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Summary Statement 
This manuscript describes a new interaction and functional cooperation between podoplanin 

and caveolin1 that drives tumour cell invasion into surrounding tissues. 
 
Abstract 
Podoplanin, a highly O-glycosylated type-1 transmembrane glycoprotein, found in lymphatic 

endothelial cells, podocytes, alveolar epithelial cells and lymph node fibroblasts is also 

expressed by tumour cells, and is correlated with more aggressive disease. Despite 

numerous studies documenting podoplanin expression, the mechanisms underlying its 

tumour-promoting functions remain unclear. Using a murine melanoma cell line that 

endogenously expresses podoplanin, we demonstrate interactions with proteins necessary 

for cytoskeleton reorganization, adhesion and matrix degradation, and endocytosis/receptor 

recycling but also identify a novel interaction with caveolin-1. We generated a panel of 

podoplanin and caveolin-1 variants to determine the molecular interactions and functional 

consequences of these interactions. Complementary in vitro and in vivo systems confirmed 

the existence of a functional cooperation in which surface expression of both full length, 

signalling competent podoplanin and caveolin-1 are necessary to induce directional 

migration and invasion, which is executed via PAK1 and ERK1 pathways. Our findings 

establish that podoplanin signalling mediates the invasive properties of melanoma cells in a 

caveolin-1 dependent manner. 
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Introduction 

Podoplanin is a small, highly glycosylated mucin-like protein, expressed in a range of 

tissues, and is now associated with diverse range of functions depending upon tissue type; 

in podocytes podoplanin is associated with glomerular filtration barrier integrity, while in 

lymphatics it is critical for development and lymph sac budding, where it’s disruption 

prevents segregation from the cardinal vein and lymphovascular defects (Herzog et al., 

2013; Uhrin et al., 2010). In mature lymphatics, associated with CD44, podoplanin can 

promote endothelial migration, and in lymph node FRCs it interacts with CLEC2-expressing 

dendritic cells supporting their movement within lymph nodes (Acton et al., 2012). Its 

expression may be induced by TGFb (Suzuki et al., 2008), and signals downstream of PMA, 

RAS, and Src stimulation (Nose et al., 1990; Shen et al., 2010). Further to chemical cues, 

podoplanin up-regulation has been reported in osteoblasts in response to mechanical cues 

from mineralization and tissue stiffening (Prideaux et al., 2012). 

Podoplanin is emerging as a marker of pathologies including arthritis (Takakubo et al., 2016) 

and cancer. Up-regulation has been reported in a growing number of cancers including 

melanoma (Ochoa-Alvarez et al., 2012), lung, colorectal, oral (Martin-Villar et al., 2005) and 

breast (Wicki et al., 2006) cancers, where it is frequently associated with poor prognosis. 

Thus, there is increasing interest to understand how it exerts pro-tumour functions, and 

whether it represents a viable therapeutic target. Studies using genetically modified cells 

have correlated podoplanin with enhanced metastatic capacity via platelet aggregation 

(Kunita et al., 2007; Takagi et al., 2013), promotion of EMT (Martin-Villar et al., 2015), or de-

stabilization of cell-cell junctions in the absence of EMT (Wicki et al., 2006). Expression of 

podoplanin is often restricted to the leading edge, where it is in contact with surrounding 

tissue and remodelled extracellular matrix, implying that podoplanin up-regulation may occur 

in response to environmental cues from neighbouring stroma and promoting invasion.  

Antibodies targeting the extracellular domain of podoplanin reduced lung colonization 

(Kaneko et al., 2012; Kato et al., 2006); possibly by blocking signalling functions or 

interfering with interactions between podoplanin and other surface proteins. In light of this, 

we sought to investigate the mechanisms by which podoplanin can drive invasion using cells 

with endogenous expression, identifying new binding partners underlying for this behaviour. 

Although having no impact on tumour proliferation or survival, we identified that podoplanin 

induced significantly increased directional motility and invasive capacity of melanoma cells 

via activation of PAK1. These activities required functional signalling capacity within the 

cytoplasmic tail of podoplanin and functional co-operation with caveolin-1 at the cell surface 

lipid rafts. 
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Results 
 

Podoplanin expressing tumour cells are more invasive in vivo. 
To determine the impact of podoplanin upon the invasive potential of tumour cells we utilized 

B16.F10 melanoma cells that endogenously express low levels of podoplanin (Fig. 1a). We 

generated variants to either knockdown or overexpress podoplanin (Fig. 1a-b), which 

translated to varying degrees of surface expression (Fig. 1b). Mice with intravenously 

administered tumour cells consistently developed a greater number of lung nodules (Fig. 1c-

d) and tumour burden (Fig. 1e) with increasing levels of surface podoplanin. However, in 

contrast to the metastatic setting, levels of podoplanin on tumour cells at the primary site 

had no impact on growth (Fig. 1f), indicating that podoplanin was not essential for tumour 

growth but has the capacity to impact downstream events. 

 

Podoplanin expressing tumour cells are more invasive in vitro 
To identify the mechanisms underlying these functional differences, we investigated 

consequences of podoplanin levels on tumour cell behaviour in vitro. No impact on tumour 

cell proliferative capacity (Fig. 2a and Fig. S1a), viability (Fig. S1b-c) or cell motility, as 

assessed by random migration on a 2D surface (Fig. 2b), was observed with varying 

podoplanin expression. In contrast, when a stimulus, in this case a wound was applied, the 

amount of surface podoplanin supported significantly increased wound closure velocity in a 

dose dependent manner (Fig. 2c). Similarly, enhanced invasion through trans-wells with 

thick collagen gels (data not shown) and of 3D spheroids into surrounding matrix were 

observed with increasing podoplanin (Fig. 2d). 

 

Podoplanin signals via PAK1 to support cytoskeletal rearrangement 
In addition to impaired directional velocity of tumour cells with decreasing podoplanin, siRNA 

illustrated that disruption to podoplanin altered the morphology of migrating cells (Fig. 3a). 

Cells migrating away from the leading edge no longer exhibited a mesenchymal phenotype 

with individual leading cells driving gap closure, instead a more rounded phenotype was 

observed at the collectively migrating front (Fig. 3a). As cellular migration is dependent on 

interactions between many different proteins, but its regulation is exerted by the activity 

balance of small Rho GTPases, namely RhoA, Rac1 and Cdc42, we analysed their activity 

in samples where a wound stimulus had been applied. Consistent with previously published 

data (Wicki et al., 2006), although total levels of RhoA, Rac1 and Cdc42 increased with 

podoplanin, their activity decreased (Fig. 3b). This led us to believe that podoplanin-

mediated directional migration uses an alternative pathway. qPCR arrays for cytoskeleton 

regulators and motility related genes allowed for a more targeted screening of mediators of 
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podoplanin pro-invasive functions, and identified several significantly deregulated genes 

following podoplanin disruption (Table 1). Of note, PAK1 and ERK1 expression and activity 

increased with podoplanin (Table 1 and Fig. 3c). To determine whether podoplanin-driven 

directional migration signals in a PAK-1-dependent manner we used kinase inhibitor 1,1'-

Dithiodi-2-naphthtol (IPA-3) to prevent PAK1 signalling. In knockdown and low podoplanin-

expressing (endogenous) B16.F10, inhibition of PAK1 had no significant effects on migration 

compared with vehicle controls (Fig. 3d). In contrast, IPA-3 dose-dependently impaired 

migration and wound closure in podoplanin-overexpressing tumour cells (Fig. 3d). The 

maximum concentration examined was 10 µM since doses beyond this affected proliferation 

and viability (Fig. S2a). As this inhibitor may exert some off target effects with other PAK 

signal transducers at higher concentrations, we then disrupted PAK1 expression with siRNA. 

Consistent with earlier data, neither podoplanin nor PAK1 knockdown had a significant 

impact on cell migration in KD cells. In overexpressing cells, however, PAK1 siRNA 

significantly impaired scratch closure velocity to levels equivalent with podoplanin 

knockdown (Fig. 3e) indicating a role for PAK1 signalling downstream of podoplanin in the 

induction of directional cell migration. Moreover, inhibition of PAK1 alone was enough to 

promote delocalization of podoplanin from the cell membrane (Fig. 3f and Fig. S2b). 

 

Podoplanin interacts with caveolin-1 
PCR arrays revealed a significant increase in caveolin-1 mRNA with podoplanin (Table 1). 

Following this observation, and since caveolin-1 has also been reported at the invasive front, 

associated with poor prognosis and is implicated in cell migration (Felicetti et al., 2009; Yoo 

et al., 2003), we investigated this further. Membrane fractionation confirmed that both 

podoplanin and caveolin-1 co-localized within lipid rafts of B16.F10 cells (Fig. 4a). Moreover, 

immunoprecipitation (IP) confirmed that podoplanin and caveolin-1 physically interact (Fig. 

4b). This was verified by reciprocal IP (Fig. 4c). Confocal analysis further demonstrated co-

localization of caveolin-1 and podoplanin to the cell surface (Fig. 4d top panel). Interestingly, 

disruption of podoplanin expression by siRNA resulted in coincident reduction of caveolin-1 

at the cell surface (Fig. 4d mid panel). In contrast, disruption of caveolin-1 had little effect on 

podoplanin localization, indicating that podoplanin may be dominant for the lipid raft 

interaction (Fig. 4d lower panel). Functionally, interference to either podoplanin or caveolin-

1, and therefore disruption of any interaction, resulted in a significant impairment of 

directional migration in B16.F10 OE cells but no effect was observed for the KD cells (Fig. 

4e). Moreover, overexpression of caveolin-1 was not sufficient to rescue wound closure 

velocity (Fig 5d). Together, these data imply that the presence of podoplanin-caveolin-1 

complexes at the cell surface are required for directional tumour cell migration in response to 
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an external stimulus which is not caveolin-driven, however disruption to either is sufficient to 

prevent a response. 

 

Podoplanin transmembrane domain mediates caveolin-1 interactions 
To examine the interactions between podoplanin and caveolin-1 in greater detail, and 

downstream consequences, further B16.F10 variants were generated in which endogenous 

podoplanin was knocked down and reconstituted with mutant forms (Fig. 5a and Fig. S3). 

We created two variants either lacking the short cytoplasmic domain, removing intracellular 

signalling capacity, or lacking the signal peptide, preventing podoplanin trafficking to the cell 

surface. A third variant, in which podoplanin deficient cells were transfected with caveolin-1 

was also generated to identify podoplanin-independent but caveolin-1 dependent effects. 

Confocal analysis confirmed membrane co-localization of podoplanin with caveolin-1 (Fig. 

5b top panel). Moreover, it confirmed that in the absence of signal peptide (DSP), podoplanin 

failed to reach the cell membrane, remaining cytoplasmic. Notably, in the absence of surface 

podoplanin, the majority of caveolin-1 also remained intracellular (Fig. 5b middle panel). In 

contrast, without the cytoplasmic domain, podoplanin again reached the cell surface co-

localizing with caveolin-1 (Fig. 5b lower panel). As previously demonstrated, wound closure 

velocity increased with the level of cell surface podoplanin (Fig. 5c). In DSP cells, closure 

velocity of B16.F10 cells was significantly impaired, returning to levels comparable with 

knockdown variants. Similarly, variants expressing surface, but signalling-incompetent 

podoplanin (DCT) exhibited significantly retarded migration velocities, even with surface 

caveolin-1. Reconstitution with caveolin-1 in the absence of podoplanin was not capable of 

restoring migration further confirming that caveolin-1 was not the dominant driver. In fact, 

velocities were further reduced indicative of a dual function for caveolin-1 which in this case, 

may be tumour suppressive in the absence of podoplanin. These data point to the 

requirement of surface expression of signalling competent podoplanin for directional tumour 

migration, which is dependent on interaction and functional cooperation with caveolin-1. This 

interaction is likely to occur via the transmembrane domain. In vivo, the type of podoplanin 

(functional status or cellular location) had no impact on primary tumour growth (Fig. 5d), but 

the extracellular domain of podoplanin was sufficient for colonization (Fig. 5e) since both 

KD+CAV1 OE and DSP exhibited highly inefficient colony formation (Fig. 5e). In contrast, 

cells lacking the cytoplasmic tail formed lung nodules comparable to signalling competent 

podoplanin (Fig. 5e). These findings indicate that functional cooperation between podoplanin 

and caveolin-1 assists egress from the primary tumour through directional migration and 

invasion rather than a controlling growth or secondary colonization. Here, the formation of 
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emboli through cell-cell or cell-platelet interactions may be sufficient for arrest in lungs and 

subsequent nodule formation. 

 

Cytoplasmic signalling potential of podoplanin 
To address the question as to whether podoplanin transduces signals from outside to inside, 

we then focused on its small cytoplasmic domain. Previous studies indicated that podoplanin 

interacts with the cytoskeleton via the ERM (Ezrin, Radixin, Moesin) protein family and it is 

this path that controls migration (Martin-Villar et al., 2006). However, other reports described 

that with only 10 amino acids, the cytoplasmic domain may signal via phosphorylation of two 

serines by PKA and CDK5 (Krishnan et al., 2013; Krishnan et al., 2015). CDK5 (Cyclin-

dependent kinase 5) is a cytoskeleton regulator reported to support melanoma cell motility 

and invasiveness (Bisht et al., 2015). In our cells, CDK5 is deregulated, increasing with 

podoplanin (Fig. 6a), yet intriguingly, siRNA disruption enhanced motility (Fig. 6b). While 

CDK5 levels increased at the protein level with podoplanin (Fig. 6a) this was not mirrored at 

the mRNA level (data not shown). This inverse relation to migration capacity may be 

explained by recently described functions of CDK5, phosphorylation of S171 of podoplanin 

inhibited migration (Krishnan et al., 2015). Thus in B16.F10 cells, accumulation beyond 

basal levels required for podoplanin phosphorylation may have a non-migration related 

function. To further evaluate the requirement for phosphorylation of podoplanin in execution 

of directional migration, we created podoplanin phospho-variants, transforming serine 167 

into non-phosphorylatable (S167A) or constitutively active phosphomimetic (S167E) forms. 

In both phospho variants, serine 171 remained phosphorylatable. Migration in response to 

physical stimulation was impaired in S167A variants, resembling podoplanin deficient cells 

(Fig. 6c). Reconstitution with S167E had an even more profound impact on directional 

migration (Fig. 6c-d). Together, these data highlight that the cytoplasmic domain can indeed 

signal directly to the cytoskeleton to modulate migratory responses via CDK5 dependent 

phosphorylation. Finally, we investigated interactions between podoplanin variants and ERM 

proteins. As expected, increasing podoplanin levels corresponded to increased interactions 

with ERM proteins, which didn’t happen in DCT variant due to lack of its cytoplasmic domain 

(Fig. 6e). Interestingly, no differences were observed with phospho-serine variants indicating 

that ERM signalling is independent of phosphorylation status, instead relying on KKXXXR 

motifs. 

 

We have demonstrated that podoplanin is able to influence tumour cell migration via a 

combination of elements: novel interactions with caveolin-1 or with ERM complexes, which 

transduce signals from the surface to the cytoskeleton. This is mainly accomplished through 
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a balance of phosphorylation but also via PAK1-ERK1/2-ERM pathways, independent of 

small Rho GTPases activity. 

 

Discussion 
Recent reports have demonstrated that expression of podoplanin expression in tumours 

correlates with poor prognosis (Martin-Villar et al., 2005; Ochoa-Alvarez et al., 2012; Wicki et 

al., 2006). Podoplanin induced RhoA activation and epithelial-mesenchymal transition (EMT) 

in MDCK canine cells (Martin-Villar et al., 2006), yet in MCF7 breast carcinoma cells, it 

attenuated RhoA activation, and although promoting invasion this was not via EMT (Wicki et 

al., 2006). Podoplanin is detected in numerous cell types including lymphatic endothelial 

cells, alveolar epithelial cells, fibroblastic reticular cells, podocytes and osteoblasts. Given 

the diversity of expression patterns and contradictory data regarding function, it is likely that 

podoplanin function is cell and context dependent. Moreover, many studies examining 

podoplanin function to date have been performed in cell lines lacking endogenous 

podoplanin expression (Martin-Villar et al., 2006; Wicki et al., 2006). Hence we investigated 

function in the context of behaviours that promote tumour progression using B16.F10 

melanoma cells that endogenously express podoplanin. Podoplanin exerted no growth 

advantage to primary tumours either in vitro or in vivo, yet increasing levels supported 

significantly higher degrees of lung colonization consistent with previous studies in 

transfected CHO cells (Kunita et al., 2007) and MCF7 cells, which exhibited enhanced 

metastasis in the absence of accelerated growth. Here, podoplanin supported tumour 

lymphangiogenesis and metastasis to lymph nodes (Cueni et al., 2010). Superior capacity to 

colonize sites such as the lung is now understood to be mediated through platelets via 

interactions with the C-type lectin CLEC-2 (Kato et al., 2008; Suzuki-Inoue et al., 2007), 

which convey protective effects through release of growth factors to sustain tumour cell 

growth, providing physical support for cell immobilization, shielding them from high shear 

stresses, and limiting anti-tumour cell immune surveillance mechanisms (Labelle and Hynes, 

2012; Palumbo et al., 2005). Here, podoplanin has a function in promoting metastasis due to 

its interaction with the extracellular environment. Our data support the view that it is the 

physical characteristics occurring as a consequence of surface podoplanin (i.e. platelet-

tumour emboli formation) rather than any active signalling processes that underlie lung 

colonization since signalling incompetent variants still efficiently formed nodules. 

 

Podoplanin had no influence on proliferation of B16.F10 cells in contrast to cells from 

different tissues and sites (Astarita et al., 2015), which in B16.F10 cells is driven by 

alternative signalling pathways including activation of FAK and Akt (Goundiam et al., 2010). 

In agreement with other studies, podoplanin influenced migration and invasion of cells which 
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express it. However, this was only true upon receipt of a physical stimulus, having no impact 

on random migration of cells in a resting state. This implies that podoplanin has the potential 

to act as a microenvironment sensor, translating physical cues into an actionable, migration 

phenotype. To migrate in response to a stimulus cells require cell polarization, the formation 

of membrane extensions such as lamellipodia and filopodia, translocation of the cell body, 

and efficient mechanisms of release at the rear of the cell. These processes are tightly 

regulated by spatial activation of small GTPases Rho, Rac and Cdc42. Podoplanin 

expression is concentrated in actin-rich microvilli and plasma membrane projections 

including filopodia, lamellipodia and ruffles indicating a direct role in migration phenotypes 

(Li et al., 2015; Navarro et al., 2008; Scholl et al., 1999; Wicki et al., 2006) and has been 

further correlated with cytoskeleton and extracellular matrix remodelling to induce motility of 

individual cells (Cueni et al., 2010; Scholl et al., 1999). Although podoplanin has been 

implicated in collective cell migration (Cueni et al., 2010; Wicki et al., 2006) we observed 

expression to induce a more mesenchymal mode of migration. While podoplanin-induced 

migration has been proposed to occur via recruitment of ERM proteins and downstream 

activation of RhoA to drive EMT-like behaviour (Acton et al., 2014; Martin-Villar et al., 2006; 

Scholl et al., 1999), or via the inactivation or down-regulation of RhoA, Rac1 and Cdc42, to 

support collective migration (Cueni et al., 2010; Wicki et al., 2006), in endogenously 

expressing cells the migration phenotype was independent of these small GTPases. Instead, 

PAK1 emerged as the driver of podoplanin-induced migration in B16.F10 melanoma. Of 

note, PAK1 has been shown to drive increased invasion potential through cytoplasmic 

reorganization via the MAPK pathway in melanoma (Ong et al., 2013) and via F-actin 

rearrangements (Manser et al., 1997; Staser et al., 2013) or regulation of focal adhesion 

dynamics in other cell types (Arias-Romero and Chernoff, 2008; Slack-Davis et al., 2003). 

Together, these data imply that that podoplanin may be sufficient to act as an activator of 

PAK1 and therefore induce migration in tumour cells via the PAK1-ERM axis, bypassing the 

need for Rac1 activation. 

 

Beyond colonization of secondary sites via platelet activation and aggregation (Kato et al., 

2008; Suzuki-Inoue et al., 2007), it has been reported that pro-tumour functions of 

podoplanin arise following interactions with other membrane proteins such as CD44, which 

assisted with tethering tumour cells to ECM components (Martin-Villar et al., 2010; Tsuneki 

et al., 2013). In melanoma cells, podoplanin-induced migration in response to stimulus relied 

on its surface localization (Fernandez-Munoz et al., 2011) and physical interactions with 

caveolin-1 within lipid rafts, unlike in embryonic mouse alveolar epithelial cells (Barth et al., 

2010). These opposing observations further highlight the context dependent nature of 

podoplanin behaviour. The interaction between podoplanin and caveolin-1 was fundamental 
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to the migration capacity and phenotype of cells examined. Since both components have 

potential roles in formation and regulation of invadopodia, particularly relating to traffic of its 

constituents such as matrix metalloproteinases (Martin-Villar et al., 2015; Yamaguchi et al., 

2009) and invadopodia stability (Martin-Villar et al., 2015), invadopodia turnover may be one 

mechanism by which the interaction is transduced. Indeed, we observed increased activity of 

matrix metalloproteinases in podoplanin expressing cells (Table 1 and data not shown). 

 

Although caveolin-1 is key to vesicular transport, endocytosis and signal transduction 

(Martinez-Outschoorn et al., 2015), more recent pro-tumour activities including invadopodia 

formation, proliferation, migration and tumour forming capacity (Felicetti et al., 2009) have 

been reported following its activation (Lobos-Gonzalez et al., 2013; Senetta et al., 2013). As 

with podoplanin, its expression can be found localized to the leading edge are exposed to 

mechanical cues, such as stresses associated with adjacent stroma (Felicetti et al., 2009; 

Yoo et al., 2003). We demonstrated that directional migration responses required both 

caveolin-1 and podoplanin to be present at the surface since disruption to either significantly 

impaired the response to stimulation. However, although essential, restoration of caveolin-1 

in the absence of podoplanin was not sufficient to rescue migratory phenotypes implying that 

podoplanin is the dominant partner driving these responses, likely directing caveolin-1 to its 

correct cell surface locale (Fig 4d) where any pro-tumour functions can occur (Felicetti et al., 

2009; Yamaguchi et al., 2009). 

 

Although surface expression of the podoplanin extracellular domain was sufficient for lung 

colonization, directional migration required both cell surface podoplanin and an intact 

cytoplasmic tail, indicating a requirement for signal transduction following stimulation. Within 

the 10 amino acid cytoplasmic domain, two potential serine phosphorylation sites (S167 and 

S171) exist. Their phosphorylation and subsequent downstream signalling has been 

described to be mediated through cooperation between PKA and CDK5 (Krishnan et al., 

2013; Krishnan et al., 2015) whereby the default resting state of podoplanin is a 

phosphorylated to suppress migration, and de-phosphorylation results in promotion of a 

migration phenotype (Krishnan et al., 2013; Krishnan et al., 2015). Hence an increased 

migration of tumour cells may depend on the balance between the total amounts of 

podoplanin being expressed, but also the degree of phosphorylation and downstream 

substrates. In the case of B16.F10, we not only have an increase in podoplanin expression 

but also an increase in the expression in CDK5; yet we do not see a reduction in motility in 

response to stimulation as might be expected from previous studies in transfected cells (FIG 

6a). While siRNA experiments where blockage of CDK5, substrate for S167, enhanced 

migration ability consistent with previous studies (Krishnan et al., 2013; Krishnan et al., 
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2015), mutation to a non-phosphorylatable form surprisingly impaired migration, though not 

to levels observed with constitutively phosphorylated variants (FIG 6c). Although we were 

not able to ascertain the phosphorylation status of S171 or PKA levels, the data implies the 

existence of alternate pro-migratory roles for CDK5 in these cells, so how may the CDK5 

function in these cells beyond S167 phosphorylation? CDK5 is a proline-directed 

serine/threonine-protein kinase that has also been related to motility, invasiveness and 

metastatic spread in melanoma. It has been suggested that plays important roles in 

anchorage-independent growth, cell morphology, and in the phosphorylation of proteins 

required for actin reorganization, endocytosis and exocytosis (Bisht et al., 2015; Krishnan et 

al., 2015). In B16.F10, CDK5 may also directly modify downstream effectors of cytoskeleton, 

adhesion and migration including PAK1 (Strock et al., 2006) and ERK1 to modulate 

migration rather than inactivating podoplanin by serine phosphorylation. Here, we 

demonstrated that podoplanin may act through PAK1 and CDK5 to promote cell migration 

whereby CDK5 is sufficient to activate PAK1, independent of the Rho-GTPases, and 

therefore interact with the cytoskeleton via the ERM protein family. Furthermore, podoplanin-

induced migration supported by increased matrix degradation was accomplished only the 

presence of caveolin-1 at the cell surface. Since invadopodia formation is regulated by 

caveolin-1–mediated control of membrane cholesterol levels (Caldieri et al., 2009; 

Yamaguchi et al., 2009), and podoplanin has been identified within invadopodia adhesion 

rings critical to proteolytic degradation of the extracellular matrix (Martin-Villar et al., 2015; 

Yamaguchi et al., 2009), our data are consistent with the idea that podoplanin and caveolin-

1 cooperation relates to invadopodia turnover (Martin-Villar et al., 2015; Yamaguchi et al., 

2009) to drive directional motility responses.  

 

In summary, we have demonstrated that functional cooperation between cell surface 

podoplanin and caveolin-1 are required for directional migration and invasion of melanoma 

cells via CDK5, PAK1 and ERK1 mediated signal transduction. 

 

 

Materials and Methods 
 

Cell culture 

B16.F10 mouse melanoma cells (ATCC) were cultured in DMEM supplemented with 

10U/mL of penicillin, 10μg/mL of streptomycin, and 10% FBS, maintained in a humidified 5% 

CO2 atmosphere incubator at 37ºC. Viability were assessed by trypan blue dye-exclusion. 

 

Cloning of podoplanin variants and caveolin-1 plasmid 
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Insert amplifications (Table S1-S2) were performed using Phusion DNA Polymerase 

(Thermo Scientific) according to manufacturer instructions. Inserts were digested with 

FastDigest restriction enzymes MluI and SfiI (Fermentas). Ligation to pCMV6-AC-tGFP 

(Origene) was performed using T4 DNA ligase (New England Biolabs). NEB10-beta 

competent E.coli cells (New England Biolabs) were transformed by heat shock and selected 

with kanamycin. Positive colonies were confirmed by sequencing. 

 

Transfections 

Cells were transfected with Fugene6 (Promega), as per manufacturer instructions. Silencing 

was performed using podoplanin-targeted and control shRNA lentiviral transduction particles 

(Sigma Aldrich, MISSION® shRNA Lentiviral Transduction Particles, ref. SHCLNV-

NM_010329 (TRCN0000174621) and SHC002V, respectively) at a MOI of 1 and selected 

with puromycin. Resistant cells were transfected with podoplanin variant constructs and 

selected for G418 resistance. Transient knockdowns were achieved by reverse-transfecting 

cells with esiRNA (Sigma) against PDPN (cat# EMU061611), CAV1 (cat# EMU013051), 

CDK5 (cat# EMU063451), PAK1 (cat# EMU026031) and control siRNA RLUC (cat# 

EHURLUC). Transfections were performed using Lipofectamine RNAiMax reagent (Life 

Technologies) as per manufacturer instructions. 

 

Expression profiling 

RT2 First Strand kit (Qiagen) for cDNA synthesis was used to reverse transcribe 1μg of total 

RNA. PCR arrays targeting mouse cell motility (ref. PAMM-128) and cytoskeleton regulators 

(ref. PAMM-088; SABiosciences) were performed as per manufacturers guidelines. 

Quantitative RT-PCR was performed using RT2 SYBR Green Mastermix and run on and 

LC480 cycler (Roche). Post-analysis was carried out using the RT2 Profiler PCR Data Online 

Analysis tool (SABiosciences). 

 

Random migration assay 

Cells were seeded in chamber slides. After attaching overnight, brightfield live imagining of 

randomly selected fields (100x total magnification) was performed using a Live Cell imaging 

microscope (AF7000, Leica Biosystems) for 24 hours. Migration analysis was performed 

using Volocity Software (Perkin Elmer). 

 

Wound healing scratch assay 

Cells were seeded in an 8-well chamber and left to attach overnight. A scratch was then 

performed with the aid of a pipette tip. Sequential brightfield images of each scratch were 

taken by a live-cell imaging microscope (AF7000, Leica Biosystems) for 24 hours in 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2018. ; https://doi.org/10.1101/488304doi: bioRxiv preprint 

https://doi.org/10.1101/488304
http://creativecommons.org/licenses/by/4.0/


	 13	

randomly selected fields (100x total magnification). Migration analysis and closure velocity 

were performed using Volocity Software (Perkin Elmer). 

 

Spheroid invasion assay 

Spheroids of 500 cells were generated via the methylcellulose hanging drop method (Ware 

et al., 2016) 24 hours prior to seeding them into 2mg/mL type I rat tail collagen gels (BD 

Biosciences) on borosilicate chamber slides. Live imaging of randomly selected spheroids 

was performed over 72 hours using a Live Cell imaging microscope (AF7000, Leica 

Biosystems). Post-analysis was performed using Volocity Software (Perkin Elmer). 

 

Flow cytometry 

Cells were detached using Trypsin-EDTA (Sigma), pelleted and re-suspended in PBS with 

0.5%(w/v) BSA. For surface marker staining, cells were incubated with PDPN-APC (1:400, 

Biolegend) for 30 minutes on ice. Cells were washed twice before characterization 

(Fortessa, BD) or sorting (BD). Results were analysed using FlowJo X 10.0.7r2 software 

(Treestar). 

 

Proliferation and viability measurement  

BrdU measurement: Cell proliferation was analysed using a eBioscience BrdU staining kit for 

flow cytometry and performed according to manufacturer instructions. Cells used for the 

assay were cultured overnight in a 6-well plate. Data was acquired using a Fortessa flow 

cytometer (BD) and analyzed offline with Flowjo software (Treestar). MTT cell proliferation 

assay: Cells were cultured overnight in 24-well plates. On the day of the assay cells were 

washed with PBS and then incubated with 0.45 mg/mL of Thiazolyl Blue Tetrazolium 

Bromide (Sigma) in PBS. Cells were then incubated for 4 hours. Formazan crystals were 

then dissolved in DMSO and quantified by absorbance reads at 570 and 700 nm in a multi-

plate reader (Tecan). Cell Titer Blue cell viability assay: Cell viability was determined 

according to manufacturer instructions (Promega), in a 24-well plate. Fluorescence at 

560/590 nm was measured in a multi-plate reader (Tecan). 
 

Active protein pull-down and detection 

Rho, Rac1 and Cdc42 active protein measurement was performed using Pierce pull-down 

kits (Thermo Scientific, Cat. numbers 16116, 16118, and 16119, respectively), as per 

manufacturer instructions. The presence of the active protein was determined by western 

blot of elutes (see Table S3 for conditions) in cells that were stimulated with a scratch.  

 

Immunoprecipitation 
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Adherent cells were washed with cold PBS twice then scraped directly into cold lysis buffer 

(20mM Tris-HCl pH 7.4, 0.2% NP-40, 150mM NaCl, 2mM sodium orthovanadate, and 

protease inhibitors cocktail (Roche)). 1μg of the pull-down antibody (Podoplanin or Caveolin-

1) was added to 1.5 mg of total protein incubated for 3 hours at 4ºC. Protein G Plus Agarose 

beads (Santa Cruz Biotechnology) were added before incubation for a further hour. The 

precipitated conjugates attached to beads were washed three times with lysis buffer 

containing 1% Triton X-100. Precipitates were then removed from the beads by incubation 

with protein loading buffer (50mM Tris-HCl pH6.8, 2% SDS, 10% glycerol, 1% beta-

mercaptoethanol, 12.5mM EDTA, 0.02% bromophenol blue) for 5 minutes and boiling for 10 

minutes. Samples were analysed by western blot (Table S3). 

 

Membrane raft extraction 

Lipid raft extraction was performed by gradient ultracentrifugation as previously described by 

George et al. (George et al., 2010).  

 

Immunoblotting 

Protein samples were separated by 12% SDS-PAGE and transferred onto a PVDF 

membrane (Millipore). The membranes were blocked with 5% BSA in TBS containing 0.5% 

Tween 20 and then incubated with primary antibodies overnight at 4ºC (Table S3). Washed 

membranes were incubated with the appropriate HRP-conjugated secondary antibody prior 

to detection with an enhanced chemiluminescence detection kit (Pierce).  

 

In vivo studies 

Experiments involving animals were performed in accordance with UK Home Office 

regulations under HO license PPL 80/2574. Where possible, experimental groups were 

randomized and blinded. Lung colonization capacity was determined by intravenous 

injection of 150,000 B16.F10 cells into 7-week old female C57BL/6 mice (Envigo). Animals 

were sacrificed 21 days later and lungs analysed for nodules and tumour burden. Samples 

were processed for histology. For primary tumour studies, 250,000 cells were implanted 

subcutaneously on both shoulders of female C57BL/6 mice and growth was monitored for 9 

days or until tumour sizes reached the legal limit of a diameter of 12 mm. Tumour volumes 

were calculated by: Volume=π/6×small2×longest. 

 

Haematoxylin and eosin stain 

Harvested lungs were embedded in OCT medium (TissueTek). 10μm sections were fixed in 

4% para-formaldehyde. Hematoxylin and eosin stain was performed using a Leica 

Autostainer XL. Slides were mounted with a Leica CV5030 and imaged using AxioScan.Z1 
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(Zeiss) slide scanner. Tumour burden was determined using Fiji software. Percentage of 

tumour burden calculated as tumour area/total area × 100. 

 

Immunofluorescence 

Cells were fixed in cold methanol, blocked with 5% chicken serum in PBS, and incubated 

with the appropriate primary antibodies overnight (Table S3). Conjugated secondary 

antibodies were incubated at room temperature. Nuclei were counterstained with DAPI and 

slides were mounted in SlowFade Gold antifade reagent (Life Technologies). Confocal 

images were taken using either Leica SP5 or Zeiss 880 and processed with Volocity (Perkin 

Elmer) or Zen Software (Zeiss). 

 

PAK1 chemical inhibition 

Cells were allowed to attach prior to treatment for 48 hours with 2.5, 5, and 10µM IPA-3 

(Sigma). Treated cells were assessed for proliferation and viability, imaged by confocal 

microscopy, and scratched for directional migration assessment. 

 
Statistical analysis 

Statistical analyses were performed using GraphPad Prism 6 software (GraphPad). For 

comparisons of two groups, Students t-tests were performed. When comparing 3 or more 

datasets, One-way ANOVA and appropriate post-hoc tests were performed. 
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Table 1. Genes with a fold change greater than 1.5. 
 

Cytoskeleton Regulators Array [Qiagen PAMM-088] 
Gene Bank Description Symbol Fold Change 
NM_011035 P21 protein (Cdc42/Rac)-activated kinase 1 Pak1 25.5844 
NM_009707 Rho GTPase activating protein 6 Arhgap6 1.8115 
NM_027180 ArfGAP with RhoGAP domain, ankyrin repeat and PH 

domain 1 
Arap1 1.7079 

NM_139300 Myosin, light polypeptide kinase Mylk 1.7079 
NM_177710 Slingshot homolog 2 (Drosophila) Ssh2 -1.5082 
NM_145575 Caldesmon 1 Cald1 -1.6968 
NM_009515 Wiskott-Aldrich syndrome homolog (human) Was -1.8123 

 
Motility Array [Qiagen PAMM-128] 

Gene Bank Description Symbol Fold Change 
NM_007616 Caveolin-1, caveolae protein Cav1 2.8219 
NM_028810 Rho family GTPase 3 Rnd3 1.9908 
NM_134156 Actinin, alpha 1 Actn1 1.8747 
NM_133796 Rho GDP dissociation inhibitor (GDI) alpha Arhgdia 1.8319 
NM_011577 Transforming growth factor, beta 1 Tgfb1 1.7013 
NM_007778 Colony stimulating factor 1 (macrophage) Csf1 1.632 
NM_007858 Diaphanous homolog 1 (Drosophila) Diap1 1.6058 
NM_008610 Matrix metallopeptidase 2 Mmp2 1.6058 
NM_011101 Protein kinase C, alpha Prkca 1.5948 
NM_011949 Mitogen-activated protein kinase 1 Mapk1 1.5728 
NM_178046 Supervillin Svil 1.5619 
NM_013599 Matrix metallopeptidase 9 Mmp9 1.5404 
NM_175260 Myosin, heavy polypeptide 10, non-muscle Myh10 1.5298 
NM_010513 Insulin-like growth factor I receptor Igf1r 1.5087 
NM_008006 Fibroblast growth factor 2 Fgf2 1.5018 
NM_008404 Integrin beta 2 Itgb2 -3.3326 
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Figure legends 
 

Figure 1: Podoplanin levels correlate with lung metastatic burden but not with primary 
tumour size. a) WB analysis showing total protein levels of the three different B16.F10 cell 

lines with different podoplanin levels: KD (knockdown), no podoplanin expression; 

Endogenous (low), endogenous expression of podoplanin; OE (overexpression), high level 

of podoplanin expression. b) Representative flow cytometry histogram illustrating levels of 

surface podoplanin present on the different cell lines. c) Representative images of lungs 

from experimental metastasis assays. Lung nodules present 21 days after intravenous 

B16.F10 injection (top) and haematoxylin/eosin stain images of lung sections illustrating 

tumour burden (bottom). d) Quantification of the number of tumour nodules per lung. n= 4 

independent experiments performed in triplicate. e) Representative data for quantification of 

H&E sections for percentage of tumour burden. f) Volume of primary tumours 9 days after 

subcutaneous implantation of B16.F10 cells with different podoplanin levels. n= 3 

independent experiments performed in triplicate. Data presented as Mean ± SEM. *p<0.05, 

**p<0.01 (One-way ANOVA with Bonferroni post hoc test). 

 

Figure 2: Podoplanin expression supports directional migration in vitro. 
a) Growth curve for the different podoplanin-expressing cells, represented as cell doubling 

over 72 hours. n=3 independent experiments performed in triplicate. b) Quantification of 

random migration of B16.F10 variants. Data are represented as track velocity (µm/h), track 

length (µm) and displacement rate (µm/h). Representative data for 3 independent 

experiments performed in triplicate. Each point represents a cell. c) Quantification of 

directional migration in response to a wound stimulus. Data presented as scratch assay 

linear closure velocity of the scratch (µm/h). n=4 independent experiments performed in 

triplicate where measurements from 3 different positions of each well were plotted overtime. 

Representative snapshots from wound scratch movies at t=0 and 17h post scratch (right). d) 

3D invasion assay using spheroids composed of 1000 cells seeded in a 3D matrigel matrix 

and followed overtime. Data presented as spheroid size increase after 70 hours in culture 

using Zen software (Zeiss). Representative spheroid images at t=0 and 70 hours post 

seeding (right). Scale bar 100µm. n=3 independent experiments performed in triplicate. Data 

presented as Mean ± SEM. *p<0.05, ****p<0.0001 (One-way ANOVA with Bonferroni post 

hoc test). 

 

Figure 3: PAK1 drives cytoskeletal rearrangements in podoplanin-expressing B16.F10 
cells. a) Representative images of leader cells closing a scratched wound, for cells 
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expressing podoplanin (endogenous, arrows) or cells with silenced podoplanin expression 

(siRNA). b) Representative western blot data for total and active GTPases (Rho, Rac1, and 

Cdc42) for cells with different podoplanin expression levels. GTPase activity assays were 

performed at least three times. c) Representative western blot detection of pPAK1, Total 

PAK1, pERK1/2, Total ERK1/2, and Tubulin for cells with the different podoplanin 

expression levels. d) Quantification of directional migration of B16.F10 variants in response 

to a wound stimulus following PAK1 inhibition. Data presented as normalized linear closure 

velocity. n=2 independent experiments performed in triplicate. e) Directional migration of 

tumour cells following Pdpn and PAK1 knockdown with siRNA. Data shows linear wound 

closure velocity. n=3 independent experiments performed in duplicate. f) Localization of 

podoplanin in B16.F10 cells with and without treatment with 10µm of IPA-3. Representative 

confocal image. Arrows indicate podoplanin ‘hotspots’ at membrane extremities. Scale bar: 

10µm. Data presented as Mean ± SEM.  **p<0.01 (One-way ANOVA with Bonferroni post 

hoc test). 

 

Figure 4: Podoplanin and caveolin interactions determine caveolin-1 localization. 
a) Western blot analysis of lipid rafts extracted from B16.F10 cells. Fractions were probed 

for podoplanin and caveolin-1. b) Immunoprecipitation of podoplanin from B16.F10 and 

B16.F10 KD cell extracts and probed for caveolin-1. c) Reciprocal immunoprecipitation of 

caveolin-1 from B16.F10 cell extracts probed for podoplanin. d) Representative confocal 

images stained for tubulin, podoplanin and caveolin-1 following siRNA silencing of Pdpn or 

Cav1. Insets: close up view of caveolin-1 cellular localization. Scale bar: 10µm. e) 

Quantification of directional migration of B16.F10 and B16.F10 KD after wounding. Data 

presented as normalized linear closure velocity of the scratch. n=4 independent experiments 

performed in triplicate. Data shown as mean ± SEM. ****p<0.0001 (One-way ANOVA with 

Bonferroni post hoc test)  

 

Figure 5: Podoplanin interacts with caveolin-1 through its transmembrane domain. 

a) Schematic of podoplanin variants: Full-length protein; DSP, protein without the N-terminal 

signal peptide; DCT, protein without the C-terminal cytoplasmic domain. SP, signal peptide 

(aa 1-22); Extracellular, extracellular domain (aa 23-142); TM, transmembrane domain (aa 

143-163); CT, cytoplasmic domain (aa 164-172). b) Representative confocal images of 

podoplanin (green) and caveolin-1 (red) localization in the podoplanin variants. Nuclei 

counterstained with DAPI (blue). Scale bar: 5µm. c) Quantification of directional migration 

after wounding. Data presented as linear closure velocity of the scratch. n=3 independent 

experiments performed in triplicate. d) Primary tumour volumes 9 days after subcutaneous 
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implantation of podoplanin-variants. n= at least 2 independent experiments. e) Quantification 

of tumour burden from lungs with metastatic nodules following intravenous injection of 

B16.F10 variants. n= at least 2 independent experiments. f) Representative images of 

tumour-bearing lungs 21 days after intravenous injection (top), and heamatoxylin/eosin stain 

images of lung sections illustrating tumour burden (bottom). Data presented as Mean ± 

SEM. *p<0.05, **p<0.01, ****p<0.0001, ns p>0.05 (One-way ANOVA with Bonferroni post 

hoc test). For c) data was compared to KD.  

 

Figure 6: Podoplanin localization and phosphorylation status is a determinant of the 
migration capacity. a) Representative western blot detection of pPAK1, Total PAK1, CDK5, 

and Tubulin for all B16.F10 variants. b) Quantification of directional migration following 

wounding. Data presented as linear scratch closure velocity for cells KD and OE cells 

silenced with siRNA for CDK5. Data from 3 independent experiments performed in duplicate.  

c) Directional migration of KD, OE and phospho variants; S167A, phospho-mutant; S167E, 

phospho-mimetic. Data presented as linear scratch closure velocity. Data from 3 

independent experiments performed in triplicate. d) Immunoprecipitation of phospho-serines 

to determine the degree of phosphorylation of podoplanin for the different podoplanin level 

and variant expressing cells. e) Immunoprecipitation analysis of the different podoplanin 

variants to determine interaction with the ERM protein family and caveolin-1. Data presented 

as Mean ± SEM. **p<0.001(Student t-test) (b), ****p<0.0001, ns p>0.05 (One-way ANOVA 

with Bonferroni post hoc test) (c). 
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