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Abstract

Background

Reproducibility of research findings has been recently questioned in many fields of sci-

ence, including psychology and neurosciences. One factor influencing reproducibility

is the simultaneous testing of multiple hypotheses, which increases the number of false

positive findings unless the p-values are carefully corrected. While this multiple test-

ing problem is well known and has been studied for decades, it continues to be both a

theoretical and practical problem.

New Method

Here we assess the reproducibility of research involving multiple-testing corrected for

family-wise error rate (FWER) or false discovery rate (FDR) by techniques based on

random field theory (RFT), cluster-mass based permutation testing, adaptive FDR, and

several classical methods. We also investigate the performance of these methods under

two different models.

Results

We found that permutation testing is the most powerful method among the considered

approaches to multiple testing, and that grouping hypotheses based on prior knowledge

can improve power. We also found that emphasizing primary and follow-up studies

equally produced most reproducible outcomes.
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Comparison with Existing Method(s)

We have extended the use of two-group and separate-classes models for analyzing re-

producibility and provide a new open-source software “MultiPy” for multiple hypoth-

esis testing.

Conclusions

Our results suggest that performing strict corrections for multiple testing is not suffi-

cient to improve reproducibility of neuroimaging experiments. The methods are freely

available as a Python toolkit “MultiPy” and we aim this study to help in improving

statistical data analysis practices and to assist in conducting power and reproducibility

analyses for new experiments.

Keywords: false discovery rate, family-wise error rate, multiple hypothesis testing,

neurophysiological data, Python, reproducibility

1. Introduction

The reproducibility of published research has been recently called into question

in many fields, including psychology and neurosciences (Button et al., 2013; Open

Science Collaboration, 2015; Baker, 2016; Poldrack et al., 2017; Poldrack, 2019).

Reproducibility is affected by many factors, one of which is the simultaneous testing

of multiple hypotheses (Ioannidis, 2005), which increases the number of false positive

findings unless the corresponding p-values are appropriately corrected. Hence, there

is demand for tools to evaluate multiple-testing data-analysis plans and to perform the

required corrections using appropriate methods. Although numerous techniques exist

for multiple hypothesis testing, it has remained incompletely understood how much

the choice of method and relative emphasis on the primary study over follow-up study,

or vice versa, influences the reproducibility of the observations. Here we developed a

Python-based software library that implements techniques for controlling the family-

wise error rate (FWER) and the false discovery rate (FDR) and then developed a novel

model-based approach to compare their relative performance in terms of their power,

false positive rate, and reproducibility.

We assess the differences between the methods that control the FWER and FDR
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by comparing their performance using simulated data generated under two related spa-

tial models. The first one is an extension of the classic two-group model that consists

of distinct signal and noise regions (Bennett et al., 2009). The second one is an ex-

tension of Efron’s (2008) separate-classes model; it combines two two-group models

for being able to represent distributed effects. These models can be used to repre-

sent hypothetical effects in neurophysiological and neuroimaging data such as evoked

or induced activity in an electroencephalography (EEG) or magnetoencephalography

(MEG) time-frequency analysis, or relatively focal effects in functional or anatomical

magnetic resonance imaging (MRI) data. In addition, these models allow perform-

ing numerical prospective power analyses to facilitate planning of new experiments,

including the determination of sample and effect sizes that are required for observ-

ing true effects reproducibly. Since fundamental effects in systems-level neuroscience

data are often spatially or temporally continuous (Penny & Friston, 2003; Heller et al.,

2006; Chumbley et al., 2010), as well as distributed, these model are suitable in analyz-

ing a wide range research questions. Moreover, only few previous studies to date have

investigated properties of multiple testing procedures under models with two or more

simultaneous distinct effects. Efron (2008) analyzed inference under a separate-classes

model, which was motivated by diffusion tensor imaging data from dyslexic and con-

trol participants indicating distinct effects in anterior and posterior parts of the brain.

Their results showed that since the underlying data had distinct effects and structures,

performing two separate corrections was better than a single combined analysis (Efron,

2008).

In this study we advance a software called MultiPy, which is a Python-based open-

source and freely-available toolkit for multiple hypothesis testing. Python has become

in the recent past the programming language of choice for many scientists across sev-

eral disciplines. Accordingly, there already exists general-purpose packages for scien-

tific computing (van der Walt et al, 2011), data visualization and manipulation (McK-

inney, 2010), and machine learning (Pedregosa et al, 2011) to name a few. In neu-

roimaging, specialized Python software has been developed for example for the pre-

processing, analysis, and source reconstruction of EEG and MEG data (Gramfort et al,

2013; 2014). While these and other packages allow efficient analysis of single-subject
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neurophysiological and neuroimaging data, most provide only a limited number of op-

tions for correcting group-level results for multiple comparisons. Thus, our aim was to

develop software that fills this gap.

Taken together, we present here a novel model-based approach for comparing mul-

tiple hypothesis testing methods and quantify with simulated primary and follow-up

experiments how large effect and sample sizes are needed to detect true effects repro-

ducibly.

2. Methods

2.1. Definitions

In statistical null hypothesis significance testing (NHST), there are four possible

mutually exclusive outcomes as summarized in Table 1. Specifically, there are two

desired outcomes, which are true positives and true negatives, and two undesired out-

comes, which are false positives and false negatives. We will focus here on the number

of incurred false positives V while testing m hypotheses simultaneously under a spec-

ified critical level α, and how this count can be controlled using various procedures.

We use the variables defined in Table 1 to denote the outcomes of NHST throughout

the manuscript. Bold upper-case letters are used to denote random variables. Parts of

the text also refer to π0, which is the proportion of true null hypotheses m0 among m

tests, and also to N (µ, σ2), which is the normal distribution with location and scale

parameters µ and σ2 respectively. The variable x̂ denotes an estimate of the variable x.

FWER is the probability of making one or more false positive conclusions while

testing m hypotheses simultaneously. For independent tests, it can be described math-

ematically with the equation FWER = P(V ≥ 1) = 1− (1−α)m which is visualized

in Figure 1A for the three conventionally used critical levels 0.001, 0.01, and 0.05.

In practice, it can often be advantageous to control the FDR instead (Benjamini &

Hochberg, 1995), which is the expected proportion of discoveries that are false, since

it allows exchanging a small number of false positives to an increased power.
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2.2. Models for evaluating multiple hypothesis testing methods and performing numer-

ical power and reproducibility analyses

2.2.1. Spatial two-group model for comparing different FWER and FDR controlling

methods

Fundamental effects in systems-level neuroscience data are often spatially or tem-

porally continuous (Penny & Friston, 2003; Heller et al., 2006; Chumbley et al., 2010).

To compare different methods for controlling the FWER and FDR under these circum-

stances, we first used the spatial two-group model suggested by Bennett and co-authors

(2009). This model consists of a nv×nv variable two-dimensional grid with a ns×ns
variable signal region in the middle. For each location on the grid, there are N samples

in each of two groups denoted by A and B. The samples of the groups A and B are

distributed as N (0, 1) and N (∆, 1) respectively in the signal region; the parameter ∆

controls the effect size (Cohen’s d). In all other locations, the samples of both groups

are distributed as N (0, 1) to model random noise. In other words, there is a true effect

at every location within the signal region, and no true effects elsewhere. This model

was used for the numerical comparison of the different multiple testing procedures, as

well as performing prospective power and reproducibility analyses.

2.2.2. Spatial separate-classes model for comparing different FWER and FDR meth-

ods when the true effects are distributed

In addition to being continuous in space, time, or frequency, fundamental effects in

neuroscience data are also often distributed across temporal, spatial, or spectral scales

(Heller et al., 2006; Chumbley et al., 2010). To compare the relative performance

of multiple testing methods numerically when the true effects are distributed, we de-

veloped a separate-classes model which is a combination of two separate two-group

models similar to Efron’s earlier study (2008) but with the spatial structure suggested

by Bennett and co-authors (2009). In the model, there are now groups A and B in

the first signal region and groups C and D in the second region. Similar to the two-

group model, all samples outside the signal regions are distributed asN (0, 1) to model

random noise. Within the signal regions, samples in groups A and C are distributed

as N (0, 1), and samples in groups B and D as N (∆1, 1) and N (∆2, 1) respectively.
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This model was used for testing the difference between performing two separate anal-

yses and a single analysis, as well as testing how differences in the two effect sizes ∆1

and ∆2 influence the multiple testing results. The model is visualized schematically in

Figure 1C.

2.3. Multiple hypothesis testing methods

2.3.1. Classic methods for controlling FWER

Classic methods for controlling the FWER include the Bonferroni correction, Šidák’s

correction (Šidák, 1967), Holm-Bonferroni procedure (Holm, 1979), and Hochberg’s

procedure (Hochberg, 1988). The first two of these methods are similar with respect

to computing new critical levels αBonferroni = α/m and αSidak = 1 − (1 − α)1/m by a

direct adjustment of the original level with the number of performed comparisons. In

turn, the Holm-Bonferroni and Hochberg procedures apply the exact same threshold

α/(m − k + 1) while correcting the kth ascendingly sorted p-value. The distinction

between the two procedures is that they process the p-values in opposite orders and are

hence categorized as step-down and step-up procedures.

2.3.2. Benjamini-Hochberg FDR method

FDR controls the expected proportion of discoveries that are false, that is P(R >

0)E(V/R|R > 0) (Benjamini & Hochberg, 1995). Controlling the FDR implies will-

ingness to accept a small fraction of false positives among the tests that are declared

significant in exchange for improved power. The Benjamini-Hochberg FDR procedure

is one of the most widely used FDR procedures, and can be understood graphically:

p-values are sorted into ascending order and the hypotheses corresponding to the p-

values that are below the line y = α/m+ 0 are rejected until the first p-value crossing

the line is seen (see Figure 1B).

2.3.3. Adaptive FDR methods

The Benjamini-Hochberg FDR method assumes that π0 = 1 which can make it

too conservative when the number of tested hypotheses is large (Storey & Tibshirani,

2003). Therefore, modern adaptive methods such as the Storey-Tibshirani q-value
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method (Storey & Tibshirani, 2003) and the two-stage procedure by Benjamini and

colleagues (2006) attempt to estimate π0 as part of the correction procedure. While

a successful estimation of π0 can allow greater power than the Benjamini-Hochberg

method, there is a possible caveat: under some circumstances, applying the adaptive

procedures may result in more significant discoveries than there were in the original

uncorrected data (Reiss et al, 2012). In the study by Reiss and colleagues (2012),

this kind of paradoxical results were found to occur in an MRI study with spatially

widespread effects. The q-value method was found to be more vulnerable than the

two-stage procedure (Reiss et al., 2012).

2.3.4. Permutation testing

In comparison to the other approaches that control the FWER, permutation tests

provide a non-parametric but more computationally expensive alternative. Instead of

manipulating a set of p-values, they process the data under analysis directly. Permuta-

tion testing proceeds in two stages. In the first stage, the null hypothesis, exchangeabil-

ity of observations under the null hypothesis, and the test statistic are specified (Nichols

& Holmes, 2001). In the second stage, the permutation distribution is built by repeat-

edly relabeling the observations and computing the corresponding test statistics, which

then allows calculating the significance of the correct labeling (Nichols & Holmes,

2001). Here, we performed the permutation tests using the procedure described by

Maris and Oostenveld (2007) with a cluster-mass test statistic (Bullmore et al., 1999).

However, in contrast to the original algorithm, we transformed the permutation test

p-values into their upper bounds using the method suggested by Phipson and Smyth

(2010) to avoid problems with zero p-values. In the original procedure described by

Maris and Oostenveld (2007), obtaining zero p-values is possible when all permutation

test statistics are less extreme than the observed one. The reason is that the p-value

was defined as p = b/m where b is the number of times the permutation test statistic is

equal or more extreme than the observed test statistic and m is the number of permuta-

tions. Therefore, the p-value could be underestimated by approximately 1/m when b is

zero (Phipson & Smyth, 2010). However, this issue is avoided by defining the p-value

instead as the upper bound pu = (b + 1)/(m + 1) which is always strictly positive
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(Phipson & Smyth, 2010).

2.3.5. Random field theory

Random field theory (RFT) is an approach for controlling the FWER that has

been widely used in the analysis of functional and structural MRI and positron emis-

sion tomography (PET) data (Worsley et al, 1992; Friston et al, 1994, Worsley et al,

1996), especially as part of the statistical parametric mapping (SPM) software (Frack-

owiak, 1997; Ashburner, 2012). Previous studies have also explored its applicabil-

ity for the analysis of source-reconstructed EEG and MEG signals (Carbonell et al,

2004; Pantazis et al, 2005), and its strengths and weaknesses over permutation test-

ing have been recently explored and discussed in depth (Eklund et al, 2016; Fland-

ing & Friston, 2017). Application of RFT to neuroimaging data proceeds typically

in three subsequent steps. First, the smoothness of the analyzed statistical map is es-

timated, which gives its resolution element or resel count. Here, we approximated

the number of resels with the analyzed area divided by the squared full-width-at-

half-maximum (FWHM) of the applied Gaussian smoothing kernel. Second, the ex-

pected Euler characteristic is computed for a range of thresholds, which can be infor-

mally defined as the number of distinct continuous regions that survive the threshold-

ing. For two-dimensional data, the expected Euler characteristic is given by the equa-

tion E[EC] = R(4 loge 2)(2π)−3/2Zt exp(− 1
2Z

2
t ) where Zt is the z-score threshold

(Worsley et al., 1992). Finally, the empirical data is compared to the theoretical expec-

tation for declaring statistically significant differences.

2.4. Data ana data analyses

2.4.1. Comparison of multiple hypothesis testing methods using the spatial two-group

and separate-classes models

The spatial two-group and separate-classes models were used to generate simulated

data for numerically comparing the different FWER and FDR controlling procedures.

The simulation using the two-group model was constructed as follows: the size of the

signal region was 30 × 30 variables centered in the middle of a 90 × 90 variable grid

containing no other true effects (i.e. the proportion of true effects was approximately
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11%), and there were 25 samples in each of the two groups. The sample size was

selected based on meta-analyses that suggest the median sample size in psychologi-

cal and neuroscience research to be in the range 22–28 (Button et al, 2013; Szucs et

al, 2017; Turner et al, 2018). The simulation was repeated for each effect size ∆ in

the range 0.5–1.5 with 0.05 increments. In the separate-classes model both signal re-

gions were 15 × 15 variables and the overall grid size was 45 × 90 variables (i.e. the

proportion of true effects was again approximately 11%), and the sample size was set

at 25 in each group. The simulation was repeated with the effect size combinations

{(∆1,∆2|∆1,∆2 ∈ [0.5 − 1.5]} with 0.05 increments. The critical level was set at

α = 0.05 in both types of simulations. Also, the data was smoothed using a Gaus-

sian kernel with FWHM set to match the size of the signal region when the RFT based

method was applied. Further, all permutation tests were performed with 100 randomly

drawn permutations with the t-threshold set at t = 1. Furthermore, if the spline-based

null density estimator in the q-value method did not converge to the interval [0, 1], the

conservative choice of setting it as π̂0 = 1 was made. Finally, the performance of

each method was quantified as the number of rejected null hypotheses for which the

alternative hypothesis was true (i.e. power).

2.4.2. Reproducibility in the two-group model

To estimate effect sizes needed to observe true effects reproducibly in the two-

group model, we performed simulated primary and follow-up experiments. The simu-

lations were constructed as follows: the critical level was set at α = 0.05, the sample

size at N = 25 in both of the two groups, the signal region was 30 × 30 variables in

the middle of a 90 × 90 variable grid containing no other effects, the results were av-

eraged over twenty realizations, and the tested effect sizes ranged from 0.5 to 1.5 with

0.05 increments. Tests that were declared significant in the primary experiment were

selected for further testing in the follow-up experiment. To decide which hypotheses

were reproducible across the simulated experiments, we used the FWER replicabil-

ity method (Benjamini & Heller, 2008; Benjamini et al., 2009; Bogomolov & Heller,

2013). Briefly, this method defines weights cp and cf for the primary and follow-up

studies respectively, with the constraint cp + cf = 1, and performs the multiple testing
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corrections at the critical levels cpα and cfα. Those tests that are declared significant

in both the primary and the follow-up experiment are considered to be replicable and

the rest are not. The simulations were performed by emphasizing the primary study

at values 0.02, 0.5, and 0.98, which correspond to the critical levels 0.001, 0.25, and

0.049. Here, the selection of the lowest tested emphasis value was further motivated

by a close correspondence to a recent suggestion of starting to user 0.005 as the new

standard critical level in primary neuroscience experiments (Benjamin et al., 2018).

The simulated data were analyzed using the correction methods introduced previously.

The performance of each method was quantified with a reproducibility rate that is de-

fined as r = mr/m1 where mr is the number of true effects declared reproducible and

m1 = m−m0 is the number of all true effects.

2.5. Software implementation

MultiPy has been written in the programming language Python from the Python

Software Foundation (http://www.python.org) (version 2.7.14). The imple-

mentation partly builds on previously published Python software packages, includ-

ing Scikit-image (van der Walt et al., 2014) (version 0.13.0), SciPy (Oliphant, 2007)

(0.17.0), NumPy (van der Walt et al., 2011) (1.10.2), Seaborn (0.8.0), and Matplotlib

(Hunter, 2007) (2.1.0). The software is documented and available in http://github.

com/puolival/multipy, and published under a permissive open-source license

to facilitate further development and integration to other software and data analysis

pipelines.

3. Results

3.1. Permutation testing is the most powerful method for analyzing data generated

using the two-group and separate-classes models

The two-group and separate-classes models were used to simulate data at different

sample and effect sizes to compare the relative performance of different multiple test-

ing methods. The simulations were performed for a number of times, to evaluate the

average power of each compared method at each sample and effect size. Permutation
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testing was the most powerful method for analyzing data generated using both the two-

group model and the separate-classes model. Methods based on controlling the FDR

produced intermediate results, and the least number of true positive effects could be

detected using the other techniques that control the FWER. The differences in power

between the different methods varied as a function of effect size. These results are

visualized in Figures 2 and 3.

3.2. Placing an identical emphasis on the primary and follow-up studies produces

optimal results

To evaluate what is the optimal multiple testing strategy between a primary study

and a follow-up study, we simulated data using the two-group model at different sam-

ple and effect sizes and varied the relative emphasis placed on the primary study as

well as the used correction method. This process was repeated for a number of times

to evaluate the rate of reproducibility of true effects. The relative performance of the

partial conjunction and FWER replicability methods was dependent on the emphasis

placed on the primary study in comparison to the follow-up study assuming a conser-

vative correction for multiple testing was carried out. When the primary study received

larger emphasis than the follow-up study, the partial conjunction method outperformed

the FWER replicability method. In contrast, when the follow-up study received higher

emphasis than the primary study, the situation was reversed so that now the FWER

replicability method produced the better results. These differences varied in magnitude

as a function of the effect size (Figure 4A). When the FDR was controlled, optimal

results were obtained when the primary and follow-up studies had an equal emphasis.

This result was obtained repeatedly even though parameters of the simulations were

varied; the same was true for a range of null densities, as well as for different sample

sizes. However, the magnitude of the difference was again dependent on the effect

size. To further probe the consistency of the results, the analysis was repeated with dif-

ferent correction methods, yielding consistent outcomes. These results are visualized

in Figures 4B-C and 5. Another result obtained using the same set of simulations is

that sample sizes larger than those typically used in neuroscience studies were needed

to observe true effects reproducibly. A total of 40–50 samples per group or condition
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(i.e. a total of 80–100 samples) was needed to obtain rate a rate of reproducibility

higher than 80% when the primary and follow-up studies were emphasized equally or

the primary study was emphasized more than the follow-up study.

4. Discussion

We aimed here to quantify the performance of several multiple-hypothesis testing

correction methods in the context of the reproducibility of the observations. To this

end, we developed an open-source Python software, which implements classic and

advanced techniques for controlling the FWER and FDR, simulating data under two

different models, and performing reproducibility and power analyses. The software

includes both parametric and non-parametric correction techniques, which were com-

pared numerically using simulations performed under the two models. These models,

namely the two-group model and the separate-classes model, allow capturing features

typically observed in neurophysiological and neuroimaging data but are nevertheless

as simple as possible. We obtained results that advance three points. First, the simula-

tions showed that permutation testing is the most powerful approach for analyzing data

generated under these models, with the caveat of having a high computational cost.

Second, we found that incorporating prior knowledge to the testing process in the form

of grouping hypotheses (i.e. performing separate analyses for distinct structures) can

yield significant improvements in power. Third, we found that the combination of low

power and testing of multiple hypotheses leads to poor reproducibility. This implies

that sample sizes in neuroscience experiments may need to be substantially increased

to enable a demonstration of true effects reproducibly. Moreover, these findings show

that the recent suggestion of using 0.005 as the new threshold of statistical significance,

instead of 0.05, in primary inferential statistics would not be optimal for reproducibil-

ity.

4.1. Permutation testing is the most powerful method for analyzing data generated

using the spatial two-group model

For the data simulated using the two-group model, the classic methods that con-

trol the FWER (i.e. the Bonferroni, Šidák, Holm-Bonferroni, and Hochberg’s meth-
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ods) produced identical or very similar results. In contrast, the Benjamini-Hochberg

FDR procedure and the adaptive FDR methods detected expectedly more true positives

while incurring a small fraction of false positives. Since the adaptive FDR procedures

yielded similar results, it makes the two-stage procedure favorable over the q-value

method due to its more stable null density estimator (Reiss et al, 2012). The permuta-

tion test outperformed all other approaches by a large margin, and the performance of

the RFT based method was between the classic methods that control the FWER and the

methods that control the FDR. Notably, while permutation testing was the most pow-

erful approach here, it produced false positives that concentrated near the signal region

boundaries. Indeed, one should be aware of its possible limitations in accurately estab-

lishing effect locations or latencies when applied to neuroimaging data (Sassenhagen

& Draschkow, 2018). The power curves for representative methods for each class of

correction methods are visualized in Figure 2H.

4.2. Incorporating prior knowledge to the multiple hypothesis testing process by group-

ing hypotheses of distinct structures increases power

The separate-classes model allows two signal regions with distinct effect sizes,

which makes it possible to test whether prior information about the underlying data

structure can be used to improve results obtained from the multiple testing process.

Indeed, in the separate-classes model, detecting a second effect is more difficult if

a single combined analysis is performed, in comparison to performing two separate

analyses motivated by the available prior information. This results suggests that re-

searchers should place more focus on considering whether their neurophysiological

and neuroimaging data is most appropriately analyzed by combined or separate anal-

yses. For example, it is well known that in EEG and MEG data the signal-to-noise

(SNR) ratio decreases as a function of frequency, but yet most published frequency

and time-frequency domain analyses were performed by combining all tests into a sin-

gle analysis. We suggest future studies to leverage the available information about

EEG and MEG measurement techniques, distinct roles of oscillations, components

of evoked responses, trial structures, and other similar information while performing

multiple testing corrections. Similar arguments can be put forward for functional and
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structural MRI data: consider for example the hemispheric lateralization of language,

speech, and auditory functions.

4.3. Plan experiments for reproducibility

The recommended practice for sample size selection is to perform a priori power

calculations. However, multiple testing has remained a consideration topic with no

trivial solutions. In addition, reproducibility is typically not quantified in power calcu-

lations. Hence, it has remained largely unknown how well-powered studies are needed

to observe true effects reproducibly. The issue is pressing since multiple testing occurs

in most neurophysiological and neuroimaging research, and since the average study

has an estimated power of only 8–31% (Button et al., 2013). Indeed, some scientific

journals have already started to urge researchers to plan for reproducibility before con-

ducting their experiments (Editorial, Nature Biomedical Engineering, 2018; Editorial,

Nature Communications, 2018). To draw attention to this issue, we performed simu-

lated primary and follow-up experiments using the spatial two-group model to high-

light what the reproducibility rates might be at effect sizes typically observed in neuro-

science research. Briefly, the results indicate that in this model the choice of multiple

testing method and emphasis on the primary study have large influence on observing

true effects reproducibly (Figure 4), and therefore we suggest similar analyses to be car-

ried out while planning new primary and replication experiments. Overall, observing

true effects reproducibly was difficult at small and moderate effect sizes with sample

sizes that are typically used in psychological and neuroscience research. Our results

also suggest that performing a too strict correction in the primary study is not optimal

due to a substantially increased number of missed true effects, and that performing

a too loose correction in the primary study is not optimal either, due to an increased

number of false positive outcomes that must be subsequently verified at the replica-

tion stage. Instead, the optimal result was obtained by giving an equal emphasis for

the primary and follow-up studies (Figure 4B); the same conclusion was reached using

both the FWER replicability and the FDR r-value methods. Importantly, this finding is

partly at odds with the recent suggestion of starting to use 0.005 as the new standard

threshold of statistical significance in primary neuroimaging and neuroscience experi-
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ments as the solution to reproducibility problems (Benjamin et al., 2018). Indeed, the

proposition does not take into account how data from the primary and follow-up exper-

iments should be combined. Therefore, in contrast, we argue that researchers should

first choose their desired critical level, and then perform prospective reproducibility

analyses to plan their experiments.

4.4. MultiPy enables the evaluation of data analysis pipelines and assessment of re-

producibility of planned experiments

Here we implemented an array of parametric and non-parametric multiple testing

methods as well as two models for their numerical evaluation in a single open-source

toolkit. Therefore, it is possible to use the provided software as a platform for de-

veloping new multiple testing methods, since their performance can be evaluated di-

rectly against other existing state-of-the-art techniques. Indeed, the two-group models

have been extensively used for this purpose in the existing literature; see for example

Heller & Rosset (2019) for recent work on optimal control of the FDR in such a model.

The software can be also used to validate existing custom neuroimaging data analysis

pipelines, which are presently abundant among the different laboratories (Carp, 2012),

by simulating data at chosen effect and sample sizes and testing whether the FWER or

FDR is controlled. Moreover, the software enables its users to perform prospective nu-

merical power analyses, and importantly, evaluate the reproducibility of their planned

experiments when the two-group or separate-classes models are good approximations

to the effects seen in the empirical data. In addition, the developed software can be used

in future studies as a platform for developing new multiple testing techniques, since it

allows evaluating their performance directly against other existing state-of-the-art tech-

niques. It also allows researchers to validate their custom data analysis pipelines using

the two-group and separate-classes models; data can be simulated at chosen effect and

sample sizes and then analyzed similar to real empirical data to test whether the FWER

or FDR is controlled.

4.5. How to choose between controlling the FWER and FDR

A topic we have not discussed yet is how should one decide whether to control

the FWER or the FDR? Generally, a strict control of false positives is often gained
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at the expense of false negatives, which may lead to important discoveries remaining

unnoticed, especially when the number of tested hypotheses is large. Therefore, such

tight control is best justified when any false positive discoveries are expensive due to

ethical, financial, time, or other constraints. For example, one might wish to conduct a

detailed confirmatory follow-up study corresponding to each discovery in the primary

study; the use of animals or high research costs could make false leads too expensive.

On the opposite side of the spectrum, a looser control is also a sound choice for many

types of data analyses, since often there are no theories or models concerning each

individual test. Here, consider for example a typical EEG or MEG induced-response

study with two conditions and a comparison of the responses in the time-frequency

domain as the main data analysis. The statistical testing would likely involve some

hundreds or thousands of tests depending on the length of the analysis time-window and

frequency resolution (or spacing of frequencies in the case of wavelet-based methods).

In most cases like this, there would be no a priori expectations for all or even most

of the time-frequency tuples. Instead, one would look for consistent activity patterns

over several frequencies and time points; a small number of false positives within such

regions would not compromise the results’ interpretation. Now, ideally, one would like

to control the FWER but yet find a substantial amount of the true positive effects. This

is the result that is obtained in our simulations with permutation testing, and therefore

we suggest its use when the associated computational burden is not a major limitation

and its assumptions are well met. Otherwise, the optimal choice between controlling

the FWER or the FDR seems to mostly depend on the cost of false positives in the

considered study.

4.6. Future directions

In the future, the approach advanced here can be expanded into several new di-

rections. For example, topics that have been omitted here include multiple testing of

multimodal (Winkler et al., 2016) and network data. Further, there are extensions to

some of the implemented methods, such as FDR based RFT approaches (Chumbley et

al., 2010) and covariate-adjusted FDR techniques (Genovese et al., 2006; Ignatiadis et

al, 2016; Basu et al., 2018). Furthermore, there are many more specialized techniques
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such as those used for multiple testing of neuronal synchrony estimates (Maris et al.,

2007; Singh & Phillips, 2010; Singh et al., 2011; Scott et al, 2015) that could be imple-

mented as part of the software. In addition to these and other frequentist approaches,

the software could be also developed to allow the use of Bayesian techniques, which

are currently not widely supported by the major neuroscience software packages. The

software can be also extended to include more data-generating models, which would

help researchers to perform more diverse simulation-based power and reproducibility

analyses. Finally, the software could be made directly compatible with data structures

of existing Python-based neuroimaging analysis tools, which would facilitate its inte-

gration into existing data analysis pipelines.
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Figure 1: (A) False positives start to occur quickly when more than a few dozens of independent tests are

performed simultaneously and no adjustment for multiple testing is made. The three lines correspond to the

three conventional critical levels indicated in the figure legend. (B) The Benjamini-Hochberg FDR procedure

can be interpreted graphically as rejecting sorted p-values that fall below the line y = α/m+0 until the first

non-significant p-value is seen. (C) Schematic of the structure of the separate-classes model. If information

about the two separate classes were available a priori, performing two separate corrections would give a

higher power than performing a single combined analysis (D). The histograms and density estimates were

constructed by simulating data under the separate-classes model for 1000 iterations with the effect sizes

∆1 = 1.2 and ∆2 = 0.7.
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Figure 2: A single realization of the simulation performed using the two-group model. In each panel, there

is a true effect at every location within the region outlined with green color and no true effects elsewhere.

Repeating the simulation for a large number of times using various parameter selections allows estimating the

relative merits of the different testing procedures, as well as performing power and reproducibility analyses.

(A) The t-statistic of each variable. (B) The corresponding uncorrected p-values thresholded at the critical

level α = 0.05. (C–G) The significant p-values after the correction for multiple testing has been performed.

In this particular instance, permutation testing detects the largest number of true effects while incurring

a small number of false positives. (H) The average empirical power for a representative selection of the

different methods at various effect sizes when the simulation is repeated for several times.
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Figure 3: A single realization of a simulation performed using the spatial separate-classes model. There is

a true effect at every location within the green and yellow regions and no true effects in the surrounding

space. (A) The uncorrected p-values thresholded at α = 0.05. (B) The classic methods that control the

FWER produced identical results, and therefore they were collapsed into one panel. (C) P-values that were

significant when FDR was controlled using the classic Benjamini-Hochberg procedure. (D) Similar to (B),

the adaptive FDR methods gave almost identical results, and therefore the results were also collapsed into a

single panel. (E–F) Permutation testing detects both true effects almost entirely whereas RFT detects only

most of the larger effect. Generally, repeating the simulation allows estimating the relative merits of the

different techniques in the presence of two distinct effects. In addition, it is possible to test which of the two

options is better: to perform two separate or a single combined analysis.
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Figure 4: (A) A comparison of the partial conjunction and FWER replicability methods while performing a

conservative multiple testing correction using the Hochberg’s method. The relative performance of the two

methods depends on the emphasis of the primary study when analyzing the data using the FWER replicability

method. (B) Primary and follow-up experiments were simulated using the spatial two-group model and

the FWER replicability method was used to decide which hypotheses were reproducible across the two

experiments. Now, the multiple testing correction was performed using the two-stage FDR procedure. The

optimal result is obtained when the primary and follow-up studies are given equal importance, and not when

strict corrections are performed in the primary study. (C) The result seen in panel (B) is not specific to a

particular null density, or in other words, size of the signal region in the two-group model. (D) Sample sizes

that are substantially larger than those typically employed in neuroscience experiments are needed to observe

true effects reproducibly even at large effect sizes.
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Figure 5: Placing an identical emphasis on the primary and follow-up studies produced an optimal number

of reproducible true effects in the two-group model regardless of the used correction procedure (A–C). How-

ever, for permutation testing (D), this difference was negligibly small since there is only one cluster of true

effects in the two-group model.
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