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Abstract 
Gene set enrichment (GSE) testing enhances the biological interpretation of ChIP-

seq data and other large sets of genomic regions. Our group has previously 

introduced two GSE methods for genomic regions: ChIP-Enrich for narrow regions 

and Broad-Enrich for broad genomic regions, such as histone modifications. Here, 

we introduce new methods and extensions that more appropriately analyze sets of 

genomic regions with vastly different properties. First, we introduce Poly-Enrich, 

which models the number of peaks assigned to a gene using a generalized additive 

model with a negative binomial family to determine gene set enrichment, while 

adjusting for locus length (#bps associated with each gene). This is the first method 

that controls for locus length while accounting for the number of peaks per gene and 

variability among genes. We also introduce a flexible weighting approach to 

incorporate region scores, a hybrid enrichment approach, and support for new gene 

set databases and reference genomes/species. 

 

As opposed to ChIP-Enrich, Poly-Enrich works well even when nearly all genes have 

a peak. To illustrate this, we used Poly-Enrich to characterize the pathways and 

types of genic regions (introns, promoters, etc) enriched with different families of 

repetitive elements. By comparing ChIP-Enrich and Poly-Enrich results from 

ENCODE ChIP-seq data, we found that the optimal test depends more on the 

pathway being regulated than on the transcription factor or other properties of the 

dataset. Using known transcription factor functions, we discovered clusters of 

related biological processes consistently better modeled with either the binary 

score method (ChIP-Enrich) or count based method (Poly-Enrich). This suggests 

that the regulation of certain processes is more often modified by multiple binding 

events (count-based), while others tend to require only one (binary). Our new 

hybrid method handles this by automatically choosing the optimal method, with 

correct FDR-adjustment.  
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Introduction 
 

Regulatory genomics facilitates understanding how cells use more than their genetic 

sequence to carry out a vast repertoire of cellular programs. Common regulatory 

genomics methods include chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-Seq) and ATAC-seq, which identify transcription 

factor (TF) binding sites and open chromatin regions, respectively, across the 

genome.  Other types of data, such as DNA Methylation assays, copy number 

alterations, repetitive element families and groups of SNPs, also lead to large sets of 

genomic regions that potentially play a specific role in regulatory genomics, with 

each type having notably different properties in terms of the number, size, and 

location of genomic regions. 

 

Proteins that bind near a gene can regulate it in ways such as improving structural 

properties or physically blocking other proteins, often positively or negatively 

regulating the gene’s expression, respectively. Additionally, some proteins bind DNA 

several times in a clustered region [1], or in distant enhancer regions that interact 

with the same or distinct proteins bound in promoter regions [2]. Binding sites also 

differ in strength; a protein may bind in only a portion of cells in a sample at the 

time of immunoprecipitation, either due to weak binding or due to varying 

chromatin accessibility among the cell types in the sample. These binding sites along 

the genome are interpreted as peaks of varying strengths, depending on the signal-

to-noise ratio or significance level of the peak. In general, interpreting each peak’s 

target gene(s) and effects are still open questions and different interpretations may 

improve results on downstream tests such as gene set enrichment. 

 

Gene Set Enrichment (GSE) is a category of tests that test for over (or under) 

representation of genes in a set of genes with similar functionalities. Gene Ontology 

[3], Reactome [4], KEGG pathways [5], and MsigDB [6] are the most widely used 

gene set databases. Although originally developed for gene expression data, GSE 

testing is now often used to help interpret ChIP-seq peak sets and other sets of 

genomic regions. Existing methods for general GSE tests include Fisher’s exact test, 

random sets, logistic regression like LRPath [7], and GSEA-type tests [8]. GSE 

methods specifically for ChIP-seq data include Genomic Regions Enrichment of 

Annotations Tool (GREAT) [9], ChIP-Enrich [10], and Broad-Enrich [11].   With so 

many different tests, one may wonder which test is optimal to use, but there is no 

single recommendation across data types. Different tests are needed for different 

types of genomic regions as properties such as peak widths, number of peaks, and 

location relative to genes all make a difference. Thus GSE testing for genomic 

regions should not be a one-size-fits-all test; some methods work better than others 

in specific scenarios. For example, Cavalcante et al. showed that Broad-Enrich is 

more powerful than ChIP-Enrich for broad regions, but lacks power for narrow 

regions [11].  As another example, GREAT does not account for variability among 

genes, so it is best used in situations where the probability of a peak is constant 
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across genomic space (e.g. per kb), as opposed to clustered near transcription start 

sites or displaying variability among gene loci. 

 

Our previous method, ChIP-Enrich, uses a binary score to classify a gene as having at 

least one peak. We saw that ChIP-Enrich tends to underperform when nearly all 

genes have at least one genomic region associated with them; in this case, ChIP-

Enrich will not yield meaningful results. We hypothesized that a count-based 

method that captures the frequency of binding would perform better in those 

situations. In this paper, we introduce such a method, Poly-Enrich to expand our 

available methods to be suitable for any type of narrow genomic regions including 

those that tend to saturate genes. ChIP-Enrich has the hypothesis that a single 

binding site is sufficient for regulation, whereas Poly-Enrich assumes that regulation 

is incremental, i.e. more peaks correspond to stronger or more likely regulation. To 

identify under which situations one is more appropriate than the other, we 

performed a comparison of Poly-Enrich and ChIP-Enrich using a set of 90 

transcription factor (TF) ChIP-seq datasets from the Encyclopedia of DNA Elements 

(ENCODE) [12].  We also introduce a hybrid test that combines information from 

both ChIP-Enrich and Poly-Enrich, which can be used when there is no optimal test 

for an entire dataset. 

 

To illustrate the usage of Poly-Enrich, we apply it to sets of repetitive elements in 

the human Alu and LINE1 families, revealing for the first time a comprehensive view 

of the processes and functions enriched or depleted with these repetitive elements 

in the human genome. Finally, we describe several updates to our ChIP-Enrich 

website and chipenrich Bioconductor package, including additional methods for 

assigning genomic regions to target genes, new gene set databases, and more 

supported species.  

 

 

Results 
  

Motivation of Poly-Enrich 

The motivation for our new methods comes from situations observed with real sets 

of genomic regions, often with ChIP-seq peak datasets, but also from other sources, 

such as families of repetitive elements or large sets of DNA polymorphisms such as 

those different between closely related species or sub-species. Although our original 

method, ChIP-Enrich, performs extremely well for most transcription factor (TF) 

ChIP-seq datasets (Figure 1a), but because it uses a simple binary score for each 

gene, there are some scenarios where this simplification has a significant loss of 

information. For example, ChIP-Enrich models a gene with many peaks the same as 

a gene with only one peak, even though gene regulation may be affected by 

additional peaks (Figure 1b). Alternatively, if nearly every gene is assigned at least 

one peak, ChIP-Enrich would be unable to distinguish among them and thus unable 

to detect any gene set enrichment (Figure 1c). We therefore developed Poly-Enrich 

as a count-based method that addresses both of these scenarios. 
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Although GREAT is also a count-based gene set enrichment method, Poly-Enrich 

differs significantly from it in two respects. Firstly, whereas GREAT counts the 

number of peaks in an entire gene set, Poly-Enrich counts them per gene. By 

separating counts per gene, we are also able to adjust for each gene’s locus length 

and the variability in peak count across genes, which we previously showed was an 

important adjustment to control for Type I error [10]. Secondly, the binomial model 

used by GREAT assumes that the background probability of a peak is constant 

across the genome. Poly-Enrich uses a more flexible, empirical approach to this that 

provides for a range of different assumptions about peak distribution. 

 

 
Figure 1: Three scenarios of ChIP-seq peak distributions illustrating how ChIP-

Enrich and Poly-Enrich perform. Each color represents a different gene locus; the 

left three are in a gene set and the right three are not. (a.) Peaks are relatively evenly 

distributed, with a small number across a subset of genes. Given this situation, ChIP-

Enrich evaluates 2/3 vs 1/3 while Poly-Enrich evaluates 2+1 vs 1; both methods 

perform well. (b.) Some genes contain significantly more peaks than others, such 

that information is to be gained from the number per gene. ChIP-Enrich evaluates 

2/3 vs 1/3, Poly-Enrich evaluates 2+3 vs 1; ChIP-Enrich performs adequately, but 

Poly-Enrich is optimal. (c.) Nearly all genes have at least one peak, with some having 

significantly more than others. ChIP-Enrich evaluates 3/3 vs 3/3, Poly-Enrich 

evaluates 1+2+3 vs 1+1+1; ChIP-Enrich would not detect any enrichment, while 

Poly-Enrich can still detect gene sets enriched with more peaks. 

 

Assigning peaks to genes 

Genomic regions can be assigned to genes in different ways, so that regulation from 

different types of regions (e.g., promoters, introns, or regions distal to TSSs) can be 
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studied. For example, ChIP-Enrich, GREAT, and Poly-Enrich all use a peak’s midpoint 

to define the location of the peak. We define a gene’s locus definition as the region 

on the genome such that peaks in that region are assigned to the gene. These loci are 

defined using properties of the gene, such as within 5kb of a gene’s transcription 

start site (TSS), or simply by assigning each region to the nearest TSS (Figure 2). In 

the new version of our website and Bioconductor package, we offer several 

additional choices, including exons, introns, and distal regions only (>10kb 

upstream from a TSS). Users can also upload their own custom locus definition, such 

as open chromatin regions for a specific cell type. 

 

 
Figure 2: Overview of peak-to-gene assignments given gene locus definitions. 

Examples shown are: “<5kb”, peaks within 5 kb of a gene’s TSS are assigned to the 

gene; “Nearest TSS”, peaks are assigned to the gene with the closest TSS. A gene’s 

locus length is defined by the number of base pairs assigned to the gene. In this toy 

example, peak 1 would be assigned to the blue gene in the <5kb locus definition and 

for Nearest TSS, while peak 2 would not be assigned to any gene in the <5kb locus 

definition. 

 

Poly-Enrich model 

We model the number of peaks per gene using a negative binomial generalized 

linear regression as a function of gene set membership, and with a cubic smoothing 

spline to empirically model the relationship with gene locus length: 

log���� �  	� 
  	���� 
 ����� 

where for gene i, �� is the expected mean number of genomic regions assigned to the 

gene, ���  is an indicator of gene set inclusion, and ����� is a negative binomial 

cubic smoothing spline to adjust for the gene’s locus length. We then look at the sign 

and significance of 	� to test for enrichment, where a positive 	� indicates 

enrichment, and a negative value indicates depletion (fewer regions than expected 

at random). 

 

Testing Type 1 error and power 

We first tested the type I error rate of the count-based method under the null 

hypothesis of no enrichment signal. By permuting the genes in the peak-to-gene 

assignment pairs and breaking the peak-gene relationships, we simulated three 

scenarios of no enrichment: i) the “complete” randomization was done by shuffling 

the gene IDs in the whole dataset; ii) the “bylength” randomization first groups the 
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genes together into bins of similar locus length, and then randomizes genes within 

those bins to preserve the locus length relationship; iii) the “bylocation” 

randomization groups genes together by their physical location on the 

chromosomes, and then randomizes genes within those bins. (See Methods for more 

detail.) We ran the randomizations on our 90 selected ChIP-Seq datasets from 

ENCODE (see Methods), 10 times each, and the proportion of p-values < 0.05 and < 

0.001 for each dataset were plotted (Supplementary Fig 1). We see that the test is 

properly controlled at an acceptable level for Type 1 error in all cases. 

 

To characterize the statistical power of Poly-Enrich under different situations, we 

permutated data while simulating enrichment of a gene set, and compared the 

results with those from ChIP-Enrich. We used three datasets with a small, medium, 

and large number of peaks, and two GO terms with a small and large number of 

genes. Three types of enrichment were simulated: one that biases towards ChIP-

Enrich (CEBias), one that biases towards Poly-Enrich (PEBias), and one that is 

balanced. For each type of enrichment, we simulated four levels of enrichment: 0.05, 

0.1, 0.2, and 0.3, where a higher number indicates a larger simulated enrichment. 

(See Methods for more detail.) Finally, we chose two different levels of significance: 

� � 0.05 and 0.001, as our cutoffs.  

 

As expected, a larger gene set and higher simulated enrichment results in higher 

power. Simulations on larger datasets artificially reduced power because 

randomized larger datasets include more noise. However, in real experiments such 

as in ChIP-seq, we expect larger datasets (more peaks) to be more powerful, since 

the majority of the peaks in the dataset are not noise given that the experiment can 

successfully capture the real regulatory regions. Overall, we see that ChIP-Enrich 

has more power than Poly-Enrich in simulations that enrich a gene set by adding 

peaks to genes without them, and Poly-Enrich has more power in simulations that 

enrich a gene set by increasing the number of peaks per gene. Finally, the Balanced 

simulation results in the two methods having similar power in most cases (Figure 

3). 
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Figure 3: Statistical power comparisons between ChIP-Enrich (blue) and Poly-

Enrich (red) for datasets with three different sizes (i.e. number of peaks: small, 
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medium, and large) and two gene set sizes (small and large GS), under two 

significance levels: α = 0.05 (A) and 0.001 (B). The values on the X-axis indicate the 

percent of extra peaks added to simulate enrichment; a higher value simulates 

stronger enrichment. A stricter significance level results in less power,  a larger gene 

set results in more power, and a larger dataset (more noise) results in less power. In 

actuality, larger real data sets should have more power. 

 

Poly-Enrich with weighted genomic regions 

The height and confidence of peaks in a ChIP-seq experiment can vary dramatically, 

and we reasoned that incorporating this additional information should improve the 

ability to pinpoint the truly enriched pathways. Although the most apparent 

motivation for weighting genomic regions is to account for ChIP-seq peak strength, 

there are other situations where each peak or genomic region may be assigned a 

unique score (e.g. confidence or strength). Therefore, we added the option to weight 

regions by signal value (see Methods for details), and examined the extent to which 

adjusting for peak strength improves enrichment results by comparing the –log10 p-

values per gene set. To also ensure that no enrichment result swapped from 

enriched to depleted or vice versa, we used a signed –log10 p-value, where values for 

depleted gene sets were negative, and values for enriched gene sets were positive.  

We noticed for 25% of the experiments, most enriched gene sets were more 

significant with weighting, thus as we hypothesized, binding events near genes in 

enriched GO terms were stronger than those near other genes (Figure 4A, 4B). 

 

In another 20% of the experiments, the enrichment p-values were split between the 

two methods (Figure 4C). Interestingly, the distribution of log signal values for these 

experiments showed a bimodal pattern (Figure 4D). This suggests that some gene 

sets tend to have genes with significantly stronger binding peaks than others. For 

the remaining 55% of experiments tested, weighting made little or no difference on 

the results. 
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Figure 4: Comparison of GO term enrichment results between standard Poly-Enrich 

and its weighted version using signal values to weight. Each point is a GO term’s –

log10 p-value of the two methods, signed positive for enriched, negative for depleted. 

(A) Using weighting results in more significant enrichment in many GO terms in the 

Gm12878 TAF1 ChIP-Seq experiment. (B) Using weighting results in less significant 

enrichment in many GO terms in the H1-hESC EGR1 ChIP-Seq experiment. (C) Using 

weighting on the Gm12878 NRSF experiment results in several more significant GO 

terms as well as several less significant ones. (D) The histogram of log signal values 

from the NRSF experiment. There is a bimodal pattern in the weights, suggesting 

that there are some GO terms with genes that tend to have stronger or weaker 

binding. 

 

Gm12878 NRSF Gm12878 NRSF

Gm12878 TAF1 H1-hESC EGR1
A B

C D
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Since the gene set, rather than the experiment, was a stronger determinant of the 

more appropriate method, in many cases we are unable to recommend either Poly-

Enrich or ChIP-Enrich for an entire experiment; the one exception is that Poly-

Enrich is recommended for experiments with a very large number (>100k) of peaks. 

We therefore developed a hybrid test that uses information from both ChIP-Enrich 

and Poly-Enrich. 

 

 

Comparison of the count-based (Poly-Enrich) versus binary (ChIP-Enrich) 

model of enrichment 

Our initial hypothesis was that some experiments would be clearly modeled better 

by one method or the other (i.e. dependent on the transcription factor). However, 

the results strongly suggest that the optimal method is more dependent on the gene 

set than the TF. This can be visualized by a split in the significance levels of GO 

terms between the binary and count-based methods (Figure 5A), and suggested that 

a single transcription factor may regulate genes differently depending on the 

function of the gene. Thus, we sought to understand this further. 

 

The binary model used by ChIP-Enrich assumes that a single binding event (i.e. a 

single genomic region) is sufficient for regulation, while the Poly-Enrich count-

based model assumes that strength of regulation is incremental with the number of 

binding sites. Based on the results above, we asked what kinds of genes were more 

consistent with either of those assumptions. To answer this, we first created a set of 

true positives comprised of GO term-TF pairs by using the GO term biological 

process (BP) assignments for the gene encoding the transcription factor (e.g. the 

gene encoding for JunD is assigned to the GO term, “cell death”). This gold standard 

makes the reasonable assumption that TFs tend to regulate genes in the same 

biological processes in which they are active. Observing the enrichment results 

using the 5kb locus definition for these true positive GO term-TF pairs, we used 

clustering to identify patterns of TFs and GO terms that are optimal with one of the 

methods. We found that the method that worked better was most often determined 

by the GO term (Figure 5B). For example, GO terms related to “cell cycle” clustered 

together and displayed greater power with ChIP-Enrich. Conversely, GO terms 

involving “negative regulation” tended to do better with Poly-Enrich except for 

those involving cell cycle (Figure 5C,5D). The results using the Nearest TSS locus 

definition were similar (Supplementary Figure 2). 
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Figure 5:  (A) Comparison of GO term significance levels between ChIP-Enrich and 

Poly-Enrich. Each point is the –log10 p-value of a GO term from the two methods, 

signed positive for enriched or negative for depleted. Several gene sets are much 

more significant using ChIP-Enrich and several are much more significant using 

Poly-Enrich, however 32% of the datasets showed a split pattern like shown. (B) 

Heatmap of –log10 p-value differences between Poly-Enrich and ChIP-Enrich for GO 

terms and ChIP-seq experiments, where each row is a GO term and each column is a 

ChIP-seq experiment. Shown are GO terms where more than 15% of the 

experiments had a –log10 p-value difference of 2 or larger. Red indicates Poly-Enrich 
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was more significant, and blue indicates ChIP-Enrich was more significant. Light 

grey indicates the transcription factor used in the experiment was not assigned to 

the GO term and is omitted in the clustering. Representative GO terms are shown for 

each cluster. (C) GO terms related to cell cycle are mostly blue, indicating that a 

binary score provides a more appropriate model. (D) GO terms containing “negative 

regulation” are mostly red, indicating that a count score provides a more 

appropriate model. 

 

Hybrid test 

To obtain the best results across all types of GO terms and datasets, we developed a 

hybrid test that incorporates both the binary and count-based models. After 

performing the two models, the hybrid p-value of the two tests is defined as: 

  ������� � 2 � min ��	
 , ��
� [13], where �	
 and ��
  are the p-values given by 

ChIP-Enrich and Poly-Enrich, respectively. This is similar to a Bonferroni-adjusted 

p-value for two tests. This hybrid has been shown to be beneficial if the two tests are 

sufficiently different, but loses power and is conservative if the tests are identical or 

nearly identical [13]. While the hybrid test is not as powerful as the better method 

between ChIP-Enrich and Poly-Enrich, it is dramatically more powerful than using 

the worse method, making it the optimal method to use across all GO terms (Figure 

6). While this hybrid test only accommodates ChIP and Poly-Enrich, we can extend 

this to accommodate several additional gene set enrichment tests. 
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Figure 6: Statistical power comparisons for Poly-Enrich (red), ChIP-Enrich (blue), 

and the hybrid test (gold) for datasets with three different sizes (i.e. number of 

peaks: small, medium, and large) and two gene set sizes (small and large GS), under 
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two significance levels: α = 0.05 (A) and 0.001 (B). The values on the X-axis indicate 

the percent of extra peaks added to simulate enrichment; a higher value simulates 

stronger enrichment. The hybrid test is shown to have much more power than the 

wrong method, but only a bit less power than the correct method. 

 

Identifying biological processes enriched with or depleted in repetitive 

element families using Poly-Enrich 

To further illustrate the utility of Poly-Enrich, we used it to test sets of repetitive 

element regions. We asked whether we could identify gene sets that tended to be 

either enriched or depleted for certain types of repetitive elements. Significant 

enrichment of the repetitive elements in the promoter regions of genes, for example, 

can sequester the transcription factors that will inhibit activities at another 

transcription factor binding site or other regulatory motif [14].   Some of these 

mobile elements remain active with new insertions having neutral, detrimental, or 

beneficial effects. Although repetitive element families have been well studied for 

over 30 years, little is yet known about the biological processes that they have 

adapted to help regulate or that they can too easily disrupt and thus are negatively 

selected against [15]. Using the database of human repetitive elements from the 

UCSC Table Browser (RepeatMasker 3.0) [16], we performed GSE testing on 

repetitive element families. Certain families of repetitive elements have over a 

million occurrences across the human genome, and thus virtually all genes have at 

least one nearby instance. This is an example where ChIP-Enrich performs poorly, as 

nearly all genes in all pathways have at least one insertion. Thus, in this situation, 

modeling the number of insertions per gene is critical to identify differences. 

 

We examined two of the most abundant types of repetitive elements: the Alu and 

LINE1 (L1) elements, which make up an estimated 11% and 17% of the human 

genome, respectively [17, 18]. We also chose four gene locus definitions: Nearest 

TSS, <5kb (promoter regions), >5kb (distal regions), and Intron. We tested GO 

Biological Processes, and used hierarchical clustering of the resulting GSE 

significance levels to identify related groups of biological processes enriched with or 

depleted of the repetitive elements (Figure 7). We found strong enrichment of Alu’s 

in GO terms describing metabolic processes, most significantly “ATP metabolic 

process” and “rRNA metabolic process”, especially in promoter regions, which is 

consistent with an analysis of Alu distribution in chromosomes 21 and 22 that 

showed Alu elements on these chromosomes were enriched in or near metabolism 

and signaling genes [19]. Conversely, Alu elements were sharply depleted in the 

promoter regions of many development and morphogenesis gene sets, with the 

strongest depletions in “cell fate commitment” and “connective tissue development”. 

Interestingly, depletions were also seen in the introns of genes in these gene sets, 

but not in regions >5kb upstream, suggesting the negative selection (depletion) is 

limited to the regions that are more commonly regulatory. 

 

Novel insertions of L1 elements into or near key genes are known to be associated 

with neurological diseases [20]. Consistent with this, we found that all neuro-related 

GO terms in Figure 7 were depleted for L1 (but not for Alu) (Supplementary Figure 
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3), which suggests that L1’s evolutionarily have been selected against occurring in 

the regulatory regions of neurological genes; when they are inserted into the introns 

or promoters of these genes, the inserted elements may cause disease. 

 

In general, we observed that the significance of the distal upstream regions (>5kb 

locus definition) was much lower than the other three locus definitions (with the 

exception of some enrichments for Alu elements) (Supplemental Table 2), implying 

that most repetitive element negative (or positive) selection has occurred in the  

 

promoter regions or introns of genes. Alternatively, the gene distal enriched and 

depleted regions may be limited to a specific set of enhancer regions, the signal from 

which could have been diluted in our analysis. Interesting additional findings are 

that L1 elements are enriched in chemical stimulus detection such as “detection of 

chemical stimulus” and “sensory perception of chemical stimulus”, while Alu 

elements are depleted in the genes in these processes. We also find that both Alu 

and L1 are enriched in centrosome-related GO terms, which were only made 

possible with recent advancements in genome mapping near the centromeres [21], 

and is consistent with previous findings [22] . Additionally, both Alu and L1 

elements are significantly depleted in genes in GO terms relating to development 

and morphogenesis.  
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Figure 7: Poly-Enrich results for Alu (first four columns) and L1 (last four columns) 

repetitive element families using four different gene locus definitions. Shown are 

signed –log10 FDR, where positive values (red) indicate enrichment and negative 

values (blue) indicate depletion. Shown are GO terms that were significant for at 

least 3 columns at the FDR = 0.05 level. We identified nine clusters of GO terms with 

similar enrichment patterns. 

 

Availability, usage, and updates 

Poly-Enrich is available in the chipenrich Bioconductor package and as a web 

interface at http://chip-enrich.med.umich.edu. Several additional gene set 
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databases and gene locus definitions have been added for the user to choose (see 

http://chip-enrich.med.umich.edu/data/ChipenrichMethods.pdf). 

 

To perform gene set enrichment analysis, the user first needs a file of genomic 

regions, which may be a narrowPeak, BED, or text file with chromosome, start, and 

end positions for each region. The user then selects a species, one or more gene set 

databases, a gene locus definition, and the test method (ChIP-Enrich, Poly-Enrich, 

Hybrid, or Fisher’s exact test); the gene set and locus definition can be built-in or 

user-defined. The user can then also choose to add weight based on a peak-specific 

score, and a number of other options, such as adjustment for read mappability.  

 

The enrichment function outputs five files: 

• opts: The options that the user input into the function. 

• peaks: A peak-level summary showing the peak-to-gene assignments for each 

peak. 

• peaks-per-gene: A gene-level summary showing gene locus lengths and the 

number of peaks assigned to them. 

• results: The results of the GSE tests. Lists the tested gene sets along with 

their descriptions, the test effect, odds ratio, enrichment status, p-value, and 

FDR. Also included is the list of gene IDs with contributing signal for each 

enrichment test.  

• qcplot: A plot of the gene locus lengths with a fitted smoothing spline. 

 

Discussion 
 

Gene set enrichment testing methods for genomic regions have not yet generally 

considered the differing properties of the input datasets, including the widths and 

number of genomic regions, and where they tend to occur relative to genes. 

However, no single method is appropriate for all types, and therefore no single GSE 

method should be recommended for all sets of genomic regions.  Although our 

previously developed ChIP-Enrich method for gene set enrichment with genomic 

regions performs well for most transcription factor ChIP-seq datasets [10], above 

we described some common situations where it does not. Such cases include when 

nearly all genes are assigned at least one genomic region, and when the strength or 

likelihood of regulation increases incrementally with the number of genomic 

regions. As an example, the transcription factor NF-kappaB is known to regulate the 

gene NFKBIA by binding to a few or even many motif positions in the promoter [23], 

with gene expression correlated with the number of bound factors. Thus, motivated 

by specific examples of regulatory mechanisms, we developed Poly-Enrich, a 

method that models the number of regions per gene, empirically adjusts for each 

gene’s locus length, and takes into account variability among genes in each gene set.  

Poly-Enrich is also flexible, in that it also easily allows for weighting of each genomic 

region by any score of interest. We used the example of weighting by peak strength, 

but other examples include weighting by SNP significance in a GWAS analysis, by the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/488734doi: bioRxiv preprint 

https://doi.org/10.1101/488734


inverse distance to a gene, or by the probability that the region is in an open 

chromatin region in a particular cell type.  
 

We showed that our count-based method, Poly-Enrich, works well when almost all 

genes are assigned a peak, whereas ChIP-Enrich does not.  In comparing when each 

is most appropriate, we discovered that it is mostly dependent on the gene set, 

rather than the transcription factor. Because in many cases we could not 

recommend a single best method to test all gene sets for an experiment, we 

developed and implemented a hybrid test that uses information from both methods 

and performs better than either test across GO terms for most datasets. 

 

When applying Poly-Enrich to repetitive element families, we both reconfirmed 

known associations and also identified novel findings. Poly-Enrich confirmed a 

known fact that Alu elements tend to regulate genes for metabolism and signaling 

by finding enrichment for related GO terms. Additionally, we know that L1 

insertions into or near certain neurological-related genes are associated with 

neurological diseases [24]. We find that L1 is depleted in neuro-related GO terms, 

implying there normally are fewer L1 elements in the regulatory regions of these 

genes, which is consistent with neurological diseases being associated with L1 

element insertions near these genes. We also find that there is little enrichment or 

depletion in the distal regulatory regions of genes, suggesting that repetitive 

elements may not have as large of an affect there due to mitigated regulatory 

activity at larger distances from transcription start sites. Poly-Enrich also detected 

some novel associations between repetitive element families and biological 

pathways. Both Alu and L1 elements were significantly depleted in genes in GO 

terms relating to development and morphogenesis, such as “connective tissue 

development” and “skeletal system morphogenesis”, suggesting that it is especially 

critical to have developmental regulatory regions free from potentially disruptive 

repetitive elements during early growth. 

 

One shortcoming of our current methods (as well as current alternatives) is that 

they rely on associating each genomic region with the nearest gene. However, it is 

estimated that 79-95% of DNAse I hypersensitive sites, markers for enhancer 

regions, actually regulate a different, distal target gene [24, 25]. We are currently 

developing a set of enhancer locus definitions that identify and assign enhancer 

regions to their appropriate target genes, so peaks in enhancer regions will be 

correctly assigned and false positive peaks in nonfunctional intergenic regions will 

be filtered out. We believe this will improve all future gene enrichment analyses. 

 

Methods 
 

Datasets: 

All ChIP-Seq data were obtained from Encyclopedia of DNA Elements (ENCODE) at 

University of Califonia, Santa Cruz [12].   We chose a total of 90 experiments over 

the three Tier 1 cell lines (Gm12878, H1hesc, and K562), and all 35 transcription 
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factors that had available ChIP-seq data for at least two of the three Tier 1 cell lines. 

(Supplementary Table 1) 

 

The gene sets used were from Gene Ontology: Biological Processes (GOBP) ver. 3.4.2 

[3]. We filtered out gene sets with less than 15 genes or more than 2000 genes as 

gene sets with too few genes generally have insufficient power and may not satisfy 

the assumptions of the statistical model, and gene sets with too many genes are too 

vague to be biologically informative.  In total, there were 5015 gene sets.  

  

Assigning regions to genes 

The UCSC knownGene database for hg19 was used to define the transcription start 

sites across the genome [25]. Each locus definition (e.g. nearest TSS, <5kb) was 

generated as a table containing the columns: chromosome, Start, End, gene ID. All 

genomic regions whose midpoint was between a gene’s start and end values would 

be assigned to that gene. It is possible for some locus definitions to have many 

disjoint regions for a certain gene. 

 

Poly-Enrich model: a GLM with a Negative Binomial family 

We model the number of genomic regions assigned to each gene with a generalized 

linear model (GLM) with a negative binomial (NB) family. The model is: 

log���� �  	� 
 	���� 
 �log ���� � � 
 1� 

where for each gene �, GS is an indicator for whether the gene is in the gene set of 

interest or not (=1 if in the gene set; 0 otherwise), µ is the mean of the negative 

binomial distribution for the number of genomic regions assigned to each gene, and 

the overdispersion parameter � is estimated so that �����|��� �  � 
 ���, where Y 

is the number of genomic regions for the gene.  The function  is a negative binomial 

cubic smoothing spline that adjusts for the gene’s locus length and optionally 

adjusts for m, the mappability of the gene’s locus. Details about mappability can be 

found in the ChIP-Enrich manuscript [10]. We use the gam function in the mgcv R 

package to fit the model, which uses a penalized likelihood maximization, and the 

smoothing spline penalty is a squared second derivative penalty [26].  

 

A Wald test on the coefficient for the gene set is used: the test statistic is defined as 

!� �  	�"/�$�	�"�, which follows a %�
� distribution under the null hypothesis that 

there is no association between gene set and number of peaks. 

 

Poly-Enrich with weighting based on genomic region scores 

In certain cases, each genomic region in a dataset may be associated with a numeric 

score. For example, ChIP-seq results often include a value denoting the strength of a 

peak, (e.g. signalValue in ENCODE dataset results or -10*log10(p-value) in MACS2 

results). Poly-Enrich weights based on these scores by giving each peak a weight 

proportional to its signal value (or other score) and normalizing such that the mean 

of all peak weights is equal to 1. For every peak assigned to a gene, we then sum all 

the weights and substitute the weighted sum in place of the original number of 

peaks. The same model is used, except assuming a quasi-negative binomial family to 
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accommodate for non-whole number data. The calculations can be carried out 

identically to the standard negative binomial family. 

 

Comparing p-values between methods 

To compare p-values between methods, we use a scatterplot, plotting a signed  

-log10 p-value per gene set. If a gene set is enriched, the sign is positive, and if the 

gene is depleted, the sign is negative. This allows us to detect if there are any cases 

where two methods may contradict each other’s conclusions. 

 

Spline approximation 

With a library of over 20,000 genes and most gene sets being less than 1000 genes, 

the cubic smoothing spline estimate changes very little between gene sets. Thus we 

can reasonably assume that the spline is approximately equal for any gene set of 

interest, including the spline with no gene set (Supplementary Figure 4A).  

 

We first run the same model except without the gene set (GS) term: 

 log���� � 	� 
 �����. We then extract the fitted spline using the predict function 

with type=”terms” from the mgcv package to obtain a spline-adjusted locus length 

for each gene. This new value is then input in the model for every gene set, which 

allows us to fit a spline only once instead of once for each gene set. This saves a 

significant amount of time when testing a large number of gene sets (approximately 

75% time saved when testing 4000 gene sets). Compared to the original model, we 

find that the p-values from the spline approximation model are nearly identical 

(Supplementary Figure 4B, 4C). 

 

Score test 

One of the alternatives for the Wald test is the Score test [27]. We can calculate the 

score test statistic for ChIP-Enrich as: 

 

���
�

�  
∑ ��&��&	
�&�'

&()

∑ ��& 
�& ��	
�&�'
&()

  

where for each gene �, GS is an indicator for whether the gene is in the gene set of 

interest or not, !� is an indicator for whether the gene has at least one genomic 

region (=1 if true), and  *+  is the predicted probability of the gene having at least one 

genomic region obtained using the fitted function with type=”terms” in the mgcv 

package. 

 

The score test statistic for Poly-Enrich is: 

���
�

�  
∑ ��&��&	��&�'

&()

∑ ��& �����&�'
&()

  

 

where for each gene �, GS is an indicator for whether the gene is in the gene set of 

interest or not, ��  is the number of genomic regions assigned to the gene, �̂ is the 
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predicted number of genomic regions assigned to the gene obtained using the fitted 

function with type=”terms” in the mgcv package, and its variance is estimated 

empirically, assuming ��� � 0 in the variance calculation. 

  

The advantage of using the score test is that all the required parameters are already 

estimated during the spline approximation, so all subsequent calculations will no 

longer require fitting of a GLM. This reduces the runtime of the enrichments 

significantly further (approximately 95% time saved when testing 4000 gene sets). 

However, there are some scenarios where the Score test differs from the Wald test 

by a substantial amount, mostly notably for depleted gene sets, so the default option 

is set to the Wald test (Supplementary Figure 5). However, if results are desired 

quickly, the Score test is offered (method=”chipapprox” or “polyapprox”) and can 

serve as a convenient approximation. 

 

Testing Type I error 

The null hypothesis of Poly-Enrich is that there is no true biological enrichment. To 

test the Type-I error, we randomly permute the genes to simulate a scenario where 

there is no association between genes and the number of peaks. However, to ensure 

that the results are not biased by gene locus length or gene location, we performed 

two additional permutations: one permutes genes within bins of similar locus 

length, and one permutes within bins of chromosomal locations. In both cases, the 

genes are sorted by the variable of interest (locus length or location), and then 

assigned to consecutive bins of 100 genes each.   

 

For each of the 90 TF peak data sets chosen, after assigning the peaks to genes, we 

permute the gene IDs using the randomization of interest, and then perform 

enrichment tests against GO biological processes. We ran a total of 10 trials and took 

the median p-value per gene set as the randomization p-value.  Then, the proportion 

of p-values less than a defined confidence level was determined per experiment to 

calculate the overall Type I error. We then plotted all 90 overall Type I errors for 

each experiment in a box plot to convey overall Type I error. 

 

Testing power 

To test statistical power, we chose three TF peak data sets of varying size (4194, 

11129, 40052 peaks) and two gene sets of varying size (42 and 471 genes) as our 

base scenarios.  After assigning the peaks to genes, we randomized the genes in bins 

of locus length to remove all true gene set enrichment signal while keeping locus 

length association, and then randomly added peaks into the gene set to simulate 

enrichment. We chose three scenarios of enrichment, each with varying levels (x%) 

of enrichment:  

 

1. CEbias: Enriched to closely satisfy the assumptions of the binary (ChIP-Enrich) 

model. We added peaks to x% of the remaining genes in the gene set without a peak. 

This increases the proportion of genes with a peak, without causing a large increase 

in the mean number of peaks per gene. 
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2. PEbias: Enriched to closely satisfy the assumption of the count-based (Poly-

Enrich) model. We added a number of peaks, equal to x% of the number of peaks in 

the gene set, to a fraction of the genes in the gene set. This increases the mean 

number of peaks per gene, with little effect on the proportion of genes with a peak.  

 

3. Balanced: We added a number of peaks, equal to x% of the number of peaks in the 

gene set, into the gene set weighted by gene locus length. This increases both the 

proportion of genes with a peak and the mean number of peaks per gene by a 

similar degree. 

 

Defining the true positive transcription factor-GO term pairs 

For each transcription factor, we identified the gene that codes for it, and then 

identified every GO biological process that gene is assigned to. This set of GO terms, 

along with all of its ancestors, is what we use as the true positive set.  . 

 

Hybrid test 

Given n tests that test for the same hypothesis, the same Type I error rate, and 

converted to p-values ��, … , �, the Hybrid p-value is computed as:  

������� � / �  min ���, … , ��. This hybrid test will have at most the same Type I 

error rate as the n tests, and if at least one test is consistent (power converges to 1 

as sample size reaches infinity), the hybrid test will also be consistent. Proofs and 

simulations of the test in general were done by Zhang et. al [13]. Here, we’ve 

implemented the hybrid test for users to use with two methods (n = 2): ChIP-Enrich 

and Poly-Enrich. Users may also choose any two results files and  

 

Clustering and heatmaps 

 For every GO term, we calculated the difference in –log10 p-value for each of 

the 90 experiments between ChIP-Enrich and Poly-Enrich, with positive values 

indicating a more significant result for Poly-Enrich. We then focused on GO terms 

where > 10% of the experiments had an absolute log10 p-value difference greater 

than 2. Clustering was performed using uncentered correlation as the similarity 

metric and average linkage as the clustering method. Using Java TreeView, we 

extracted specific groups of GO terms that contain certain strings such as “cell cycle” 

or “positive regul.” 

 

Repetitive elements 

Data was obtained from the UCSC Table Browser with RepeatMasker 3.0 on the 

hg19 genome. We chose the two most abundant families in the dataset: Alu and L1, 

as well as four gene locus definitions: Intron, Nearest TSS, >5kb, and <5kb. Poly-

Enrich was then used to perform gene set enrichment. Before clustering for the 

heatmap, we filtered out GO terms where there were 2 or fewer significant FDR 

values among the 8 categories. The clustering method was the same as mentioned 

above. 

 

Website and Bioconductor updates 
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The Chip-Enrich website (http://chip-enrich.med.umich.edu) updated the 

chipenrich package version from 1.7.2 version to 2.5.0. (from 

https://github.com/sartorlab/chipenrich, on Aug 8th, 2018). We have added the 

following reference genomes: human (hg38), rat (rn5,rn6 ), Drosophilla 

melanogaster (dm6) and zebrafish (danRer10) species. 

We also added the following databases from MSigDB (Version 6.0): Hallmark, 

Immunologic, MicroRNA, Transcription Factors and Oncogenic [6, 28]. We also 

added sets of genes that are known to be affected by particular environmental 

toxins from Comparative Toxicogenomics Database (CTD). 

 

In addition to the previous locus definitions: ‘nearest TSS’, ‘nearest gene’, ‘≤1 kb 

from TSS’ and ‘≤5 kb from TSS’, we also now support gene locus definitions for 

regions <10 kb from a TSS and gene distal regions (>10kb upstream of a TSS). 
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