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ABSTRACT 

mRNA degradation is a critical, yet poorly understood, aspect of gene expression. 

Previous studies demonstrate that codon content acts as a major determinant of mRNA 

stability in model organisms. In humans, the importance of open reading frame (ORF)-

mediated regulation remains unclear. Here, we globally analyzed mRNA stability for both 

endogenous and human ORFeome collection mRNAs in human cells. Consistent with 

previous studies, we observed that synonymous codon usage impacts human mRNA 

decay. Unexpectedly, amino acid identity also acts as a driver of translation-dependent 

decay, meaning that primary protein sequence dictates overall mRNA levels and, 

consequently, protein abundance. Both codon usage and amino acid identity affect 

translational elongation rate to varying degrees in distinct organisms, with the net result 

being sensed by mRNA degradation machinery. In humans, interplay between ORF- and 

UTR-mediated control of mRNA stability may be critical to offset this fundamental 

relationship between protein sequence and mRNA abundance. 
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INTRODUCTION 

Messenger RNA (mRNA) decay is critical for post-transcriptional gene regulation. The 

predominant mechanism of normal cytoplasmic mRNA turnover begins by removal of the 

3' poly(A) tail by the PAN2-PAN3 and CCR4-NOT/CAF1 deadenylase complexes (Wolf 

and Passmore, 2014; Yamashita et al., 2005). Deadenylation then triggers removal of 

the 5' 7-methyl-guanosine cap by the DCP1/2 decapping complex, exposing a free 5'-

monophosphate group to the 5'à3' exonuclease XRN1 and leading to rapid destruction 

of the transcript body (Beelman et al., 1996; Muhlrad et al., 1994; Yamashita et al., 

2005). This deadenylation-dependent decay process is highly conserved from 

Saccharomyces cerevisiae to higher eukaryotes, including mammals. 

Mammalian mRNA half-lives vary extensively in vivo (Lugowski et al., 2018; 

Schwanhäusser et al., 2011), and a major question has been which processes and 

regulatory elements underlie this variation. In mammals, the 3' untranslated region 

(UTR) is a hotspot for regulation, containing the majority of instability-promoting sites, 

such as AU-rich elements or microRNA-binding sites (Bartel, 2009; Rissland, 2016; 

Shyu et al., 1989; Xu et al., 1998). Typically, instability-promoting motifs accelerate 

decay by eventually recruiting deadenylation-dependent decay machinery and stripping 

stabilizing mRNP components (Eulalio et al., 2009; Fabian et al., 2011; 2013; 2009; 

Kuzuoğlu-Öztürk et al., 2016; Rissland et al., 2017; Zekri et al., 2013). Despite 

advances, 3'UTR-mediated regulation has so far failed to completely explain the range 

of half-lives observed in mammalian cells, leaving open the question of whether other 

parts of the mRNA, such as the open reading frame (ORF) sequence, might modulate 

mRNA decay rates. 

We have previously demonstrated that codon usage is a key mechanism 

underlying mRNA half-life variability in S. cerevisiae such that changes in overall 

“optimal” and “non-optimal” synonymous codon composition manifest as dramatic 

changes in mRNA stability (Presnyak et al., 2015; Radhakrishnan et al., 2016). In yeast, 

optimality is determined by differences in ribosome elongation speed: different 

synonymous codons are decoded at different rates, primarily due to the balance 

between tRNA abundance and demand by cognate codons (Gardin et al., 2014; Hanson 

et al., 2018; Ingolia et al., 2009; Pechmann and Frydman, 2013; Yu et al., 2015). Thus, 

changing the codon content of a transcript influences not just how quickly elongation 

proceeds but also its stability with a less optimal transcript being degraded more quickly 

(Hanson et al., 2018; Presnyak et al., 2015; Radhakrishnan and Green, 2016). Following 
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our initial observations in budding yeast, similar relationships between codon content 

and mRNA half-life have since been demonstrated in other organisms, including E.coli 

(Boël et al., 2016), Schizosaccharomyes pombe (Harigaya and Parker, 2016), 

Trypanosoma brucei (de Freitas Nascimento et al., 2018; Jeacock et al., 2018), 

Drosophila melanogaster (Burow et al., 2018), and zebrafish (Bazzini et al., 2016; 

Mishima and Tomari, 2016), hinting that this process is broadly conserved. However, the 

effects of codon optimality and other facets of ORF composition on mRNA have been 

incompletely explored in higher metazoans. 

In this study, we demonstrate that, in humans, both synonymous codon usage 

and amino acid composition drive a wide range of mRNA half-lives. First, consistent with 

previous studies (Mattijssen et al., 2017), we found via reporter assays that codon 

optimality affects mRNA stability. To extend these results transcriptome-wide, we 

determined half-lives for two sets of transcripts, endogenous mRNAs and those derived 

from the human ORFeome collection. Because the ORFeome collection expresses 

human ORFs cloned with invariant UTR sequences, these mRNAs strip away 

confounding concerns of 3’UTR regulation, differential translational initiation, and other 

gene-specific effects. As opposed to our previous findings, we found that tRNA 

abundance failed to explain differences between codons, and, instead, codons encoding 

the same amino acid seemed to have similar effect on mRNA stability. Subsequently, we 

identified specific amino acids that can drive mRNA stability; importantly, codons 

associated with instability-causing amino acids are also translated more slowly. Finally, 

we found that effects of amino acid composition on mRNA half-life are broadly observed 

across multiple metazoan species, but not in fungi. Taken together, these findings 

establish that a combination of codon and amino acid composition drive mRNA stability 

in metazoans by changing elongation speed, solidifying the importance of the coding 

sequence itself in controlling gene expression. 

 

RESULTS 

Codon use affects mRNA stability in human cells 

We first sought to assess the relationship between codon optimality on mRNA stability in 

human cells. We had previously employed species-specific tRNA adaptation index 

(sTAI) values as a guide for mRNA sequence optimization in S. cerevisiae, which 

primarily relies on tRNA gene copy number as a proxy for tRNA abundance 

(Radhakrishnan et al., 2016; Sabi and Tuller, 2014). However, human tRNA expression 
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can vary widely in different cell types (Dittmar et al., 2006; Goodarzi et al., 2016; 

Shigematsu et al., 2017), and so this method can only approximate tRNA abundance in 

humans. For more accurate optimization, we calculated codon-specific tRNA adaptation 

index values using published HEK293T tRNA sequencing data (Zheng et al., 2015). 

“Optimal” and “non-optimal” codons were defined as codons with a tAI greater and less 

than the median (0.155), respectively. 

We designed 11 synthetic firefly luciferase reporters with variable ORF 

sequences ranging from 0-100% optimal codon content (Figure 1A). Importantly, these 

constructs differ only in synonymous codon usage, contain the same 5' and 3'UTRs, and 

produce identical protein. Optimal codon content correlated with steady-state mRNA 

abundance such that the 100% reporter was 3.7-times more abundant than the 0% 

reporter in HEK293 cells (rs = 0.70; p = 0.03, two-tailed t-test; Figure 1B). To determine 

whether these effects were due to differences in mRNA stability, we performed 

transcription shutoff via a tetracycline-inducible repressor (Tet-off) system, followed by 

northern blotting (Figure 1C). Consistent with our steady-state analysis, the 100% 

reporter was significantly more stable than the 0% reporter (p = 0.002, two-tailed t-test; 

Figure 1C, Figure S1A).  

Having observed that codon content affected the stability of a reporter mRNA, we 

next investigated whether the same was true for endogenous human genes. We looked 

at effects of altering codon optimality on a human mRNA MECP2, which has a relatively 

high optimal codon content as calculated by tAI (68% optimal codons vs. 59% overall 

median). Loss-of-function mutations in MECP2 are the most common cause of Rett 

syndrome, which is characterized by severe neurological deficits (Liyanage and 

Rastegar, 2014; Martínez de Paz and Ausió, 2017). As before, we produced reporters of 

variable optimal codon content and measured their stability. Similar to the firefly 

luciferase reporters and previous reports on LARP4 mRNA (Mattijssen et al., 2017), 

changing MECP2 codon content altered mRNA stability (p = 0.01, two-tailed t-test; 

Figure 1D, Figure S1B). Finally, we investigated ΔF508 CFTR mRNA, which is the most 

common causative allele for cystic fibrosis (Ferec and Cutting, 2012). The endogenous 

CFTR ΔF508 mRNA contains an average level of optimal codons as calculated by tAI 

(62% optimal codons vs. 59% overall median). Optimization of the endogenous 

sequence ("optimized" CFTR: 85% optimal codons by tAI) resulted in an increase mRNA 

stability (Figure 1E, Figure S1C). Taken together, these data demonstrate that altering 

codon optimality (as defined by tRNA abundance) can impact mRNA stability in human 
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cell lines. 

 

Human mRNA stability is broadly influenced by coding region determinants 

Having found that changing codon content altered mRNA stability for a handful of 

reporters, we next asked whether these trends held on a transcriptome-wide scale. 

However, in addition to varying in their coding sequences, mRNAs also vary in their 5' 

and 3'UTRs. Because UTR-mediated regulation has evolved in conjunction with ORF-

mediated regulation, we reasoned that it would be challenging to separate out correlative 

and causative effects of the coding sequence on mRNA stability. To address this issue, 

we turned to the human ORFeome collection, which contains ~16,000 full-length ORFs 

(corresponding to ~14,000 genes) in a lentiviral expression system (Yang et al., 2011). 

Importantly, the ORFs are flanked by invariant 5' and 3' UTRs, as well as a V5 tag, thus 

allowing us to isolate effects of coding sequences on transcript stability.  

We divided the ORFeome collection into six pools and made stable HEK293T 

cell lines from two (Figure 2A). As determined by western blot, ORFeome-derived 

proteins were expressed, and pool complexity was maintained through cell line creation 

(Figure S2A). We next measured half-lives of ORFeome-derived mRNAs using 

metabolic labeling and approach-to-equilibrium kinetics (Lugowski et al., 2018). Because 

we prepared RNA sequencing libraries without any enrichment for ORFeome-derived 

transcripts, we used stringent cut-offs to classify transcripts as ‘endogenous’ or 

‘ORFeome-derived’ (see Supplemental Information, Figure S2B, C). For transcripts 

expressed both endogenously and from the ORFeome, we could not determine the 

origin of the associated reads, and so these transcripts were excluded in downstream 

analysis.  

We compared the distribution of half-lives from endogenous and ORFeome 

mRNAs (Figure 2B, C). ORFeome mRNAs were significantly more stable than 

endogenous mRNAs (p < 10–15), presumably due to the WPRE stabilizing element 

included in the invariant ORFeome 3'UTR (Zufferey et al., 1999). More strikingly, 

ORFeome mRNAs had as much, if not slightly more, variation in their stability as 

endogenous mRNAs (Figure 2C). Thus, we conclude that the ability of coding 

sequences to impact mRNA stability is a general phenomenon in human cells. 

Moreover, despite varying only in coding sequences and lacking any differences in UTR-

based regulation, ORFeome mRNAs displayed the same range of stabilities as 

endogenous mRNAs, highlighting the importance of the ORF for regulating decay.  
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Coding region determinants influence human mRNA stability only when translated 

Given the known link between ORF-mediated regulation and translation, we asked 

whether the variation seen in ORFeome mRNA stabilities depended on translation. We 

treated cells with DMSO or 4EGI-1, a translation initiation inhibitor (Moerke et al., 2007), 

and again measured mRNA stabilites for endogenous and ORFeome-derived mRNAs. 

Using polysome profiling (Figure 2D) and incorporation of puromycin into nascent 

peptides (Figure S2D) (Schmidt et al., 2009), we confirmed that translation was broadly, 

although not completely, inhibited.  

4EGI-1 had broad effects on transcript stability both for endogenous and 

ORFeome mRNAs. For endogenous genes, stabilities were poorly correlated between 

the DMSO and 4EGI-1 treatments (rs = 0.34, p < 10–15, Figure S2E, F). Endogenous 

mRNAs were also significantly destabilized in the presence of 4EGI-1 (p < 10–15, Figure 

2E). Surprisingly, the variation seen in endogenous mRNA stability was also 

significantly, albeit modestly, reduced, (σ2 4EGI-1/ σ2 DMSO = 0.65, p < 10–15, Figure 

2F). These differences were more pronounced with the ORFeome mRNAs. ORFeome-

derived transcripts were also less stable with 4EGI-1 treatment (p < 10–10, Figure 2G), 

but even more striking was the reduced variation in stability upon translation inhibition 

(σ2 4EGI-1/ σ2 DMSO = 0.40, p < 10–15, Figure 2H). Taken together, we conclude that 

the impact of coding sequence on mRNA stability depends predominantly on translation. 

 

Coding regions influence mRNA stability independent of length, structure, and classical 

RBP-mediated regulation 

We next wanted to determine what features in coding sequences affected mRNA 

stability. First, we examined three features previously linked with mRNA stability in 

eukaryotes: ORF length, secondary structure, and binding sites for RBPs (Duan et al., 

2013; Geisberg et al., 2014; Neymotin et al., 2016; Schnall-Levin et al., 2011). 

Consistent with previous observations in many different eukaryotes, we observed a 

negative correlation between ORF length and mRNA stability for endogenous mRNAs (rs 

= –0.14, p < 10–15, Figure S3A). However, this relationship did not exist for ORFeome 

mRNAs (rs = 0.01, p = 0.9, Figure S3B), indicating that coding sequence length does not 

directly impact mRNA stability. The relationship between ORF length and stability 

observed with endogenous mRNAs could potentially be related by the underlying 

tendency for longer ORFs to also have longer 3'UTRs (rs = 0.18, p < 10–15), which 
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themselves are negatively correlated with stability (rs = –0.15, p < 10–15)—rather than 

longer ORFs (or longer mRNAs) directly decreasing stability. These results also highlight 

the power of our ORFeome approach to separate correlative from causative effects on 

mRNA stability. 

We next investigated the role of local secondary structure on mRNA stability. To 

do so, for each ORF, we calculated the folding energy in 100 bp sliding windows and 

measured the correlation between the minimum value and mRNA stability. For 

endogenous mRNAs, we found a weak relationship between local structure and mRNA 

stability (rs = 0.05, p < 10–5, Figure S3C); as with ORF length, this correlation failed to be 

significant for ORFeome-derived mRNAs (rs = 0.08, p = 0.1, Figure S3D). Thus, although 

extensive secondary structure within the coding sequence may destabilize individual 

transcripts, it does not provide a general explanation for the observed variation in 

ORFeome mRNA stability. 

We next asked whether these differences could be explained by RBP or 

microRNA (miRNA)-mediated regulation. For each ORFeome-derived mRNA, we 

determined whether the coding region contained sites to the top five expressed miRNA 

families (Nam et al., 2014). Consistent with individual miRNA sites in the coding region 

having little impact on transcript stability (Grimson et al., 2007), half-lives for these site-

containing ORFeome mRNAs were not significantly different from non-site mRNAs (p = 

0.49, Figure S3E). Similarly, for Pumilio recognition elements, only six ORFs contained 

sites, and these half-lives did not differ from non-site ORFs. For AU-rich elements, we 

also did not observe any significant differences in transcript stabilities between ORFs 

that contained AU-rich elements and ORFs that did not contain AU-rich elements (p = 

0.88, Figure S3F). Thus, we conclude that classical UTR-based regulation cannot 

explain differences in stability mediated by different coding sequences. 

This conclusion is consistent with previous reports showing that miRNA sites in 

the ORF are rarely effective, likely because of the translating ribosome (Grimson et al., 

2007; Gu et al., 2009). In support of this model, when translation was inhibited, AU-rich 

element-containing ORFeome mRNAs were now less stable than their no-site 

counterparts (p = 0.03, Figure S3G). This result also suggests that the some of the 

residual variation in ORFeome mRNA stability upon 4EGI-1 treatment (Figure 2H) may 

be due to RBP-based regulation that now has an opportunity to impact stability.  

 

Codon content is a major determinant of mRNA degradation in human cells 
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Because changing codon content altered mRNA stability in our reporters (Figure 1), we 

next explored the contribution of codon usage to differential ORF-mediated stability. To 

do so, for each non-stop triplet, we calculated the Spearman correlation between the 

frequency of the codon in each ORF and the associated half-life (so-called “codon 

stability coefficients” or CSCs), as we have done previously (Presnyak et al., 2015). We 

performed this analysis for endogenous and ORFeome-derived mRNAs in HEK293T 

cells, as well as in an additional dataset from endogenous mRNAs in HeLa cells (Figure 

3A).  

Some codons behaved similarly. For instance, ATC was associated with stability 

in all three datasets. However, others, such as GAG, were not: in the ORFeome 

analysis, it was the most instability-associated codon, but in the endogenous HEK293T 

analysis, it was associated with stability. Across all 61 codons, the CSC values derived 

from endogenous mRNAs in HeLa and HEK293T cells were remarkably similar (rs = 

0.78, p < 10–15, Figure 3B); in fact, the CSC values were more similar than the 

underlying half-lives themselves (p < 10–4, Fisher’s r-to-z transformation,). In contrast, 

although CSC values for the endogenous and ORFeome analyses were significantly 

correlated (rs = 0.33, p = 0.009; Figure 3C), this relationship was weaker than that 

between HEK293T and HeLa cells (p = 0.0002, Fisher’s r-to-z transformation). One 

possibility is that some of the similarity between HEK293T and HeLa values can be 

explained by similar ORF- and UTR-mediated regulation, and that the reduced 

correlation with the ORFeome values reflects the lack of UTR-mediated regulation for 

ORFeome mRNAs. 

We next took the fifteen codons most associated with stability and instability in 

our ORFeome analysis and considered these as stable and unstable codons, 

respectively. As expected, half-lives for ORFeome mRNAs were significantly associated 

with the combined frequency of the stabilizing codons (rs = 0.36, p < 10–11, Figure 3D). 

Similarly, half-lives for endogenous HEK293T mRNAs and endogenous HeLa mRNAs 

were significantly correlated with this combined frequency, although to a lesser extent 

(HEK293T rs = 0.18, p < 10–15, Figure 3E; HeLa rs = 0.17, p < 10–15, Figure S4A). In 

contrast, when we performed computational frame-shift controls, the correlation between 

ORFeome CSC values and endogenous HEK293T mRNA stabilities was lost (rs = 0.07 

and 0.01). Together, these data are consistent with a model where different codons rely 

upon translation to impact mRNA stability, rather than the sequences, in and of 

themselves, mediating different decay rates. 
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Instability-associated codons are translated more slowly 

Based on evidence from yeast (Hanson et al., 2018), the current view is that the 

elongating ribosome takes longer to move through some codons than others, and that 

these slowly elongating codons stimulate mRNA decay. Given this model, we next 

investigated the relationship between ribosome elongation speed and our three sets of 

CSC values. To determine relative elongation speed, we analyzed ribosome profiling 

datasets derived from HeLa cells (Arango et al., 2018). After inferring the A-site codon 

identity for each fragment, we calculated the relative frequency of each codon in the A 

site, reasoning that slower codons will have more A-site associated reads. There was 

only a weak relationship between relative elongation speed and endogenous CSC 

values (HEK293T: rs = –0.14, p = 0.3; HeLa: rs = –0.22, p = 0.9; Figure 3F, Figure S4B). 

Strikingly, this relationship was substantially stronger and significant for ORFeome-

derived CSC values (rs = –0.36, p = 0.004, Figure 3G), likely because of the lack of 

confounding UTR-mediated regulation. Thus, we conclude that instability-associated 

codons are translated more slowly by the elongating ribosome. 

 

Amino acid identity is also a major determinant of mRNA stability in human cells 

In yeast and other organisms (Presnyak et al., 2015), the impact of different codons can 

be explained by differences in tRNA abundance. We thus compared relative tRNA 

abundance in HEK293T cells (Zheng et al., 2015) with our codon stability metrics (Figure 

4A). As expected, tRNA abundance did correlate with endogenous HEK293T CSC 

values (rs = 0.31, p = 0.02).  Importantly, this correlation is not nearly as robust as that 

seen in yeast (Presnyak et al., 2015); thus, other aspects of codon identity could be at 

play. Consistently, tRNA concentration effects on mRNA decay are weakened in the 

ORFeome CSC values (rs = 0.05, p = 0.7).  Further, there was only a weak relationship 

between ribosome elongation speed and tRNA abundance in general (rs = 0.10, p = 0.5; 

Figure 4B).  

We hypothesized that something other than tRNA abundance could explain the 

observed codon-specific differences in elongation speed and impact on stability. In 

analyzing our CSC values, we also noted that codons encoding the same amino acids 

tended to behave similarly, leading us to investigate the impact of amino acid 

composition on mRNA stability. Analogous to our CSC values, we determined an amino 

acid stabilization coefficient (AASC) for each amino acid in our three half-life datasets 
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(Figure 4C). As before, the amino acid metrics were very similar between HeLa and 

HEK293T cells (rs = 0.88, p < 10-15, Figure 4D) and between endogenous and 

ORFeome-derived mRNAs (rs = 0.65, p = 0.002, Figure 4E).  

Strikingly, in all three datasets, hydrophobic amino acids were associated with 

stability, while polar and charged amino acids with instability (Figure 4F, G) (Kyte and 

Doolittle, 1982). In fact, AASC values from endogenous HEK293T mRNAs were 

significantly associated with hydrophobicity (rs = 0.54, p = 0.02, Figure 4F)—a 

relationship that was even stronger for the ORFeome-derived values (rs = 0.80, p < 10–4, 

Figure 4G). For example, those coding sequences containing more valine residues were 

more stable than those with fewer valines in all three half-life datasets (endogenous 

HEK293T mRNAs: rs = 0.12, p < 10–15 ; HeLa mRNAs: rs = 0.18, p < 10–15; ORFeome 

mRNAs: rs = 0.19, p < 10–3; Figure S5A). One notable exception was proline, which was 

associated with instability in all three datasets, despite being nonpolar. 

Nonetheless, there were some differences between AASC values derived from 

ORFeome mRNAs and endogenous mRNAs. For instance, serine was most highly 

associated with instability in endogenous mRNAs (HEK293T: rs = –0. 16, p < 10–15; 

HeLa: rs = –0.28, p < 10-15), but it was more weakly associated with instability in the 

ORFeome transcripts (rs = –0.10, p = 0.06; Figure S5B). In contrast, glutamate was very 

strongly associated with instability in the ORFeome mRNAs (rs = –0.19, p < 10–3), and 

yet its use had little association with instability for either of the two endogenous mRNA 

sets (HEK293T: rs = 0.00, p = 0.8; HeLa: rs = –0.06, p < 10–10).  

To determine whether these relationships were causative, we engineered 

reporters containing the ORF sequence for a relatively small gene [LSM8 (291 nt, 96 

amino acids)] with a mid-ORF insertion of 15 amino acids (45 nt) (Figure 4H). These 

amino acid stretches were composed of 5 tandem repeats of either “stabilizing” amino 

acids (valine, isoleucine, and leucine) or “destabilizing” amino acids (serine, histidine, 

and glutamate) based on the most extreme AASC values from all three datasets. 

Importantly, constituent codons were randomly assorted to ensure approximately equal 

codon usage and reduce local GC content extrema (Table S1). We then performed 

single-gene transcriptional shutoff using the Tet-Off system and determined mRNA half-

lives by northern blot. The reporter containing the destabilizing amino acid insertion was 

significantly less stable than that with the stabilizing amino acids (Figure 4I, Figure S5C; 

p = 0.007, two-tailed t-test), thus indicating that the relationship between amino acid 

content and mRNA stability is causative.  
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In yeast, non-optimal codons recruit the decay machinery, leading to increased 

deadenylation (Radhakrishnan et al., 2016; Webster et al., 2018). We next asked 

whether there might be a similar mechanism at work in human cells. Using high-

resolution northern blots, we determined poly(A)-tail lengths on our stable and unstable 

LSM8 reporter mRNAs. The unstable LSM8 reporter mRNA showed shorter overall 

steady-state tail length than the stable reporter (Figure 4J), and a higher proportion of 

transcripts were deadenylated over the course of transcriptional shut-off experiments 

(Figure 4K). Taken together, these data strongly support the model that primary protein 

sequence influences mRNA half-life in human cells, and that it likely does so through a 

deadenylation-based mechanism.  

 

Amino acid identity influences elongation speed 

Given that amino acids like proline and glutamate are associated with instability and are 

also known to slow elongation (Artieri and Fraser, 2014; Gardin et al., 2014), we 

wondered whether this trend held more generally. Using a similar analysis to our codon 

elongation rate metric, we calculated relative pause scores for each amino acid (when in 

the inferred A site). Consistent with a model where slow elongation is associated with 

instability, stabilizing amino acids (such as valine and leucine) showed little evidence of 

pausing, while destabilizing amino acids (like glutamate and histidine) had the strongest 

pausing signal (Figure 5A).  

Although the A-site pause scores showed only a weak association with both sets 

of endogenous AASC values (HEK293T: rs = –0.24, p = 0.3; HeLa: rs = –0.34, p = 0.1; 

Figure 5B), there was a significant negative correlation between ribosome pausing and 

ORFeome-derived stability values (rs = –0.50, p = 0.03; Figure 5B). As with our codon 

analysis, this relationship between pausing and instability values was likely stronger for 

the ORFeome values because these lack confounding effects of the UTRs. One 

interesting exception was proline, which had a relatively weak A-site pause score, but 

was strongly associated with instability in all three datasets. Proline is both a poor amino 

acid bound donor and acceptor (Wohlgemuth et al., 2008), and so it is likely that A-site 

pause scores do not completely capture its contribution to reducing elongation speed. 

Importantly, these observations only held true for amino acid content in the A site. As 

opposed to A-site pause scores, there was little variation between amino acids for P- 

and E-site pause scores, and we observed no correlation between ORFeome AASC and 

ribosome pausing for neither the P- nor E-site amino acid (Figure 5C-G). Taken 
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together, we conclude that in humans, amino acid content within the ribosomal A site 

influences elongation; like the ribosome pausing trigged by tRNA limitations, relative 

elongation rate over amino acids is sensed by the mRNA degradation machinery.  

 

The relative contribution of amino acid and codon use to mRNA stability varies in 

different species 

Codon effects are inherently entwined with amino acid effects. We asked, therefore, to 

what extent differences between amino acids (as opposed to differences between 

synonymous codons) contributed towards our observations on transcript stability. We 

first focused on S. cerevisiae, where elongation speed is known to be predominantly 

determined by the decoding step and tRNA concentration (Hanson et al., 2018). We 

binned synonymous codons and plotted their CSC values (Figure 6A). Consistent with 

previous work (Hanson et al., 2018; Presnyak et al., 2015), there was wide variation in 

CSC values for synonymous codons, and these values reflected tRNA abundance 

(Figure 6A). In HeLa cells, however, less variation between synonymous codons was 

observed; instead, CSC was driven predominately by amino acid identity (Figure 6B).  

To quantitatively asses the relative contribution of codon vs. amino acid identity, 

we developed a metric that determines the relative impact of synonymous and non-

synonymous codons on mRNA stability. Here, we took each pair of synonymous and 

non-synonymous codons and calculated the differential between their CSC values. This 

score was then normalized to the largest score across all codon combinations for each 

organism. In S. cereviaise, consistent with the importance of tRNA abundance rather 

than amino acid identity, synonymous codon usage gave a large range in observed 

CSCs (Figure 6C). For S. pombe and trypanosomes, a similar pattern was observed 

(Figure S6). These data indicate that for these organisms, synonymous codon usage, 

rather than amino acid identity, correlate best with differences in mRNA stability. 

However, in metazoans (such as Drosophila, zebrafish, and human cells), there was 

more variation between non-synonymous codons than synonymous codons (Figure 6C, 

Figure S6), indicating that amino acid effects dominate over codon effects. Thus, while 

tRNA abundance appears to be a dominant feature in dictating mRNA stability in fungi 

and protists, in metazoans it is the encoded amino acid. These data hint that 

translational elongation rate is differentially impacted by distinct rate-limiting events 

throughout evolution. Nonetheless, any perturbation that slows elongation has the same 

net influence on mRNA stability.  
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Amino acid content coordinates mRNA stability within gene families 

Previous studies in yeast demonstrated that expression of functionally related genes can 

be orchestrated at the level of mRNA stability and that much of this phenomenon occurs 

through coordinated synonymous codon use (Presnyak et al., 2015; Wang et al., 2002). 

In human cell lines, we observed a similar phenomenon where functionally related gene 

groups have similar mRNA half-lives (Figure 7A). For instance, in HeLa cells, key 

metabolic genes, such as TCA cycle enzymes, were highly stable (median half-life: 8.53 

hrs), while regulatory proteins, such as Serine/Arginine-rich splicing factors (SRSF), 

were highly unstable (median half-life: 2.83 hrs). Given that amino acid identity is a 

major driver of mRNA stabilities in human cells, coordinate gene expression at the 

mRNA level could, in theory, be driven by primary amino acid sequence.  

To explore potential relationships between mRNA half-life and amino acid 

content across gene families, we calculated average AASC across these same 

transcripts (Figure 7B). Highly stable gene groups showed higher average AASC (TCA 

cycle enzyme median AASC: 0.0178), while unstable gene groups showed markedly 

lower average AASC (SRSF median AASC: –0.0419), supporting a model where 

differences in amino acid composition can help coordinate mRNA half-lives within 

functionally-related gene groups.  

We further examined differences in amino acid and codon usage between two 

groups of interest, cytoplasmic and mitochondrial ribosomal proteins. Despite being 

closely related, these two groups have significantly different half-lives (p = 0.0009, 

Wilcoxon test; Figure 7A). Reflecting differences in amino acid content, these two groups 

also differ significantly in AASC values (p = 0.002, Wilcoxon test; Figure 7C). Of note, 

mitochondrial ribosomal proteins were found to contain more destabilizing amino acids, 

such as serine and glutamate, while cytoplasmic ribosomal proteins contained more 

stabilizing amino acids, such as valine and isoleucine (Figure 7D). In addition, these two 

groups also showed differences in synonymous codon usage, such that mitochondrial 

ribosomal protein genes tended to contain codons with lower CSC values (Figure 7D). 

Taken together, these analyses demonstrate that both codon usage and amino acid 

content contribute to the observed differences in half-life between functionally related 

gene groups. Moreover, these data strongly suggest that alterations in amino acid 

content could be a powerful evolutionary driver of overall gene expression levels.  
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DISCUSSION 

Despite the elucidation of most major mechanisms of mRNA degradation over the past 

two decades, much about how mRNA stability is regulated in humans remains unknown. 

Here, we have demonstrated that translational elongation rate is an evolutionarily 

conserved determinant of mRNA stability. First, using reporter systems, we show that 

codon content impacts transcript stability. Reporters containing largely non-optimal 

codons were significantly less stable than transcripts containing largely optimal codons. 

These results are not isolated to a few, select mRNAs; rather, general correlations 

between codon usage, elongation speeds, and mRNA stability hold on a transcriptome-

wide scale in humans, indicating that this regulatory mechanism is broadly conserved.  

Importantly, the human ORFeome collection brought these effects into even 

more focus. Unlike endogenous genes, mRNAs expressed from the ORFeome collection 

contain the same UTRs, promoters, and poly(A) sites, and so regulation from elements 

outside the ORF (such as on translational initiation rates) are not in play for ORFeome-

derived mRNAs. The relationship between codon effects, mRNA stability, and elongation 

rates was even stronger for these transcripts compared to endogenous genes, 

demonstrating a causative, translation-dependent relationship between coding elements 

and regulation of mRNA stability. 

Codon effects on mRNA decay are driven by tRNA abundance in yeast 

(Presnyak et al., 2015).  In humans, we also see that tRNA concentration can powerfully 

impact mRNA degradation rate; reporter constructs (Fig. 1) whose optimality is 

determined based on tRNA concentration exhibit effects on mRNA decay identical to 

that seen in yeast.  Importantly, however, analyses in humans revealed that amino acid 

identity is also a major driver for mRNA decay rates, such that polar amino acids are 

generally destabilizing and nonpolar amino acids are stabilizing. The effect of the 

primary protein sequence on mRNA stability is not merely a correlative one. When we 

inserted a stretch of codons encoding polar or nonpolar amino acids into an LSM8 

reporter gene, the two mRNAs had different stabilities. Despite only varying in 15 

codons, the variant encoding polar amino acids was more unstable and had a shorter 

poly(A) tail. Importantly, the codons for amino acids most associated with instability also 

showed the strongest ribosome pausing when in the A site. Together, our results lead to 

a model that amino acid identity and chemical properties impact ribosomal A-site 

incorporation and, in turn, overall translational elongation rate, and so encoded protein 

has a direct impact on the stability of its mRNA.  
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We hypothesize that the distinction between tRNA concentration as opposed to 

amino acid identity in controlling transcript stability result from subtle evolutionary 

changes in the rate-limiting steps for translational elongation. In fungi and protists, 

decoding appears to limit translational elongation, while amino acid effects modulate 

elongation in metazoans. The net effect on mRNA stability, however, is the same: 

slowing translation elongation results in mRNA destabilization, most likely by stimulating 

deadenylation.  

A key question raised by this study is how amino acid identity within the A site 

changes elongation speeds. The observation that polar amino acids behave similarly 

raises the possibility that these amino acids have a chemical nature or physical 

geometry that is difficult for human ribosomes to either accommodate or move into the 

growing polypeptide chain, thereby creating a pause that can then be sensed by the 

mRNA decay machinery. Indeed, the ribosome is known to have difficulty with certain 

amino acids (Artieri and Fraser, 2014; Gardin et al., 2014). For instance, polyproline 

present within the growing polypeptide chain is strongly inhibitory to ribosome elongation 

(Wohlgemuth et al., 2008). Similarly, a polypeptide bond can be difficult to form between 

certain tRNA-amino acid combinations due to slight misalignments in the tRNA 

backbone and/or amino acid geometry. Indeed, the evolution of the translational 

elongation factor, eIF-5A, demonstrates this constant adaptive need for substrate 

alignment within the ribosome (Gutierrez et al., 2013; Saini et al., 2009). eIF-5A nudges 

the P-site tRNA, lining it up appropriately with the A-site tRNA to allow chemistry to 

occur (Melnikov et al., 2016). Although other possibilities (e.g., differences in tRNA 

charging) are also possible, we favor a model where polar amino acids in the A site 

creates subtle pauses in elongation due to inappropriate aligning with the peptidyl 

transferase center. These subtle, yet likely additive, pausing events are sensed by the 

mRNA degradation machinery to elicit transcript destruction.  

 

Protein sequence dictates mRNA expression 

We and others observed that genes of similar physiological function coordinate their 

expression through coordinated mRNA stability (Herzog et al., 2017; Presnyak et al., 

2015; Wang et al., 2002). In yeast, this coordination is achieved by common usage of 

synonymous codons within gene classes. Because each of the 61 codons is read at 

distinct rates (due to differences in tRNA concentration), codon composition has a strong 

impact on overall expression level through translational elongation rate and mRNA 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/488676doi: bioRxiv preprint 

https://doi.org/10.1101/488676
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

degradation rate (Figure 8). Across evolutionary time, selection for synonymous codon 

usage will modulate gene expression, but it does so without impacting protein amino 

acid composition.  

Here, however, we demonstrate that human mRNA stabilities are coordinated at 

the codon level predominantly through amino acid composition rather than tRNA 

abundance—in other words, the overall primary sequence of a polypeptide hardwires the 

turnover rate of its corresponding mRNA (Figure 8), and many protein sequences will 

restrict mRNA expression. For some genes, the intrinsic ability of the protein sequence 

to restrict mRNA expression may be a feature that evolution has taken advantage of in 

order to enable dynamic expression patterns. On the other hand, for a gene whose 

protein product needs to be highly expressed, this ORF-mediated regulation must be 

either overcome (e.g., by increased transcriptional buffering) or blunted by other post-

transcriptional regulation (e.g., UTR-based mechanisms). The latter concept suggests 

that evolution of protein sequence could, in fact, be an adaptive response to the need for 

coordinated mRNA stability within some gene families, especially those subject to high 

translation initiation rates. Further studies will be required to understand the interplay 

between UTR-based regulation and ORF composition in determining mRNA half-life in 

higher eukaryotes.  
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FIGURE LEGENDS 

Figure 1. Optimal codon usage modulates mRNA stability in human cells.  

(A) Steady-state mRNA levels of firefly luciferase variants. Shown is a northern blot, 

probing for the common 3'UTR within different firefly luciferase reporter mRNAs, which 

vary by optimal codon content, and U6 snRNA loading control. Quantification of Firefly 

luciferase mRNA (relative to 0% optimal construct) is shown at bottom (error bars denote 

standard deviation; n=3).  

(B) More optimal luciferase mRNA variants are more stable. Transcriptional shut-off 

experiments were performed in Tet-Off HEK293 cells, and firefly luciferase mRNA levels 

were determined by northern blots. Timepoints correspond to the time after the addition 

of doxycycline, which shut-offs transcription of the reporter. t½ corresponds to the half-

life (min) ± standard deviation (n=3). See Figure S1 for loading control.  

(C) More optimal MECP2 mRNA variants are more stable. As in B, expect for MECP2. 

See Figure S1 for loading control. 

(D) More optimal CFTR ΔF508 mRNA variants are more stable. As in B, except for 

CFTR ΔF508. See Figure S1 for loading control. 

See also Figure S1 and Tables S1 and S2. 

 

Figure 2. Coding sequences impact mRNA stability in human cells.  

(A) Schematic of the ORFeome workflow. The ORFeome collection contains ~16,000 

full-length coding sequences corresponding to 14,000 genes in a lentiviral background. 

Each ORF derived from the ORFeome is flanked by invariant UTRs, and also contains a 

C-terminal V5 tag. Lentiviral pools containing ~3000 ORFeome clones were used to 

infect HEK293T and generate stable cell lines. Metabolic labeling was used to determine 

stabilities of endogenous and ORFeome-derived mRNAs in these stable lines.  

(B) Changing coding regions changes mRNA stability. Plotted are boxplots of half-lives 

for endogenous HEK293T (End.) and ORFeome-derived mRNAs (in blue and gray, 

respectively). The line represents the median half-life, and the box, 1st and 3rd quartiles.  

(C) ORFeome mRNAs show as much variation in stability as endogenous mRNAs. 

Plotted are density destributions of median-centered half-lives for endogenous HEK293T 

and ORFeome-derived mRNAs (in blue and gray, respectively).  

(D) Treatment with 4EGI-1 inhibits translation. Shown are A254 traces from sucrose 

density gradients of cell lysates from HEK293T cells treated with the translation inhibitor 

4EGI-1 (orange) or DMSO (grey).  
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(E) Transaltion inhibition destabilizes endogenous mRNAs. Plotted are boxplots of half-

lives for endogenous HEK293T mRNAs with DMSO or 4EGI-1 treatment (in grey and 

orange, respectively). The line represents the median half-life, and the box, 1st and 3rd 

quartiles.  

(F) Translation inhibition has a minor effect on the variation in stability for endogenous 

mRNAs. Plotted are density destributions of median-centered half-lives for endogenous 

HEK293T in cells treated with DMSO or 4EGI-1 (in gray and orange, respectively). 

(G) Inhibition of translation destabilizes ORFeome-derived mRNAs and reduces the 

variation in stability. As in E, except for ORFeome mRNAs. DMSO, in blue; 4EGI-1, in 

orange. 

(H) Translation inhibition reduces the variation in stability for ORFeome-derived mRNAs. 

As in F, except for ORFeome mRNAs. DMSO, in blue; 4EGI-1, in orange. 

See also Figure S2 and Table S2. 

 

Figure 3. Codon usage is a determinant of mRNA stability in human cells.  

(A) Codons are differentially associated with stability. Shown are spearman correlations, 

for each codon, of their frequency with mRNA stability (codon stability coefficient; CSC) 

for endogenous HeLa mRNAs, endogenous HEK293T mRNAs, and ORFeome mRNAs. 

The 15 codons most associated with stability (as defined by the ORFeome collection) 

were designated as “optimal” (blue), while 15 codons most associated with instability 

were designated as “non-optimal” (orange).  

(B) HeLa and HEK293T cells have similar codon stability coefficients (CSCs). Plotted 

are the CSC values for endogenous HEK293T mRNAs compared to endogenous HeLa 

mRNAs  

(C) As in B, except comparing endogenous HEK293T and ORFeome-derived CSC 

values. 

(D) ORFeome mRNAs with more optimal codons are more stable. Shown are boxplots 

of mRNA half-lives for ORFeome mRNAs, binned into quartiles by the frequency of 

optimal codons. The line represents the median half-life, and the box, 1st and 3rd 

quartiles. 

(E) As in D, except for endogenous HEK293T mRNAs.  

(F) Endogenous HEK293T CSCs weakly correspond with pause scores. Using HeLa 

ribosome profiling, pause scores were calculated for each codon in the A site, and then 

codons were divided into three groups (slow in orange; neutral in green; fast in blue). 
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Shown are boxplots for the corresponding CSC values as determined by endogenous 

HEK293T mRNAs.  

(G) As in F, except for ORFeome-derived CSCs. 

See also Figures S3 and S4. 

 

Figure 4. Amino acid usage is a major determinant of mRNA stability in human 

cells.  

(A) Codon stability coefficients (CSCs) have little relationship to tRNA abundance. 

Plotted are the normalized tRNA abundance in comparison to CSC values for 

endogenous HEK293T and and ORFeome mRNAs (left and right panels, respectively).  

(B) tRNA abundance has little impact on elongation speed. Codons were divided into 

thirds by their A-site pause scores (slow in orange; neutral, green; fast, blue). Shown are 

boxplots for the abundance of corresponding tRNAs. The line represents the median 

half-life, and the box, 1st and 3rd quartiles. 

(C) Amino acids are differentially associated with stability. Shown are spearman 

correlations, for each amino acid, of their frequency with mRNA stability (amino acid 

stability coefficient or AASC) for endogenous HeLa mRNAs, endogenous HEK293T 

mRNAs, and ORFeome mRNAs. Polar amino acids (in pink) have charged or highly 

electronegative side chains; nonpolar amino acids (dark gray) have aliphatic and weakly 

electronegative side chains.  

(D) HeLa and HEK293T have similar AASCs. Plotted are the AASC values for 

endogenous HEK293T mRNAs compared to endogenous HeLa mRNAs  

(E) As in B, except comparing endogenous HEK293T and ORFeome-derived AASC 

values. 

(F) Hydrophobic amino acids are associated with stability. Plotted are the hydrophobicity 

scores (Kyte and Doolittle, 1982) for each amino acid compared to their stability 

coefficient for endogenous HEK293T mRNAs.  

(G) As in F, except for ORFeome-derived AASC values.  

(H) Schematic diagram of LSM8 reporter constructs. In the middle of the LSM8 coding 

region, five repeats of instability-associated amino acids (S, H and E) or stability-

associated amino acids (V, I, and L) were inserted.  

(I) Insertion of instability-associated amino acids destabilizes the LSM8 reporter mRNA. 

Transcriptional shut-off experiments were performed in Tet-Off HEK293 cells, and LSM8 

mRNA levels were determined by northern blots. Timepoints correspond to the time after 
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the addition of doxycycline. t½  corresponds to the half-life (min) ± standard deviation 

(n=4). See Figure S5C for loading control. 

(J) The destabilized LSM8 reporter mRNA has shorter poly(A) tails. High resolution 

northern blotting was performed to measure poly(A)-tail lengths on the SHE and VIL 

LSM8 mRNAs. Arrow indicates deadenylated mRNA species; dT, oligo(dT)/RNase H 

treated mRNA control. 

(K) LSM8 reporter mRNAs are deadenylated. Transcription of the SHE and VIL LSM8 

reporters was shut-off, as in I, and poly(A)-tail lengths were measured by high-resolution 

northern blotting. Timepoints represent time elapsed after transcription shutoff with 2 

µg/mL doxycycline. Arrow indicates deadenylated mRNA species; dT, oligo(dT)/RNase 

H treated mRNA control. 

See also Figure S5 and Tables S1 and S2. 

 

Figure 5. Instability-associated amino acids are translated slowly.  

(A) Amino acids, when in the A-site, are translated at different rates. Plotted are the 

pause scores for each amino acid when in the predicted A-site (see methods for details). 

Nonpolar amino acids, grey; polar amino acids, pink.  

(B) Amino acid stability coefficients correlate with A-site pause scores. Shown are plots 

comparing A-site pause scores for each amino acid with its stability coefficient, as 

defined by endogenous HeLa, endogenous HEK293T, and ORFeome mRNAs (left, 

middle, and right, respectively). 

(C) As in A, except for the P site.  

(D) As in A, except for the E site.  

(E) A-site pause scores correlate poorly with P- and E-site pause scores. Plotted are the 

pairwise comparisons for A-, P-, and E-site pause scores.  

(F) ORFeome amino acid stability coefficients poorly correlate with P-site pause scores. 

Shown are plots comparing P-site pause scores for each amino acid with its stability 

coefficient, as defined by ORFeome mRNAs. 

(G) As in F, except for E-site pause scores. 

 

Figure 6. Amino acid usage is a more potent regulator than codon usage in 

control of human mRNA stability.  

(A) Comparison of codon and amino acid effects on stability in S. cereviaise. Codons 

were grouped by their encoded amino acid, and codon stability coefficient (CSC) values 
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are plotted. Those decoded by high-abundance tRNAs are in blue, and those by low-

abundance tRNAs are in orange. 

(B) As in A, except for HeLa cells. 

(C) In metazoans, differences between codons are predominantly determined by 

differences between amino acids. For each pair of codons, the absolute difference in the 

corresponding CSC values was calculated and then normalized to the maximal 

difference (to correct for differences in overall variance between organisms). Pairs of 

codons were binned into these encoding the same or different amino acid (n = 87, in 

grey, and n = 1742, in green, respectively). Shown are boxplots of those differences for 

S. cerevisiae, Drosophila, HeLa, and ORFeome-derived mRNAs. Significance 

determined by Wilcoxon rank sum test. 

See also Table S3. 

 

Figure 7. Similar amino acid content helps coordinate control of mRNA stability 

among functionally related genes.  

(A) Gene groups show similar half-lives. Shown are boxplots of mRNA half-lives in HeLa 

cells for the indicated gene groups.  

(B) Gene groups show similar average AASCs. Shown are boxplots of AASC values in 

HeLa cells for the indicated gene groups.  

(C) Mitochondrial ribosomal protein genes have lower AASCs than cytoplasmic 

ribosomal protein genes. Shown are boxplots of AASC values for cytoplasmic and 

mitochondrial ribosomal protein genes (blue and red, respectively). Significance was 

determined by Wilcoxon rank sum test.  

(D) Mitochondrial ribosomal protein genes use more unstable amino acids and codons 

than cytoplasmic ribosomal protein genes. Each amino acid is represented by a dot, 

where its size corresponds to its frequency, and is plotted by the weighted CSC value. 

Shown are the distributions for cytoplasmic and mitochondrial ribosomal protein genes 

(in blue and red, respectively). 

See also Figure S6. 

 

Figure 8. Model: mRNA stability is determined by speed of translation elongation. 

This schematic demonstrates a model for mRNA stability as a function of translation 

elongation speed. We propose that the combined rate of tRNA decoding/accommodation 

(Ka), rate of peptidyl transfer from P-site tRNA to A-site tRNA (Kp), and rate of 
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deacylated tRNA exit from the E-site (Ke) dictate speed of ribosome transit. Ribosome 

speed is sensed by yet-to-be-determined mechanisms and communicates with the 

mRNA decay machinery to determine mRNA decay rate. Here, “destabilizing” codons 

and amino acids can slow the rate of tRNA accommodation (Ka) and the rate of peptidyl 

transfer (Kp), leading to slowing of elongation and subsequent targeting for decay. 
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SUPPLEMENTAL FIGURE LEGENDS 

Figure S1. Optimal codon usage modulates mRNA stability in human cells, related 

to Figure 1. 

(A) U6 snRNA northern analysis for transcription shut-off experiments for the firefly 

luciferase variants shown in Figure 1C. 

(B) As in A, except for MECP2 and Figure 1D. 

 

Figure S2. Validation of the ORFeome lines, related to Figure 2. 

(A) ORFeome complexity was maintained through stable cell line generation. Shown is a 

western blot probing lysates from the pooled ORFeome stable lines with V5 (the 

common C-terminal tag in the ORFeome collection). WT, parental HEK293T line; S, 

supernatant; P, pellet.  

(B) ORFeome-derived mRNAs are expressed in the stable cell lines. Shown is a scatter 

plot comparing steady-state RNA-seq reads (with a +1 pseudocount) for each gene 

between the two pooled lines used in this study. In black, genes in neither pool; in blue, 

genes in pool 1; in orange, genes in pool 4; in green, genes in both pools. Red dashed 

lines represents y = 3X and y = X/3, which were used as cut-offs to classify genes as 

ORFeome-expressed. ORFeome genes that did not pass threshold were not used for 

subsequent analysis (see Methods for more details). Numbers refer to the total number 

of genes in each pool and the number passing the 3-fold threshold.  

(C) ORFeome mRNAs are expressed in a pool-dependent fashion. Shown are boxplots 

of normalized read counts (with a +1 pseudocount) for ORFeome-derived mRNAs (split 

into pool 1 and pool 4) in the two pooled stable cell lines. Abundance in cell line 1 is 

shown in blue; in cell line 4, in orange. Note that the ORFeome pools are expressed in 

the appropriate cell line.  

(D) 4EGI-1 substantially reduces translation. Cells were treated with DMSO, 4EGI-1, or 

cyclohexamide (as a positive control) for the indicated times and then briefly treated with 

puromycin, which is incorporated into nascent peptides. Lysates were separated by gel 

electrophoresiss and probed for puromycin (top) or tubulin (bottom). 

(E) DMSO treatment does not substantially affect mRNA stability. Shown are 

scatterplots comparing half-lives for endogenous genes (averaged from both pools) from 

the original experiment and DMSO-treated cells. Red dashed line represents x = y. 

(F) 4EGI-1 treatment affects mRNA stability. As in E, except comparing half-lives from 

the original experiment and 4EGI-1-treated cells. 
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Figure S3. Variation in ORFeome mRNA stabilities cannot be explained by length, 

local secondary structure, and RBP-binding sites, related to Figure 3. 

(A) Endogenous mRNA stability negatively correlates with length. Shown are boxplots 

for half-lives of endogenous HEK293T mRNAs binned into quartiles by ORF length. 

(B) ORFeome mRNA stability does not correlate with length. As in A, except for 

ORFeome mRNAs. 

(C) Endogenous mRNA stability weakly correlates with local secondary structure. For 

each ORF, the folding energy in 100 bp sliding windows was calculated, and the 

minimum value taken. Shown are boxplots for half-lives of endogenous HEK293T binned 

into quartiles by folding energy (with increased secondary structure on the right).  

(D) ORFeome mRNA stability does not correlate with local secondary structure. As in B, 

except for ORFeome mRNAs.  

(E) microRNA-mediated regulation cannot explain the variation in ORFeome stability. 

ORFs were classified as containing or lacking seed-matched sites for the top five 

expressed mRNAs (site ORFs [orange] and no site ORFs [blue], respectively). Shown 

are boxplots for their half-lives. Significance was calculated by the Kolmogorov-Smirnov 

test. 

(F) AU-rich elements cannot explain the variation in ORFeome stability. As in E, except 

for AU-rich elements. 

(G) AU-rich elements in ORFs destabilize mRNAs upon translational repression. As in F, 

except for half-lives determined in the presence of 4EGI-1. 

 

Figure S4. The relationship between HeLa mRNA codon content, mRNA stability, 

and translation elongation, related to Figure 3. 

(A) HeLa mRNAs with more optimal codons are more stable. Shown are boxplots of 

mRNA half-lives for HeLa mRNAs, binned into quartiles by the frequency of optimal 

codons (as determined by ORFeome-derived mRNAs). The line represents the median 

half-life, and the box, 1st and 3rd quartiles. 

(F) Endogenous HeLa CSCs do not correspond with pause scores. Using HeLa 

ribosome profiling, pause scores were calculated for each codon in the A site, and then 

codons were divided into three groups (slow in orange; neutral in green; fast in blue). 

Shown are boxplots for the corresponding CSC values as determined by endogenous 

HeLa mRNAs.  
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Figure S5. Amino acid frequency impacts mRNA stability, related to Figure 4. 

(A) Valine frequency correlates with mRNA stability. Shown are boxplots of mRNA 

stabilities for HeLa, endogenous HEK293T, and ORFeome mRNAs binned into quartiles 

by valine frequency.  

(B) Serine frequency negatively correlates with mRNA stability. As in A, except for 

serine.  

(C) U6 snRNA northern analysis for transcription shut-off experiments for the LSM8 

variants shown in Figure 1C. 

(D) U6 snRNA Northern analysis for LSM8 variable amino acid content transcription 

shutoff/Northern mRNA decay analyses shown in Figure 4I. 

 

Figure S6. The relative influence of codon and amino acid usage varies between 

different organisms, related to Figure 6. 

For each pair of codons, the absolute difference in the corresponding CSC values was 

calculated and then normalized to the maximal difference (to correct for differences in 

overall variance between organisms). Pairs of codons were binned into these encoding 

the same or different amino acid (n = 87, in grey, and n = 1742, in green, respectively). 

Shown are boxplots of those differences for S. pombe, trypanosomes, zebrafish, and 

endogenous HEK293T mRNAs. Significance determined by Wilcoxon rank sum test. 

 

Table S1. Oligonucleotide and gBlock sequences used in this study, related to 

Figures 1 and 4. 

 

Table S2. Plasmids used in this study, related to Figures 1, 2, and 4. 

 

Table S3. Half-life datasets and FASTA coding sequences for additional organism 

CSC calculations, related to Figure 6 and Figure S6. 
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STAR METHODS 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Please direct any requests for further information or reagents to the lead contact, Olivia 

Rissland (olivia.rissland@ucdenver.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell lines and growth conditions 

Human cell lines. HEK293 Tet-Off® cells (Clontech 631152) were maintained in DMEM, 

high glucose, pyruvate (Thermo Fisher Scientific Cat #11995065) supplemented with 

10% FBS (Gibco 1992275) and 1% Penicillin/Streptomycin. Human HEK293T cells were 

cultured in DMEM (Lonza) supplemented with 10% fetal bovine serum (FBS) (VWR 

Seradigm) and 1% penicillin-streptomycin solution (BioShop). Cell lines were cultured at 

37°C in a humidified incubator with 5% CO2. All cells were cultured in Greiner Cellstar® 

cell culture dishes. 

 

Drosophila cell lines. Drosophila melanogaster Schneider 2 (S2) cells (Thermo Fisher 

Scientific R69007) were cultured in ExpressFive SFM media (Thermo Fisher Scientific) 

supplemented with 10% heat-inactivated FBS (Wisent) and 20mM L-Glutamine (Life 

Technologies) at 28°C. 

 

Yeast strains. S. cerevisiae USY006 was grown in YPD liquid or plates at 30°C. Cultures 

were obtained from Dr. John Rubinstein (The Hospital for Sick Children Research 

Institute). 

 

METHOD DETAILS 

Plasmids and oligonucleotides 

All oligonucleotides used in this study are listed in Table S1. All plasmids used in this 

study are listed in Table S2. 

 

ORFeome cell line preparation 

The human ORFeome collection version 8.1 (ccsbBroad304) cloned into lentiviral vector 

pLX304 was obtained from Dr. Jason Moffat (University of Toronto) as a series of 96-

well overnight bacterial cultures. Equal volumes of bacterial cultures were pooled into 36 
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pools comprising ~576 clones each. Plasmid DNA was isolated using the GeneJET 

Plasmid Midiprep Kit (Thermo Scientific) as per manufacturer’s instructions, yielding an 

average of ~70 µg plasmid DNA per pool. The 36 isolated pools were further combined 

into 6 unique pools for downstream cell line generation. 

Each of the 6 unique virus pools were packaged by transfection into HEK293T 

cells using lipofectamine 2000 (Life Technologies), according to manufacturer’s 

instruction. Cells were transfected with the lentivirus pLX304 pool, psPAX2 packaging 

vector, and pVSV-G envelope vector. After 8 hours, transfection media was then 

removed and switched to harvest media (DMEM + 10% FBS + 1.1 g/100ml BSA (7.5% 

solution, Life Technologies)). Cells were left for 2 days to complete virus production. 

Media was then collected from the plate and filtered through a 0.45 µm filter (Acrodisc) 

by syringe. Harvested viruses were aliquoted. 

Freshly thawed HEK293T cells were grown in 10 cm dishes to reach ~30-50% 

confluence for the day of infection. Media was removed and 9 ml pre-warmed infection 

media (DMEM + 10% FBS + 8 µg/mL Polybrene) was added to cells. 2 ml of freshly 

harvested virus pool were added to 1 plate of HEK293T cells each and incubated 

overnight. Cells were then trypsinized and expanded into 15cm dishes. Cells were 

selected using selection media (DMEM + 10% FBS + 6 µg/mL Blasticidin (BioShop)) for 

6 days. Selection media was changed every day. Cells were then frozen in cell freezing 

medium (Sigma-Aldrich) and stored in liquid nitrogen. 

 

Western blotting 

Cells were harvested by trypsinization and pelleted by centrifugation at 1,000G for 2 

minutes at 4°C. Cell pellets were resuspended in 500 µl lysis buffer (100 mM KCl, 0.1 

mM EDTA, 20 mM HEPES-KOH pH 7.6, 0.4% NP-40, 10% glycerol, 1 mM DTT, 

complete mini EDTA-free protease inhibitors (Roche)) and clarified at 21,000G for 5 

minutes at 4°C. 250 µl supernatant was mixed with 20µL 4x Bolt LDS sample buffer 

(Invitrogen), 8 µl 10X Bolt sample reducing agent (Invitrogen) and proteins were 

denatured at 75°C for 10 minutes. Protein samples were loaded into Bolt 4-12% Bis-

TRIS Plus gels (Invitrogen) and run at 160V for ~1 hour. The gel was transferred onto an 

Amersham Hybond PVDF membrane (GE Healthcare) at 20V for ~1 hour and blocked in 

PBST (1X PBS with 1% Tween-20 (Sigma-Aldrich)) with 5% milk (BioBasic) for 30 

minutes. Primary antibodies were added at 1: 10,000 concentration for α-V5 antibodies 

(Sigma-Aldrich V8012), 1: 10,000 for α-puromycin antibodies (Kerafast 3RH11), and 1: 
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5,000 for α-tubulin antibodies (Sigma-Aldrich T5168). Blots were incubated shaking in 

primary antibody overnight at 4°C. 

Blots were then washed 3x with PBST for 5 minutes each and incubated with 1: 

10,000 concentration α-mouse secondary antibody (NEB 7076) for 1 hour at room 

temperature. Blots were washed with PBST 3X for 5 minutes each. Blots were imaged 

using ECL Prime Western Blotting Detection Reagent (GE Healthcare) and exposed on 

Amersham Hyperfilm (GE Healthcare).  

 

Polysome fractionation 

hORF cell line 1 was grown for 24 hours in the presence of either DMSO or 100 µM 

4EGI-1 (Cedarlane). Cells were treated with 100 µg/ml cycloheximide (CHX) (BioShop) 

for 10 minutes. Cells were harvested on ice by washing 2x with ice-cold PBS containing 

100 µg/ml CHX, and lysing with 500 µl ice-cold filter-sterilized lysis buffer (10 mM Tris-

HCl (pH 7.4), 5 mM MgCl2, 100 mM KCl, 1% Triton X-100, 2 mM DTT, 500 U/ml RNasin 

(Promega), 100 µg/ml CHX, Protease inhibitor (1X complete, EDTA-free, Roche)). Cells 

were scraped off the dish into tubes and sheared gently 4x with a 26-guage needle. 

Lysed cells were centrifuged at 1,300G for 10 minutes at 4°C, and clarified supernatant 

was isolated. 

A 10/50% sucrose gradient was created by combining heavy and light solutions 

on a BioComp Gradient MasterTM. Heavy and light solutions consisted of 20 mM 

HEPES-KOH (pH 7.4), 5 mM MgCl2, 100 mM KCl, 2 mM DTT, 100 µg/ml CHX, and 20 

U/ml SUPERaseIn, and either 10% or 50% sucrose (w/v) respectively. 300 µl of samples 

were layered on sucrose gradients and centrifuged in a pre-cooled Beckman 

Ultracentrifuge L-90K using SW41 rotor at 36,000 RPM (221632.5G) for 2 hours at 4°C. 

The gradient was fractionated using the BioComp Piston Gradient FractionatorTM and 

absorbance measurements were made using an Econo EM-1 UV Monitor (BioRad).  

 

Puromycin incorporation assay 

hORF cell line 1 was grown for 1, 8, or 24 hours in the presence of either DMSO, 100 

µM 4EGI-1, or 5 µg/ml cycloheximide. Cells were pulsed with 1.5 µg/ml puromycin 

dihydrochloride (Gibco) for 10 minutes at 37ºC. Cells were then harvested and lysed as 

above and probed by western blot with α-puromycin antibody (Kerafast 3RH11) to detect 

overall incorporation. 
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HEK293T endogenous and ORFeome mRNA stability determination by metabolic 

labeling 

Generation of spike-in RNA. Two sets of spike-in RNA were generated. An unlabeled S. 

cereivisae spike-in is used to determine the enrichment of 4SU-labeled RNA over 

unlabeled RNA, as described previously (Lugowski et al., 2017). S. cereivisae strain 

USY006 was grown in YPD liquid culture at 30°C, and RNA was isolated using hot acidic 

phenol method (Rissland and Norbury, 2009). A 4SU-labeled D. melanogaster spike-in 

was also generated by supplementing S2 culture media with 100 µM 4SU for 24 hours 

prior to harvesting. RNA was extracted using TRI-reagent (Molecular Research Center) 

as per manufacturer’s instructions. 

 

Metabolic labeling of hORFeome cell lines. Freshly thawed HEK293T hORFeome cell 

lines were cultured for 3-4 passages and seeded into DMEM + FBS culture media in 15 

cm dishes such that they attained ~50% confluence on the day of the time course. 

Media was replaced with DMEM + 10% FBS + 100 µM 4SU (Sigma-Aldrich) 

reconstituted in DMSO. Cells were harvested at 1, 2, 4, 8, 12, and 24 hours after 

addition of 4SU. Harvesting was performed by dislodging cells off the plate during two 

washes with cold 1X PBS followed by spinning at 1,000G for 5 minutes at 4°C. Cell 

pellets were resuspended in 1mL TRI-Reagent (Molecular Research Center) and 

extracted according to manufacturer instructions. 

For translation inhibition experiments, hORF cell line 1 or cell line 4 cells growing 

in 10mL DMEM + FBS in 10cm dishes were pre-treated with either 0.1% DMSO or 

100µM 4EGI-1 (Cedarlane) dissolved in DMSO for 1 hour. Following this, 100µM 4SU 

was added to media for all plates, and the time course was performed as described 

above. 

 

Reversible biotinylation and fractionation of 4SU-labeled mRNAs. RNA was labeled as 

described previously (Lugowski et al., 2017). Briefly, 100 µg of total hORF RNA was 

mixed with 10 µg unlabeled S. cerevisiae RNA (i.e., 10% w/w) and 10 µg 4SU labeled 

S2 D. melanogaster RNA (i.e., 10% w/w). Water was added to bring the volume up to 

120 µl. 1 mg/mL HPDP-biotin (Thermo Fisher Scientific) was reconstituted in 

dimethylformamide by shaking at 37°C for 30 minutes at 300 RPM. 120 µl of 2.5x Citrate 

buffer (25 mM citrate, pH 4.5, 2.5 mL EDTA) and 60 µl of 1 mg/mL HPDP-biotin were 

added to the pre-mixed RNA sample for each time point. This solution was incubated at 
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37°C for 2 hours at 300 RPM on an Eppendorf ThermoMixer F1.5 in the dark. Samples 

were extracted twice with acid phenol, pH 4.5 (Invitrogen), and once with chloroform. 

RNA was precipitated with 18 µl 5M NaCl, 750 µl 100% ethanol, and 2 µl GlycoBlue 

(Invitrogen) overnight at -20°C. Precipitated RNA was pelleted for 30 minutes at 

21,000G at 4°C. The RNA pellet was resuspended in 200 µl of 1x wash buffer (10 mM 

Tris-Cl, pH 7.4, 50 mM NaCl, 1 mM EDTA). 

Biotinylated RNA was purified using the µMACS Streptavidin microbeads system 

(Miltenyi Biotec). 50 µ; Miltenyi beads per sample were pre-blocked with 48 µl 1x wash 

buffer and 2 µl yeast tRNA (Invitrogen), rotating for 20 minutes at room temperature. 

µMACS microcolumns were washed 1x with 100 µl nucleic acid equilibration buffer 

(Miltenyi Biotec), followed by 5x washes with 100 µl 1x wash buffer. Beads were applied 

to microcolumns in 100µL aliquots, and again washed 5x with 100 µ; 1x wash buffer. 

Beads were demagnetized and eluted off the column with 2x 100 µl 1x wash buffer, and 

columns were placed back on the magnetic stand. 200 µl beads were mixed with each 

sample of biotinylated RNA and rotated at room temperature for 20 minutes. 

Samples were then applied to the microcolumns in 100 µl aliquots, washed 3x 

with 400 µl wash A buffer (10mM Tris-Cl, pH 7.4, 6M urea, 10mM EDTA) pre-warmed to 

65°C, and then washed 3x with 400 µl wash B buffer (10mM Tris-Cl, pH7.4, 1M NaCl, 

10mM EDTA). RNA was eluted with 5x 100 µl of 1x wash buffer supplemented with 0.1M 

DTT, and flow through was collected in a tube. Purified RNA was precipitated with 30 µl 

5M NaCl, 2 µl GlycoBlue, and 1ml 100% ethanol, incubated at –20°C overnight. 

Samples were then spun at 21,000G at 4°C for 30 minutes and resuspended in 20 µl 

water. RNA quality was assessed by running 3 µl of samples on a ~1.5% agarose gel.  

 

Generation of next generation sequencing libraries and RNA-sequencing. 10 µl of 

purified 4SU-labeled RNA or unpurified total RNA from the 24-hour time point was used 

to prepare RNA-seq libraries using the TruSeq Stranded mRNA Sample Preparation Kit 

(Illumina), according to manufacturer’s instructions. Adapter-ligated fragments were 

enriched with 14x PCR cycles. ~16-22 samples were multiplexed on a single lane in an 

Illumina HiSeq 2500 at The Centre for Applied Genomics (TCAG, SickKids) to obtain 

~10 million 50bp single-end reads per sample. 

 

Single gene mRNA decay analysis 
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Plasmid DNA was transfected into HEK293 Tet-Off® cells using Lipofectamine 2000 

(Thermo Fisher Scientific 11668027), according to manufacturer’s instructions. 

Transfection media was removed after 24 hours. 48 hours post-transfection, media was 

replaced with DMEM + Tet-free FBS + 2 ug/ml doxycycline (Sigma-Aldrich Cat# D3072). 

Cells were harvested using 1 ml Trizol (Thermo Fisher Scientific 15596018) at indicated 

time points, and RNA isolated according to manufacturer’s instructions. For steady-state 

mRNA analyses, cells were plated and transfected as above; cells were harvested using 

1 mL Trizol (Thermo Fisher Scientific 15596018) 48 hours post-transfection. 

Agarose northern analyses were performed as described in (Presnyak et al., 

2015). Briefly, RNA was loaded onto 1.4% formaldehyde agarose gels and run at 100V 

for 90 min. Gels were imaged to check for ribosomal RNA quality and quantity before 

blotting onto Hybond-N+ membrane (GE Amersham RPN303B) by overnight transfer by 

capillary action.  

All Firefly luciferase, MECP2, CFTR, and LSM8 reporter transcripts were 

detected using a 32P-α-CTP (Perkin-Elmer; 3000 Ci/mmol) radiolabeled asymmetric PCR 

probe (oJC3609/10; see Table S1) directed towards the pJC842 synthetic 3'UTR. Probe 

was hybridized overnight at 65°C, then washed twice using 2X SSC/0.1% SDS at 24°C 

(5 min each) followed by washing in 0.1% SSC/0.1% SDS at 50°C for 1 hr. 

U6 snRNA Northern probe was created by end-labeling U6 snRNA oligo probe 

(see Table S1) with ɣ-32P-ATP (Perkin Elmer; specific activity = 6000 Ci/mmol) using T4 

Polynucleotide Kinase (New England Biolabs, Cat. M0201S). The probe was hybridized 

overnight at 42°C, then washed twice in 6X SSC/0.1% SDS at 24°C for 15 min, then at 

50°C for 15 min. 

Blots were exposed on a storage phosphor screen for 15 min (U6 snRNA) or 

overnight (Firefly, MECP2, CFTR, and LSM8 reporters). Stored signal was read using 

the Typhoon 9400 Variable Mode Imager (Amersham Biosciences). Quantitation of 

phosphorimager signal was performed using ImageQuant software (Molecular 

Dynamics; version 5.2).  

Polyacrylamide Northern analysis of LSM8 reporter mRNA was performed using 

6% polyacrylamide/urea denaturing gels. Samples were run at 400V for 16 hr in 1X TBE 

and transferred at 50V in 0.5X TBE for 3 hours at 4°C. Hybridization with radiolabeled 

asymmetric PCR probe, washing, and detection proceeded as described above. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
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HeLa mRNA half-life data analysis 

Processed BRIC-Seq half-life data for HeLa cells was obtained from the Gene 

Expression Omnibus (Accession: GSE102113; see (Arango et al., 2018) for alignment, 

filtering, and half-life calculation details). A tidy dataframe was constructed using 

transcripts with reported half-lives for wild-type HeLa cells. Human coding sequences 

from genome build GRCh38 were obtained from Ensembl 

(ftp://ftp.ensembl.org/pub/release-94/fasta/homo_sapiens/dna/); ORFs were restricted to 

annotated coding sequences starting with “ATG”. CSC/AASC calculations were 

performed using wild type HeLa half-lives as described below. 

 

HEK293T endogenous and ORFeome mRNA half-life Calculations 

Reference genome information. Human (hg38), D. melanogaster (dm6), and S. 

cerevisiae (sacCer3) genomes were obtained in 2bit format using the UCSC Table 

Browser (Karolchik et al., 2004). 2bit files were converted to FASTA using the kentUtils 

command twoBitToFa, and GTF annotations were downloaded using the kentUtils 

command genePredToGtf. The three genomes were combined using custom bash 

scripts to make a hg38+dm6+sacCer3 genome. 

 

Initial processing of sequencing reads. Library quality was assessed using FastQC 

v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads were 

trimmed and clipped for Illumina adapters using Trimmomatic v0.36 (Bolger et al., 2014) 

using the following settings: -phred33 ILLUMINACLIP: TruSeq3-SE.fa:2:30:10 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. 

 

Genome mapping and counting. Trimmed reads were aligned to the indexed 

hg38+dm6+sacCer3 genome using STAR version 2.5.2 (Dobin et al., 2013) with the 

following non-default settings: --outFilterMultimapNmax 10 --

outFilterMismatchNoverLmax 0.05 --outFilterScoreMinOverLread 0.75 --

outFilterMatchNminOverLread 0.85 --alignIntronMax 1 --outFilterIntronMotifs 

RemoveNoncanonical --outSAMtype BAM SortedByCoordinate --quantMode 

GeneCounts.  

HTSeq version 0.6.1 (Anders et al., 2015) was then used to quantify gene counts 

from aligned BAM files using the following settings: --order=pos --stranded=reverse --
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minaqual=10 --mode=intersection-strict. Note that counting of features from human CDS 

and intronic GTF files were performed separately. 

 

Defining hORF genes. Gene counts were loaded into RStudio version 3.3.1. Dplyr 

package (https://CRAN.R-project.org/package=dplyr ) was used for all data manipulation 

and filtering. Steady state RNA-sequencing counts mapping to human CDS features 

were obtained from each cell line and normalized to library size to allow comparisons 

across samples. For a given cell line X, genes were described as “detectable hORF 

genes” if they met each of the following conditions: 

1. They were in the list of hORFs infected into cell line X; 

2. Normalized steady state RNA-sequencing for cell line X was greater than 

3-fold that in the other cell line;  

3. Normalized steady state RNA-sequencing for cell line X was greater than 

4 reads 

Genes that were not infected into cell line X were described as endogenous genes. 

 

Calculation of mRNA half-lives. All half-life calculations were performed in RStudio 

version 3.3.1 as described previously (Lugowski et al., 2018). Briefly, read counts for 

mature human mRNAs were filtered such that each gene had at least 1 read mapped to 

its CDS at each time point, and at least 5 reads mapped at any (at least 1 of 6) time 

point. CDS-mapping reads for each gene at each time point were then normalized to the 

sum of all corresponding D. melanogaster mapping reads. 

Half-lives were calculated by fitting these normalized read counts at each time 

point to a bounded growth equation using weighted nonlinear least squares. The 

bounded growth equation has been previously described (Lugowski et al., 2017). Briefly, 

the equation states: 

 

𝑦 𝑡 = 𝑦!"×(1 − 𝑒!") 

 

where y(t) is the amount of a given transcript remaining at time t, yeq is the amount of 

that transcript at steady state, and k is the transcript-specific decay constant.  

The nls() function in the stats package was used to fit the time points to the equation 

above, with settings equivalent to the following: 

•  start = c(yeq = max(y), k = -0.5) 
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•  algorithm = “port” 

•  weights = 1/y(t) 

•  lower = c(yeq = 0, k = -Inf), upper = c(yeq = Inf, k = 0) 

If the data did not converge, a value of NA was returned. The half-life of each transcript 

is then obtained using the following equation: 

 

𝐻𝐿 =
𝑙𝑛 (2)
𝑘

 

 

Calculation of local secondary structure 

To measure local secondary structure, each gene’s coding sequence was assayed by 

sliding 100bp windows, each starting 3bp apart. Each window was folded using 

ViennaRNA version 2.2.8 RNAfold function (Lorenz et al., 2011) using default 

parameters. Minimum folding energy (MFE) for each 100bp sequence was extracted 

from output files using custom bash scripts. Median and minimum MFEs across each 

CDS were determined using group_by and summarize functions in the dplyr package in 

RStudio. 

 

Codon and amino acid stability coefficient calculations 

Codon usage frequency was calculated from each gene’s coding sequence using the 

seqinr package’s uco function. Amino acid usage was calculated using the translate 

function in the Biostrings R package to convert coding sequence into amino acid 

sequence, and then using Biostrings alphabetFrequency function to count amino acid 

per CDS. Amino acid usage frequency was determined by dividing amino acid count by 

CDS length. For frame shift controls, codon and amino acid usage were calculated after 

shifting the frame by +1 (removing positions 1, n-2, and n-1 from CDS of length n) and 

+2 (removing positions 1, 2, and n-1 from CDS of length n).  

As described previously (Radhakrishnan et al., 2016), codon stability coefficients 

(CSC) from a given half-life dataset were calculated by determining the Spearman 

correlation between the codon frequency for each codon in a transcript with the 

measured half-lives of that transcript. Stop codons were excluded from CSC 

calculations. AASCs were similarly calculated by determining the Spearman correlation 

between the frequencies for each amino acid in a transcript with the measured half-lives 

of that transcript. 
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Codon and amino acid-specific pause score calculations using HeLa Ribo-Seq 

Processed Ribo-seq BAM files for HeLa cells was obtained from the Gene Expression 

Omnibus (Accession: GSE102113; see Arango et al. 2018 for details of alignment and 

filtering). As described in Arango et al. 2018, A-site codons were predicted based on 

position and total length of each ribosome-protected fragment read relative to the 

annotated start and stop codons of transcripts (under the assumption that reads were in 

frame within their respective ORF sequences) using an offset of 17 nt from the 5' end of 

the ribosome-protected fragment read. Codon-specific ribosome pause scores were 

expressed as average ribosome density per codon (Ribo-seq reads per codon / total 

Ribo-seq reads over the entire annotated ORF density) using a bootstrap approach, 

where the average ribosome density represents the 50th percentile of 5000 iterations. 

Codon-specific ribosome pause scores with respect to the P-site and E-site codon were 

determined in an analogous manner, except the centering frame offset was shifted to 14 

(P site) or 11 (E site) in place of default 17 (A site). Amino acid-specific ribosome pause 

scores were determined by taking the arithmetic mean of codon-specific pause scores 

for groups of synonymous codons (n=1 to n=6). 

 

CSC difference calculations for additional organisms 

CSC calculations were performed as described above using half-life datasets and 

FASTA-formatted coding sequences indicated in Table S3. Following CSC calculations, 

all possible codon pairings were generated using the Python 3 itertools package; CSC 

values were matched to each codon. Relative CSC differences were calculated for each 

codon pair as follows: 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶𝑆𝐶 𝑑𝑖𝑓𝑓 =  𝐶𝑆𝐶! − 𝐶𝑆𝐶! /(𝐶𝑆𝐶!"# − 𝐶𝑆𝐶!"#) 

 

where CSCmax = maximum observed CSC and CSCmin = minimum observed CSC for any 

given organism. 

 

Gene group AASC analysis 

Gene symbols for various protein families or related pathways were retrieved from the 

Gene Ontology Consortium (htpp://geneontology.org/; TCA cycle: GO:0006099; ATP 

synthesis: GO:0006754; Glycolysis: GO:0006096; Splicing proteins: GO:0000398; Cell 
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cycle proteins: GO:0007049), the InterPro Protein Sequence Analysis and Classification 

database (http://www.ebi.ac.uk/interpro/; Protein kinase family: IPR017892; KH Domain 

protein family: IPR004088), and the HUGO Gene Nomenclature Committee 

(http://genenames.org; Zinc finger proteins Group ID: 26; Serine/Arginine-rich proteins 

Group ID: 737; Cytoplasmic ribosomal proteins Group IDs: 728 + 729; Mitochondrial 

ribosomal proteins Group ID: 646).  

For the purposes of gene groups analysis, additional cytoplasmic ribosomal 

protein transcripts (HGNC Group IDs 728 + 729) were identified which otherwise passed 

filtering (i.e. adequate read depth across the entire time course for both HeLa BRIC-Seq 

replicates), yet failed half-life estimation by linear modeling due to high stability; these 

transcripts were manually assigned the maximum half-life (24 hrs) and added to existing 

half-life data. Weighted average transcript AASC was calculated as follows: 

 

 𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝� 𝐴𝐴𝑆𝐶 =  (𝐴𝐴_𝑓𝑟𝑒𝑞! ∗ 𝐴𝐴𝑆𝐶!) 

 

where x = any given amino acid. 

For cytoplasmic and mitochondrial ribosomal proteins, weighted CSC scores for 

all synonymous codons were calculated in an analogous manner: 

 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝑆𝐶 𝑠𝑐𝑜𝑟𝑒 =  (𝐶�𝑑𝑜𝑛_𝑓𝑟𝑒𝑞! ∗ 𝐶𝑆𝐶!) 

 

where x = a given synonymous codon. 

 

Other statistical analyses 

Number of replicates, statistical tests used, and p-values are specified in the figures and 

figure legends. 

 

DATA AND SOFTWARE AVAILABILITY 

The accession number for the raw data files for the reported in this paper is NCBI Gene 

Expression Omnibus GSE123165. The accession number for the raw and processed 

HeLa BRIC-Seq data and HeLa ribosome sequencing data used in this paper is NCBI 

Gene Expression Omnibus GSE102113. All half-life datasets and coding sequence files 

used for additional organisms in this study are listed in Table S3. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-Puromycin Kerafast 3RH11 
Anti-V5 Sigma-Aldrich V8012 
Anti-Tubulin Sigma-Aldrich T5168 
Anti-mouse IgG, HRP-linked New England 

Biolabs 
7076 

Bacterial and Virus Strains  
N/A   
Biological Samples   
N/A   
Chemicals, Peptides, and Recombinant Proteins 
4EGI-1 Cedarlane 4800 
4-Thiouridine (4SU) Sigma-Aldrich T4509 
Cycloheximide BioShop Canada CYC003 
Critical Commercial Assays 
TruSeq mRNA Stranded mRNA Sample 
Preparation Kit 

Illumina 20020594 

Deposited Data 
Human reference genome NCBI build 38, GRCh38 Genome Reference 

Consortium 
http://hgdownload.
soe.ucsc.edu/gold
enPath/hg38/bigZi
ps/hg38.2bit 

Saccharomyces cerevisiae reference genome build 
R64, sacCer3 

Saccharomyces 
Genome Database 

http://hgdownload.
soe.ucsc.edu/gold
enPath/sacCer3/bi
gZips/sacCer3.2bit 

Drosophila melanogaster reference genome 
release 6.18, dm6 

The FlyBase 
Consortium/Berkele
y Drosophila 
Genome Project 

http://hgdownload.
soe.ucsc.edu/gold
enPath/dm6/bigZip
s/dm6.2bit 

HEK293T endogenous raw and processed half-life 
data 

This paper GEO: GSE123165 

ORFeome collection raw and processed half-life 
data 

This paper GEO: GSE123165 

HeLa BRIC-Seq processed half-life data, wild type Arango et al. 2018 GEO: GSE102113  

HeLa processed ribosome sequencing data Arango et al. 2018 GEO: GSE102113  

Table S3: Additional half-life data and FASTA 
formatted coding sequences for additional 
organisms (S. cerevisiae, S. pombe, D. 
melanogaster, D. rerio, T. brucei 

Presnyak et al. 2015 GEO: GSE57385 

Experimental Models: Cell Lines 
HEK293 Tet-off(R) Advanced Cell Line  Clontech 631152 
HEK293T ATCC CRL-3216 
Human ORFeome cell lines, pools 1 and 4 This paper N/A 
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Experimental Models: Organisms/Strains 
Yeast USY006 John Rubenstein N/A 
Oligonucleotides 
Table S1: gBlocks and Northern probe sequences Integrated DNA 

Technologies (IDT) 
N/A 

Recombinant DNA 
Table S2: Firefly luciferase, MECP2, CFTR, and 
LSM8 Reporters; lentiviral packaging vectors 

N/A N/A 

Human ORFeome V8.1 Library Yang, et al. 2011 ccsbBroad304 
Software and Algorithms 
R https://cran.r-

project.org/bin/windo
ws/base/old/3.4.3/ 

Version 3.3.1 and 
3.4.3 

R Biostrings https://bioconductor.
org/packages/releas
e/bioc/html/Biostring
s.html 

Version 2.46.0 

R Tidyverse (dplyr, ggplot2, forcats, readr, stringr, 
purrr, tidyr, tibble) 

https://cran.r-
project.org/web/pack
ages/tidyverse/index
.html 

Version 1.2.1 

FastQC https://cran.r-
project.org/web/pack
ages/fastqcr/index.ht
ml 

Version 0.11.5 

Trimmomatic Bolger, et al. 2014 Version 0.36 
STAR (Dobin et al., 2013) Version 2.5.2 
ImageQuant Moleculular 

Dynamics/ GE 
Healthcare 

Version 5.2 

Other 
N/A   
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