method, without setting thresholds on differential
abundance significance. With the recent rise of Bayesian methods for protein quantification, we expect
such methods to become a topic of interest in the near future.

Several improvements could still be made to increase the sensitivity of Quandenser and the quantification-
first pipeline in general. As with other label-free quantification approaches, Quandenser is highly
dependent on the ability to reliably extract features from the MS1 chromatograms, which becomes
harder as the density of MS1 features increases [2, 32]. However, Quandenser could easily be extended
to fractionated data, or even to ion-mobility data [7] using the same clustering principles as employed
here. Moreover, Quandenser forms consensus spectra by a weighted averaging of the peak intensities
of the spectra in a cluster [10, 39]. However, the search engine scores of consensus spectra are seldom
higher than the best scoring constituent spectra. Improving the process to form consensus spectra
would have benefits for other types of analysis, such as the formation of spectral libraries. Another
problem with the current methods for clustering MS2 spectra is the so-called chimeric spectra, i.e.
spectra containing product-ions from multiple peptides, that can contaminate clusters [39]. Solving
how to cluster partial fragment spectra based on similarities of subseries of the full spectrum would
overcome this problem and open up avenues for applying Quandenser-like processing of data from
data independent analysis (DIA) mass spectrometry.

Finally, we specifically note the great potential of the quantification-first approach for processing
datasets larger in sample size. First, by only requiring quantification to take place once, we remove one
of the most time-consuming parts of re-analysis with different search parameters or engines. Second,
by reducing the number of spectra that we need to analyze, we reduce the search time as well as lower
the number of hypotheses we need to test when analyzing the subsequently matched spectra. The
combination of these two techniques allows a wide variety of, potentially computationally expensive,
search strategies to be applied to the quantification data. Especially with regards to the constant
stream of new search engines, this provides an easy way for users to efficiently interrogate their data.

The quantification-first approach in label-free protein quantification, thus, provides an attractive al-
ternative to the traditional identification-first approach. Through the use of unsupervised clustering,
we condensed the data into a comprehensive format that retained the relevant information and thereby
allow the researcher to spend more time on a reduced set of hypotheses. By subsequently propagating
the feature-level error rates to probabilistic protein quantification methods, the bounds of sensitivity
and specificity in LFQ are extended considerably. Already, we can see the benefits of this approach
in terms of coverage and sensitivity using the techniques presented here, but many more modes of
interpretation are available, ready to be applied.
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[34] Hannes L Röst, Yansheng Liu, Giuseppe D’Agostino, Matteo Zanella, Pedro Navarro, George
Rosenberger, Ben C Collins, Ludovic Gillet, Giuseppe Testa, Lars Malmström, et al. TRIC:
An automated alignment strategy for reproducible protein quantification in targeted proteomics.
Nature Methods, 13(9):777, 2016.

[35] Tali Shalit, Dalia Elinger, Alon Savidor, Alexandra Gabashvili, and Yishai Levin. Ms1-based
label-free proteomics using a quadrupole orbitrap mass spectrometer. Journal of Proteome Re-
search, 14(4):1979–1986, 2015.

[36] Pavel Sinitcyn, Shivani Tiwary, Jan Rudolph, Petra Gutenbrunner, Christoph Wichmann, Şule
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Table 1: Frequently occurring terms.

MS1 feature A detected precursor-ion, from any run
Spectrum-feature match An MS2 spectrum associated with one monoisotopic mass. Due to

chimericity, a spectrum may give rise to multiple spectrum-feature
matches.

Feature group Features matched across multiple runs
Match-between-runs A search through MS1 data for features not appearing in the initial list

of features, that appear in other runs.
Spectrum cluster A set of spectra from multiple runs originating from the same peptide

species.
Consensus spectrum A spectrum formed by aggregation of the spectra in a spectrum cluster.
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Table 2: Quandenser combined with Triqler achieves a high sensitivity on the UPS-yeast
and Shalit HeLa+Ecoli datasets, while still maintaining control of the FDR. The table lists
the number of true (tp) and false positive (fp) significantly differentially abundant proteins at a 5%
reported FDR threshold. For Perseus we used S0 = 0.3, other values (S0 = 0.0, 0.7, 1.0) resulted in
inferior results (Supplementary Table S1).

UPS-yeast

UPS1 spike-in concentration [fmol] 25 vs 10 25 vs 5 10 vs 5
Max. true positives 48 48 48
Method tp fp tp fp tp fp

Quandenser+Triqler

- Tide 43 1 45 1 35 0

- MODa 40 0 41 2 29 0

- Tide + MODa cascade 43 0 45 0 35 0

Tide+Triqler (without Quandenser/MBR) 40 0 40 0 34 0

MaxQuant MBR+Perseus (S0 = 0.3) 39 9 42 15 36 1

Shalit hela-ecoli

E. coli spike-in concentration [ng] 3 vs 7.5 3 vs 10 3 vs 15 7.5 vs 10 7.5 vs 15 10 vs 15
Method tp fp tp fp tp fp tp fp tp fp tp fp

Quandenser+Triqler

- Tide 190 7 198 4 229 0 0 0 194 3 138 0

- MODa 170 3 181 5 222 2 0 0 184 1 131 1

- Tide + MODa cascade 200 8 206 8 240 3 0 0 201 4 145 1

Tide+Triqler (without Quandenser/MBR) 47 1 50 0 62 0 0 0 59 1 49 0

MaxQuant MBR+Perseus (S0 = 0.3) 126 7 134 6 137 9 0 0 128 4 125 7
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Figure 1: Workflow within Quandenser and its employment in the protein quantification
pipeline. Blue boxes represent existing software packages, some of which are directly integrated into
the Quandenser package, green boxes represent in-house packages, gray boxes represent intermediate
results or files and the yellow box represents any search engine(s) of choice.
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Figure 2: Using Quandenser, with and without the open modification search, increases the
number of quantified peptides and proteins compared to not clustering and MaxQuant
MBR. Performing an open modification search after a normal database search drastically
increases the number of feature groups with identifications. We plot the number of feature
groups with identification, quantified peptides and quantified proteins at 1% FDR after applying the
maximum missing value criterion. The analyzed methods were Quandenser+Tide (blue), a cascade
search of first Tide and subsequently MODa (green); Tide without Quandenser (red) and MaxQuant
with MBR (yellow). For the comparison on protein level one should bear in mind that MaxQuant
requires at least two unique peptides for protein identification.

21

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 25, 2020. ; https://doi.org/10.1101/488015doi: bioRxiv preprint 

https://doi.org/10.1101/488015
http://creativecommons.org/licenses/by/4.0/


0.00 0.05 0.10 0.15 0.20

cosine distance vs UPS

0

500

1000

1500

2000

2500

3000

co
un

ts
unidentified other
PEGs(?)
charge1
yeast
UPS

0.00 0.05 0.10 0.15 0.20

cosine distance vs UPS

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 c

ou
nt

Figure 3: The number of feature groups and their origin as a function of dissimilarity to
the UPS1 spike-in concentrations. The histogram displays the number (left pane) and relative
number (right pane) of feature groups as a function of the cosine distance relative to the UPS1 spike-
in concentrations. The vast majority of the identified feature groups had an abundance pattern that
conformed to their origin. Still, a large proportion of feature groups remained unidentified, including
a group that was tentatively identified as polyethylene glycols (PEGs), which exhibited an abundance
pattern similar to the UPS1 proteins. The cosine distance between the yeast and UPS concentrations
was 0.16 and we can indeed observe that the majority of the yeast peptides center around that value.

22

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 25, 2020. ; https://doi.org/10.1101/488015doi: bioRxiv preprint 

https://doi.org/10.1101/488015
http://creativecommons.org/licenses/by/4.0/


Latosinska

62

116

240

35

58

115

3 4 5

Di
ff

er
en

tia
lly

 e
xp

re
ss

ed
 p

ro
te

in
s

0

50

100

150

200

250

5% FDR 10% FDR 20% FDR
Quandenser+Tide+Triqler Tide+Triqler MaxQuant MBR+Perseus

8

31 31

5
4

17

0 0 0Fu
nc

tio
na

l A
nn

ot
at

io
n 

Te
rm

s

0

10

20

30

40

5% FDR 10% FDR 20% FDR
Quandenser+Tide+Triqler Tide+Triqler MaxQuant MBR+Perseus

Bracht

8

19

47

3

8

25

0 0 0

Di
ff

er
en

tia
lly

 e
xp

re
ss

ed
 p

ro
te

in
s

0

10

20

30

40

50

5% FDR 10% FDR 20% FDR
Quandenser+Tide+Triqler Tide+Triqler MaxQuant MBR+Perseus

0

13

26

0 0 00 0 0Fu
nc

tio
na

l A
nn

ot
at

io
n 

Te
rm

s

0

10

20

30

5% FDR 10% FDR 20% FDR
Quandenser+Tide+Triqler Tide+Triqler MaxQuant MBR+Perseus

Zhu
872

1051

1346

161
222

330

661

837

1001

Di
ff

er
en

tia
lly

 e
xp

re
ss

ed
 p

ro
te

in
s

0

500

1000

1500

5% FDR 10% FDR 20% FDR
Quandenser+Tide+Triqler Tide+Triqler MaxQuant MBR+Perseus

5

2

3

12

9

4

0 0 0Fu
nc

tio
na

l A
nn

ot
at

io
n 

Te
rm

s

0

2

4

6

8

10

12

5% FDR 10% FDR 20% FDR
Quandenser+Tide+Triqler Tide+Triqler MaxQuant MBR+Perseus

0

13

26

0 0 00 0 0Fu
nc

tio
na

l A
nn

ot
at

io
n 

Te
rm

s

0

10

20

30

5% FDR 10% FDR 20% FDR
Quandenser+Tide+Triqler Tide+Triqler MaxQuant MBR+Perseus

Figure 4: Benchmark of differentially abundant proteins and enriched functional annota-
tion terms. The analyzed methods were our quantification-first approach, Quandenser+Triqler when
using the search engine Tide (blue); and two identification-first approaches, Tide and Triqler with-
out clustering nor a match-between-runs (MBR) feature (red) and MaxQuant with MBR followed
by statistical analysis with Perseus (yellow). Overall, we discovered more differentially abundant
proteins and enriched functional annotation terms with than without Quandenser. Notably, Quan-
denser+Triqler with Tide found enriched functional annotation terms for the Bracht set for which no
enrichments were previously found. The left plots show the number of differentially abundant proteins
at 3 differential abundance FDR thresholds. The plots on the right show the number of significant
functional annotation terms we discovered with DAVID using the sets obtained in the left plots. Note
that the FDR reported in the plots on the right refer to the differential abundance FDR and not the
functional annotation term FDR, which was kept fixed at 5%.
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