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ABSTRACT: We develop a method to identify how ecological, evolutionary, and eco-1

evolutionary feedbacks influence system stability. We apply our method to nine empirically-2

parameterized eco-evolutionary models of exploiter-victim systems from the literature and3

identify which particular feedbacks cause some systems to converge to a steady state or4

to exhibit sustained oscillations. We find that ecological feedbacks involving the interac-5

tions between all species and evolutionary and eco-evolutionary feedbacks involving only6

the interactions between exploiter species (predators or pathogens) are typically stabilizing.7

In contrast, evolutionary and eco-evolutionary feedbacks involving the interactions between8

victim species (prey or hosts) are destabilizing more often than not. We also find that9

while eco-evolutionary feedbacks rarely altered system stability from what would be pre-10

dicted from just ecological and evolutionary feedbacks, eco-evolutionary feedbacks have the11

potential to alter system stability at faster or slower speeds of evolution. As the number12

of empirical studies demonstrating eco-evolutionary feedbacks increases, we can continue to13

apply these methods to determine whether the patterns we observe are common in other14

empirical communities.15
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Introduction16

A fundamental problem in community ecology is understanding what factors influence system17

stability, e.g., whether a community converges to a steady state or exhibits cycles. Empir-18

ical and theoretical studies have shown that feedbacks between ecological and evolutionary19

processes, called eco-evolutionary feedbacks, can influence community stability and lead to20

different population-level dynamics (1; 2; 3; 4; 5; 6; 7). For example, experimental bacteria21

and virus-bacteria systems with demonstrated eco-evolutionary feedbacks converge to steady22

state (8; 9) whereas experimental rotifer-algae systems exhibit cycles (10; 11; 3; 12; 13).23

Previous theoretical work has explored the (de)stabilizing effects ecological and evolu-24

tionary dynamics have on each other via eco-evolutionary feedbacks. In particular, ecological25

dynamics have the potential to stabilize unstable evolutionary dynamics or destabilize stable26

evolutionary dynamics (14; 2; 15). Similarly, evolutionary dynamics can stabilize or destabi-27

lize ecological dynamics (4; 5; 15). In general, stability of a whole system is influenced by the28

effects species’ densities have on the dynamics of population densities (ecological feedbacks),29

the effects species’ traits have on the dynamics of evolving traits (evolutionary feedbacks),30

and the effects population densities and evolving traits have on each other’s dynamics (eco-31

evolutionary feedbacks). Previous theoretical work (7; 15; 16; 17) has explored when these32

feedbacks have stabilizing versus destabilizing effects, and shown that the strengths of those33

effects increase or decrease with changes in the relative rates of ecological and evolutionary34

change. Specifically, stability of the whole system in the slow evolution limit is determined35

by ecological and eco-evolutionary feedbacks whereas stability of the whole system in the36

fast evolution limit is determined by evolutionary and eco-evolutionary feedbacks.37

While these theoretical results identify many possible outcomes, it is not well understood38

which particular feedbacks are responsible for causing stable versus cyclic population dy-39

namics in empirical systems. First, while the observed rates of ecological and evolutionary40

change are similar in the above empirical studies, most of the theory assumes ecological rates41

of change are either much faster or much slower than rates of evolutionary change. Second,42
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because most systems are not identical in their composition of species and traits, it is unclear43

how to make comparisons across systems. Third, many empirical systems involve multiple44

interacting species and multiple evolving traits, but because much of the theory focuses on45

models with a small number of species and traits, it is difficult to apply the theory. Thus,46

we need new theoretical tools that can extend current theory and identify broadly the effects47

of ecological, evolutionary, and eco-evolutionary feedbacks while simultaneously pinpointing48

the importance of particular feedbacks.49

Building on prior theoretical work (7; 15; 16), we develop a method using feedbacks de-50

fined in terms of the stability of a subsystem, i.e., the interactions and dynamics of a set of51

variables when all other variables are held fixed (e.g., the ecological subsystem defines the52

dynamics of all population densities when all population-level traits are held fixed). Our53

method identifies how the stabilities of complementary pairs of subsystems (e.g., ecological54

vs. evolutionary subsystems) at the equilibrium of the whole system and the interactions55

between them (e.g., the effects the evolutionary subsystem has on the ecological subsystem)56

influence the stability of the whole system. In addition to facilitating comparisons across57

systems, our method extends existing theory to systems with any number of species and58

evolving traits. We apply the method to nine models from the literature that are parameter-59

ized to empirical systems. We use the method to identify (i) the effects particular ecological,60

evolutionary, and eco-evolutionary feedbacks have on stability of the whole system, (ii) when61

eco-evolutionary feedbacks alter what one would predict about system stability from just eco-62

logical and evolutionary feedbacks, and (iii) how those effects are influenced by the relative63

speeds of ecology and evolution. Our results help explain why some systems exhibit periodic64

cycles while others converge to steady state.65
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Methods66

Selecting parameterized eco-evolutionary models from published67

studies68

To identify studies with parameterized eco-evolutionary models, we searched Web of Science69

and Google Scholar with keywords such as “eco-evolutionary dynamics” and “evolution &70

population dynamics”. Studies were selected only if they included models that were parame-71

terized using empirical data and that described ecological and evolutionary dynamics. Here,72

ecological dynamics mean changes in population densities. Evolutionary dynamics mean73

either changes in a continuous trait (e.g., pathogen virulence) or the frequencies of different74

clonal types (e.g., defended and undefended clones). Three studies (18; 19; 20) were excluded75

because the models did not have coexistence equilibria with standing genetic variation in at76

least one population. In total, we identified 9 studies consisting of six predator-prey models,77

one intraguild predation model, and two host-pathogen models; see Table 1 for a summary.78

Multiple entries are listed in Table 1 for models with multiple parameterizations; Bolker et79

al. (21) is an exception because the results are identical for all four parameterizations. These80

nine studies represent all published studies known to the authors.81

Method overview82

Details about our method are given below and in appendices S1-S3. In short, we converted83

each model into a general form, computed the Jacobian, and evaluated it at the coexistence84

equilibrium point determined by the parameters in the original study. With the Jacobian,85

we determined the stabilities of the various subsystems, compared them to the stability of86

the whole system, and explored how our results depended on the speed of evolution.87

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/488759doi: bioRxiv preprint 

https://doi.org/10.1101/488759
http://creativecommons.org/licenses/by-nc-nd/4.0/


A general eco-evolutionary model88

We converted all models into a general form that describes the changes in the densities of n89

species (N1, ..., Nn) and m population-level traits (x1, ..., xm),90

dNi

dt
= fi(N1, ..., Nn, x1, ..., xm), 1 ≤ i ≤ n

dxj
dt

= gj(N1, ..., Nn, x1, ..., xm), 1 ≤ j ≤ m.

(1)

Here, fi defines the ecological dynamics of species i; it accounts for all (possibly trait-91

dependent) intra and interspecific interactions involving species i (e.g., cooperation, compe-92

tition, predation, and mutualism). The functions gj define the evolutionary dynamics for93

each trait, which in general are density and frequency dependent. Note that clonal mod-94

els with two clonal types (C1, C2) can be converted into continuous trait models by deriving95

equations for the total density (N1 = C1+C2) and the frequency of clone 1 (x1 = C1/N1); see96

appendix S2 for additional details. Model (1) has been used previously to study equilibrium97

stability and species coexistence (15; 22). It encompasses other bodies of eco-evolutionary98

theory based on adaptive dynamics (23; 24) and quantitative genetics (25).99

Complimentary subsystem pairs and subsystem stability100

We assume model (1) has a unique coexistence equilibrium where all species have positive101

densities; appendix S1 explains what changes when this assumption is not satisfied. We102

define stability of the whole system by the stability of the coexistence equilibrium, which103

is determined by the Jacobian (J), i.e., a derivative matrix that determines whether small104

perturbations from equilibrium decay (implying stability) or grow (implying instability).105

Mathematically, for stable systems all eigenvalues of the Jacobian have negative real parts106

and for unstable systems the Jacobian has at least one eigenvalue with positive real part.107

Importantly, each empirically parameterized model we considered has a unique coexistence108
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equilibrium and if the coexistence equilibrium is unstable, then the system exhibits cycles109

because the equilibrium underwent a Hopf bifurcation.110

Our method focuses on the stabilities of complementary pairs of subsystems. A subsys-111

tem describes the dynamics of a subset of variables when all other variables are fixed at112

their equilibrium values. Two subsystems form a complementary pair if together the subsys-113

tems include all variables in the system without overlap. For example, the (n-dimensional)114

ecological subsystem describes the population dynamics of all species (dNi/dt equations)115

when all traits are fixed at their equilibrium values (solid box in figure 1B). Its complement116

is the (m-dimensional) evolutionary subsystem (dashed box in figure 1B), which describes117

the evolutionary dynamics of all traits (dxj/dt equations) when all population densities are118

fixed at their equilibrium values. Alternatively, an eco-evolutionary subsystem (solid box in119

figure 1C) could be the population and trait dynamics associated with one species, say N1120

and x1. Its complementary subsystem (dashed box in figure 1C) is the population and trait121

dynamics of the remaining species: N2, . . . , Nn, x2, . . . , xm.122

The stability of a subsystem is determined by the submatrix of the Jacobian that only123

involves the variables in that subsystem. For example, consider an eco-evolutionary nutrient-124

prey-predator model describing the dynamics of nutrient (N1), prey (N2), and predator (N3)125

densities and the mean prey trait (x1); this system is illustrated in figure 1. The Jacobian126

for this system has the form127

J =



Ecological Subsystem︷ ︸︸ ︷
∂
∂N1

dN1

dt
∂
∂N2

dN1

dt
∂
∂N3

dN1

dt

Effects of Evo on Eco︷ ︸︸ ︷
∂
∂x1

dN1

dt

∂
∂N1

dN2

dt
∂
∂N2

dN2

dt
∂
∂N3

dN2

dt
∂
∂x1

dN2

dt

∂
∂N1

dN3

dt
∂
∂N2

dN3

dt
∂
∂N3

dN3

dt
∂
∂x1

dN3

dt

︸ ︷︷ ︸
Effects of Eco on Evo

∂
∂N1

dx1
dt

∂
∂N2

dx1
dt

∂
∂N3

dx1
dt ︸ ︷︷ ︸

Evolutionary Subsystem

∂
∂x1

dx1
dt

 (2)
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The top left box of the Jacobian determines the stability of the ecological subsystem (solid128

box in figure 1B), the bottom right box of the Jacobian determines the stability of the129

evolutionary subsystem (dashed box in figure 1B), and the off-diagonal boxes of the Jacobian130

determine the effects of ecology on evolution (bottom left) and the effects of evolution on131

ecology (top right). Mathematically, a subsystem is unstable if its submatrix has at least one132

eigenvalue with positive real part; a subsystem is stable if its submatrix has all eigenvalues133

with negative real parts; a subsystem is neutrally stable if its submatrix has all eigenvalues134

with non-positive real parts, at least one eigenvalue with strictly negative real part, and at135

least one eigenvalue with zero real part; and a subsystem is neutral if its submatrix has all136

eigenvalues with zero real parts; see figure S1 for illustrations of each type of stability.137

Stabilities of systems and their complimentary subsystem pairs138

When there are no feedbacks between a pair of complementary subsystems, the stability139

of the whole system is determined by the stabilities of the complementary subsystems: the140

whole system is stable if both subsystems are stable and the whole system is unstable (imply-141

ing cycles in our models) if either subsystem is unstable. When there are feedbacks between142

a pair of complementary subsystems, each subsystem has a stabilizing or destabilizing effect143

on the stability of whole system, but the feedbacks between the subsystems can alter the144

stability predicted by the complementary pair. For example, if the ecological subsystem is145

stable and the evolutionary subsystem is unstable in matrix (2), then the whole system is146

predicted to be unstable in the absence of eco-evolutionary feedbacks (zero entries in the top147

right or bottom left boxes). However, when eco-evolutionary feedbacks are present (non-zero148

entries in the top right and bottom left boxes) and stabilizing, the whole system can become149

stable. In this case, the feedbacks between the subsystems stabilize the whole system.150

We consider four pairs of complementary systems, chosen for their biological relevance.151

First, the complementary ecological and evolutionary subsystems (figure 1B) identify the ef-152

fects of ecological, evolutionary, and eco-evolutionary feedbacks involving all species. Second,153
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the evolutionary subsystem for a single species (i.e, the subsystem composed of all evolving154

traits of one species) and its complement (also figure 1B) identify the effects of evolution-155

ary feedbacks of a single species. Third, the eco-evolutionary subsystem for a single species156

(i.e., the subsystem composed of the density and all evolving traits for that species) and its157

complement (figure 1C) identify the effects of feedbacks within a single species. Fourth, the158

subsystem defined by all species and traits in a particular trophic level and its complement159

(figure 1D) identify the effects of feedbacks within a particular trophic level.160

We use the stabilities of the complementary subsystem pairs to predict whether different161

feedbacks have stabilizing or destabilizing effects on the stability of the whole system in two162

ways. First, the stabilities of the complementary pairs of subsystems identify how subsystems163

affect the stability of the whole system. Specifically, unstable subsystems have destabilizing164

effects, stable or neutrally stable subsystems have stabilizing effects, and neutral subsystems165

have no direct effects on stability (but can indirectly affect stability through their interactions166

with other subsystems). See the appendix S1 for mathematical details and justifications.167

Second, we compare the stabilities of the complementary subsystem pairs with the stabil-168

ity of the whole system in order to determine whether the feedbacks between subsystems do169

or do not alter system stability. There are four possibilities; the first and second correspond170

to cases where the feedbacks between complementary subsystems alter stability of the whole171

system from what would be predicted from just the stabilities of the complementary subsys-172

tems. First, if both subsystems are stable but the whole system is cyclic, then the feedbacks173

between the subsystems are destabilizing as they are sufficiently strong to counteract the174

stabilizing effects of the subsystems. Second, if one or both subsystems are unstable but the175

whole system is stable, then the feedbacks between the subsystems are stabilizing as they are176

sufficiently strong to counteract the destabilizing effects of the unstable subsystems. Third,177

if both subsystems are stable and the whole system is stable, then the feedbacks between178

the subsystems do not alter the stability of the system. Fourth, if one or both subsystems179

are unstable and the whole system is cyclic, then the feedbacks between the subsystems do180
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not alter the stability of the system.181

Effects of varied evolutionary speed182

To explore how the interactions between subsystem stability and the speed of evolution183

influence the stability of whole system, we varied the speed of evolution in the nine parame-184

terized models. This was done by introducing multiplicative parameters into the right hand185

sides of the trait equations in model (1); see appendix S3 for details. We then assessed how186

speeding up and slowing down the rates of evolution influenced system stability and whether187

stable versus cyclic dynamics in the whole system could be accurately predicted from just188

the stabilities of the ecological and evolutionary subsystems.189

Results190

Effects of ecological, evolutionary and eco-evolutionary feedbacks191

on the stabilities of empirical systems192

Across the nine parameterized models from the literature, subsystem stability differed de-193

pending on subsystem type (ecological, evolutionary, or eco-evolutionary) and species trophic194

level (exploiter vs. victim); see Table 1. Specifically, ecological subsystems were stable (or195

neutrally stable) in eight of the nine systems whereas evolutionary subsystems were stable196

in only four systems. Exploiter ecological, evolutionary, and eco-evolutionary subsystems197

were stable or neutral in seven systems. In contrast, victim ecological, evolutionary, and198

eco-evolutionary subsystems were stable in four systems.199

With this information, we explored if feedbacks between subsystems altered the stability200

of the whole system from what would be predicted from just the stabilities of complementary201

subsystem pairs. What role do the feedbacks between subsystems play in influencing the202

stability of the four empirical systems that exhibit cycles (“cyclic” in column 4 of Table 1)?203
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First, the evolutionary subsystem was unstable in all four systems and the complementary204

ecological subsystem was stable in three systems. This means that the feedbacks between the205

ecological and evolutionary subsystems were insufficiently strong to stabilize the system. Sec-206

ond, the evolutionary and eco-evolutionary subsystems for the victim species were unstable207

in all four systems and their complementary subsystems were stable in three systems. This208

means that the feedbacks between the victim subsystems and their complementary subsys-209

tems were insufficiently strong to stabilize the system. Third, the evolutionary, evolutionary,210

eco-evolutionary subsystems for the exploiter species were stable or neutral in three of the211

studies and their complementary subsystems were stable in all four systems. This means212

that the feedbacks between the exploiter subsystems and their complementary subsystems213

were destabilizing and sufficiently strong to alter the stability of the whole system.214

What role do the feedbacks between subsystems play in influencing the stability of the five215

empirical systems that converge to equilibrium (“stable” in column 4 of Table 1)? First, in216

two systems, all subsystems we considered were stable (21; 9). This means that all feedbacks217

between the subsystems were either stabilizing or insufficiently strong to destabilize the218

whole system. Second, in three systems, there was at least one complementary subsystem219

pair made up of one stable and one unstable subsystem. For each of those systems, the220

feedbacks between the complementary subsystems were stabilizing and sufficiently strong to221

stabilize the whole system. For example, while the prey evolutionary and eco-evolutionary222

subsystems were unstable in Kasada et al. (26), the whole system was stable because the223

feedbacks between those subsystems and their complements were strongly stabilizing.224

Effects of evolutionary speed on stability225

We explored how varying the speed of evolution affected system stability in the nine param-226

eterized models. If varying the speed of evolution causes a change in stability, then it either227

causes a system undergoing cycles to converge to equilibrium or it causes a stable system to228

exhibit cycles; see appendix S3 for mathematical details. Varying the speed of evolution in229
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the nine parameterized models produced one of four patterns (two shown in figure 2).230

First, for the four systems with stable ecological subsystems and unstable evolutionary231

subsystems (S-U in “Eco & Evo” column of Table 1), stability of the whole system switched232

from stable to unstable as the speed of evolution increased (figure 2A-C). In these systems,233

cyclic dynamics in the fast evolution limit are expected due to the instability of the evolu-234

tionary subsystem. Stability in the slow evolution limit is caused by stabilizing feedbacks235

between the ecological and evolutionary subsystems that are sufficiently strong to counteract236

the instability of the evolutionary subsystem. Hence, feedbacks between the ecological and237

evolutionary subsystems do not alter the stabilities of these systems in the fast evolution238

limit, but they do stabilize the systems in the slow evolution limit.239

Second, for the Haafke et al. (13) study where the ecological and evolutionary subsys-240

tems were both unstable, the whole system exhibited cycles for all evolutionary speeds. The241

presence of cycles for all evolutionary speeds implies that the feedbacks between the ecolog-242

ical and evolutionary subsystems did not alter the stability of the system for any speed of243

evolution.244

Third, for three of the four systems where the ecological and evolutionary subsystems245

were both stable (S-S in “Eco & Evo” column of Table 1), the whole system was stable for all246

evolutionary speeds. Stability for all evolutionary speeds implies that the feedbacks between247

the ecological and evolutionary subsystems did not alter the stability of any of the systems248

for any speed of evolution.249

Fourth, the Duffy et al. (27) system, where the ecological and evolutionary subsystems250

were both stable, the whole system was stable for very fast and very slow evolutionary251

speeds and unstable for intermediate evolutionary speeds (figure 2D-F). Instability of the252

whole system for intermediate evolutionary rates means that the feedbacks between the253

ecological and evolutionary subsystems were sufficiently strong to destabilize the system only254

for intermediate speeds of evolution. A similar pattern has been observed in eco-evolutionary255

predator-prey models (7; 30; 16), but it is unclear if the same mechanisms are driving the256
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pattern in the Duffy et al. (27) model because we lack general theory on when and why257

destabilization occurs at intermediate rates of evolution.258

Overall, we found that the feedbacks between the ecological and evolutionary subsystems259

could alter the stability of the system at some evolutionary speed in five of the nine systems.260

Discussion261

Our results identified that ecological, evolutionary, and eco-evolutionary feedbacks have sys-262

tematically different effects on the stabilities of empirical systems and that those effects can263

depend on the species trophic level. Across the nine empirically parameterized models, eco-264

logical feedbacks tended to be stabilizing. In contrast, exploiter evolutionary feedbacks were265

stabilizing or neutral and victim evolutionary feedbacks were evenly split between stabilizing266

and destabilizing. Exploiter and victim ecological and eco-evolutionary feedbacks also con-267

sistently differed, with exploiter eco-evolutionary feedbacks being stabilizing or neutral and268

victim eco-evolutionary feedbacks being destabilizing more often than stabilizing. While our269

results are based on all empirically-parameterized models known to the authors, these models270

only represent a small number of systems, all of which involve exploiter-victim interactions.271

An important area of future work is applying and testing this theory in empirical systems272

with interactions other than exploiter-victim to understand whether ecological, evolutionary,273

and eco-evolutionary feedbacks have similar or different effects on stability in those systems.274

Our results help elucidate why some eco-evolutionary systems converge to steady state275

whereas others exhibit sustained cycles. (Recall that for our nine parameterized models,276

instability of the coexistence equilibrium implies cyclic dynamics.) The evolutionary sub-277

systems were unstable in the four systems exhibiting cycles and stable in four of the five278

stable systems. This suggests that evolutionary feedbacks were important drivers of stabil-279

ity of our nine systems. In addition, in our models, instability and stability of evolutionary280

subsystems correspond to disruptive and stabilizing selection, respectively (2). Stabilizing281
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and disruptive selection are observed with roughly equal frequencies across a broad set of282

empirical systems (28), suggesting that the destabilizing effects of evolutionary feedbacks283

are widespread across empirical systems.284

Our results also help identify when eco-evolutionary feedbacks do and do not alter stabil-285

ity. First, in all but one system, the stability of the whole system could be predicted from just286

the stabilities of the ecological and evolutionary subsystems, implying eco-evolutionary feed-287

backs between all species did not alter the stability of the whole system. The one exception288

is the Kasada et al. (26) study, where we predict the eco-evolutionary feedbacks stabilized289

the whole system. Second, our results show that eco-evolutionary feedbacks involving just290

a subset of the species in the community could have different effects on stability. In par-291

ticular, the eco-evolutionary feedbacks between the densities and traits of victim species292

could be stabilizing or destabilizing. This is consistent with prior theory predicting prey293

eco-evolutionary feedbacks can be stabilizing or destabilizing (2; 4; 7). In contrast, we found294

that the eco-evolutionary feedbacks between the densities and traits of exploiter species295

were stabilizing. Current theory predicts predator eco-evolutionary feedbacks can also be296

destabilizing (29; 30), but this was not observed in the four systems with exploiter evolution.297

Our predictions about subsystem stability can be tested in empirical systems through298

controlled experiments in which some variables are held (nearly) fixed at their equilibrium299

values. One way to effectively fix evolutionary variables is to seed populations with lower300

standing genetic variation, e.g., as in (31; 3; 32; 33). If the magnitude of genetic variation301

is varied while the mean trait value is kept (effectively) constant, then the low genetic302

variation treatment will yield information about the stability of subsystems without that303

trait. Similarly, holding a species’ density nearly fixed will yield information about the304

stabilities of subsystems without that species. However, in most cases, subsystem stability305

cannot be determined by experiments where a variable is removed or changed substantially306

from its equilibrium value (e.g., removing a predator). This is because our subsystem-307

based approach assumes all fixed variables are held at their equilibrium values. It may308
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be difficult or infeasible to hold densities or traits (nearly) constant in a given empirical309

system. Nonetheless, applying our theory to tailored, parameterized models allows one to310

make predictions about how specific feedbacks influence community stability and dynamics.311

Our results highlight the need for additional theory to explain how the relative rates of312

evolution and ecology influence system stability. First, following Cortez (16), our approach313

can be extended to consider the effects of all subsystems. However, in systems with many314

species, the number of subsystems becomes very large, e.g, the Wei et al. (34) model with315

10 variables has 1023 subsystems. Thus, new theory is needed to help understand what316

general rules govern how and when different subsystems influence system stability. Second,317

while current theory (7; 30; 16; 15) can explain model stability in the fast and slow evolution318

limits, we have a limited ability to make predictions about system stability when rates of319

ecology and evolution are similar. For example, it is unclear why the Duffy et al. (27) model320

exhibits cycles only at intermediate evolutionary speeds (figure 2D-F). This pattern has321

been observed in eco-evolutionary predator-prey models (7; 30; 16), but due to differences322

in subsystem stabilities and model dimension, it is unclear if the driving mechanisms are323

the same. Thus, theory is needed that explains how the speed of evolution interacts with324

subsystem stability to determine the stability of a whole system.325

Our subsystem-based approach can be extended and potentially fruitful in other areas.326

First, applying our approach to a particular subsystem can help determine what feedbacks327

within that subsystem are responsible for its stability. For example, nearly all systems328

with unstable victim eco-evolutionary subsystems also had unstable victim evolutionary329

subsystems. Thus, instability of the eco-evolutionary subsystems must be due, in part, to330

the destabilizing effects of evolutionary feedbacks. Second, our approach may also be useful331

in purely ecological contexts. As examples, our approach could help identify how behavioral332

dynamics and species abundance dynamics affect community stability, how feedbacks within333

and between trophic levels affect the stability of food webs, how within-soil and above-soil334

communities contribute to the stability of plant-soil communities, and how environmental335
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dynamics and species abundance dynamics affect system stability.336
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Tables and Figures428

Table 1: Effects of complementary pairs of subsystems on system stability in parameterized models from the literature429

Study Evolving System Stabilities of complementary subsystem pairs∗

Species Behavior Eco & Evo Victim evo Victim eco or eco-evo† Exploiter Evo Exploiter eco or eco-evo†

Predator-prey

Becks et al. (3) Prey Cyclic S - U U - S U - S S - U

Frickel et al. (9) Both Stable S - S S - S S - S S - S S - S

Haafke et al. (13) Both Cyclic U - U U - U U - S S - U S - U

Kasada et al. (26) Prey Stable S - U U - S U - S N - U

Wei et al. (34) Fig. 5a Both Stable S - S S - S S - S N - S N - S

Wei et al. (34) Fig. 5b Both Stable S - S S - U U - S N - S N - U

Yoshida et al. (11; 10) Prey Cyclic S - U U - S U - S S - U

Intraguild predation

Hiltunen et al. (35)‡ Fig. 2.1b Basal prey Cyclic S - U U - S U - S S - U

Hiltunen et al. (35)‡ Fig. 2.1c Basal prey Cyclic S - U U - S U - U U - U

Hiltunen et al. (35)‡ Fig. 2.1d Basal prey Cyclic S - U U - S U - S S - U

Host-parasite

Bolker et al. (21) Parasite Stable S - S S - S S - S S - S

Duffy et al. (27) Host Stable S - S S - S S - S U - S

430

431

∗ The first and second letters define how the subsystem listed in the column and its complementary subsystem, respectively,432

affect the stability of the whole system (S= stabilizing, U = destabilizing, N = neutral effect, Eco = ecological, Evo = evolu-433

tionary, Eco-evo = eco-evolutionary).434
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† In systems without victim (exploiter) evolution, the victim (exploiter) eco-evolutionary and ecological systems are the same.435

‡ Victim subsystems only involve the basal prey variables and exploiter subsystems involve the intraguild prey and intraguild436

predator variables.437
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A
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prey
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prey trait

B

C D

Figure 1: Examples of complementary subsystem pairs in the resource-prey-predator system
with an evolving prey trait from Becks et al. (3). (A) The system dynamics involve changes
in resource (nitrogen), prey (algae), and predator (rotifers) densities and the mean clump
size of the prey. (B) Ecological subsystem (solid box) and its complementary evolutionary
subsystem (dashed box). (C) Prey eco-evolutionary subsystem (solid box) and its comple-
mentary subsystem (dashed box). (D) Predator ecological subsystem (solid box) and its
complementary subsystem (dashed box).
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Figure 2: Predicted stability and dynamics of eco-evolutionary models with increased or
decreased rates of evolution. (A-C) Dynamics of the Becks et al. (3) model with prey
density (dashed blue), predator density (solid red), and proportion of defended prey (dash-
dot cyan); nutrient dynamics are not shown. (D-F) Dynamics of the Duffy et al. (27) model
with susceptible host density (dashed blue), infected host density (solid red), and proportions
of resistant susceptible and infected hosts (dash-dot cyan and magenta, respectively). (A,D)
Maximum and minimum long-term values for different evolutionary speeds; a single curve for
each variable denotes the stable equilibrium value whereas two curves denote the maximum
and minimum values during eco-evolutionary cycles. An evolutionary speed of one denotes
the speed of evolution for the estimated parameter values in the original study. Letters
denote evolutionary speeds for other panels.
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S1 Notation, subsystems, and stability458

Let ~N = (N1, ..., Nn) be the vector of species densities and ~x = (x1, ..., xm) be the vector459

of evolving traits. Let ρ = ( ~N∗, ~x∗) denote a coexistence equilibrium of the model from the460

main text, i.e., an equilibrium where all species have nonzero densities. When evaluated at461

ρ, the Jacobian of the model has the form462

J |ρ =



J1,1 · · · J1,n J1,n+1 · · · J1,n+m
...

. . .
...

...
...

Jn,1 · · · Jn,n Jn,n+1 · · · Jn,n+m

Jn+1,1 · · · Jn+1,n Jn+1,n+1 · · · Jn+1,n+m

...
...

...
. . .

...

Jn+m,1 · · · Jn+m,n Jn+m,n+1 · · · Jn+m,n+m



=



∂f1/∂N1 · · · ∂f1/∂Nn ∂f1/∂x1 · · · ∂f1/∂xm
...

. . .
...

...
...

∂fn/∂N1 · · · ∂fn/∂Nn ∂fn/∂x1 · · · ∂fn/∂xm

∂g1/∂N1 · · · ∂g1/∂Nn ∂g1/∂x1 · · · ∂g1/∂xm
...

...
...

. . .
...

∂gm/∂N1 · · · ∂gm/∂Nn ∂gm/∂x1 · · · ∂gm/∂xm


.

(S.1)

The equilibrium is stable if all eigenvalues of J have negative real parts, neutrally stable463

if all eigenvalues have non-positive real parts and at least one eigenvalue has negative real464

part, neutral if all eigenvalues have zero real parts, and unstable if at least one eigenvalue465

has positive real part. See figure S1 for an illustration of these definitions.466

Let S be a subsystem containing variables {s1, s2, ..., sk}. Let MS be the submatrix of J467

made up of all entries ∂ṡi/∂sj (si, sj ∈ S). The stability of subsystem S when all variables468

not contained in S are fixed at their equilibrium values (defined by ρ) is determined by the469
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unstablestable neutrally stable neutral

note: solid lines with no arrows indicate no flow.Figure S1: Two-dimensional examples of stable, unstable, neutrally stable, and neutral equi-
libria. Black lines are the eigenvectors computed from the Jacobian evaluated at the equi-
librium. Black arrows denote the direction of the flow along the eigenvectors; an eigenvector
with no arrow means no flow in that direction. Red dashed curves are example trajectories
starting at the red dots.

eigenvalues of MS following the same rules used for the coexistence equilibrium. Ecological470

subsystems contain only ecological variables (Ni). Evolutionary subsystems contain only471

evolutionary variables (xj). Eco-evolutionary variables contain ecological and evolutionary472

variables. Two subsystems S1 and S2 form a complementary pair if their intersection is the473

empty set and their union contains all variables in the system.474

In general, the stabilities of the subsystems influence the stability of the coexistence475

equilibrium. We begin by illustrating this in a two-dimensional system and then show how476

the idea extends to higher-dimensions. Consider a model with one ecological variable (N)477

and one evolutionary variable (x). Such a model has a 2x2 Jacobian (J) where the stability478

of the ecological subsystem is determined by the J11 entry, the stability of the evolutionary479

subsystem is determined by the J22 entry, and the interactions between the subsystems are480

defined by the product J12J21. When J11 < 0, the ecological subsystem has a stabilizing481

effect on the stability of the equilibrium and when J11 > 0, the ecological subsystem has a482

destabilizing effect on the stability of the equilibrium. Similarly, when J22 < 0 or J22 > 0, the483

evolutionary subsystem has a stabilizing or destabilizing effect, respectively, on the stability484

of the equilibrium. In the absence of bidirectional feedbacks between the ecological and485

evolutionary subsystems (i.e., J12J21 = 0), the stability of the equilibrium is determined by486

the stability of the ecological and evolutionary subsystems. However, when bidirectional487

feedbacks are present, the interactions between the two subsystems have stabilizing effects488
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when J12J21 > 0 and destabilizing effects when J12J21 < 0.489

A similar idea holds in higher dimensional models, where the entries J11 and J22 are re-490

placed by submatrices of the Jacobian corresponding to a pair of complementary subsystems.491

The entries J12 and J21 are replaced by submatrices that represent the effects variables in one492

subsystem have on the dynamics of the variables in the other subsystem. Thus, stability of493

an equilibrium is affected by the stability of each subsystem as well as the feedbacks between494

the subsystems.495

To show how stable, neutrally stable, neutral, and unstable subsystems influence equi-496

librium stability in higher dimensional models, we use use the characteristic polynomial of497

the Jacobian. As an example consider a four dimensional system with variables N1, N2, N3498

and x1. The characteristic polynomial of the Jacobian (J) for such a system is499

p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 (S.2)

where

a1 = −(|MN1 |+ |MN2|+ |MN3|+ |Mx1 |)

a2 = |MN1N2|+ |MN1N3|+ |MN1x1|+ |MN2N3 |+ |MN2x1 |+ |MN3N1|

a3 = −(|MN1N2N3|+ |MN1N2x1|+ |MN1N3x1 |+ |MN2N3x1|)

a4 = |J |

(S.3)

and | · | denotes the determinant of a (sub)matrix. A necessary condition for equilibrium500

stability is all coefficients of the characteristic polynomial are positive, i.e., ai > 0 for all i.501

To see how the ecological subsystem (i.e., the N1, N2, N3-subsystem) affects the stability of502

an equilibrium, consider the characteristic polynomial for the submatrix MN1N2N3 ,503

q(λ) = λ3 + b1λ
2 + b2λ+ b3 (S.4)
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where

b1 = −(|MN1 |+ |MN2 |+ |MN3|)

b2 = |MN1N2|+ |MN1N3|+ |MN2N3|

b3 = −|MN1N2N3|.

(S.5)

A necessary condition for stability of the ecological subsystem is bi > 0 for all i. Notice that504

each term in the b1 equation also shows up in the equation for a1. More generally, bi is a505

partial sum of the terms that define ai.506

If the ecological subsystem is unstable, then at least one of the bi coefficients is negative.507

Because bi is a partial sum of the terms that define ai, this means ai will be a more negative508

(or less positive) value. In terms of satisfying the necessary condition for equilibrium stability509

(ai > 0), this means that an unstable ecological subsystem has a destabilizing effect on the510

stability of the equilibrium. In contrast, stable ecological subsystems (bi > 0 for all i),511

neutrally stable ecological subsystems (bi ≥ 0 for all i, with at least one of the bi coefficients512

being positive), or neutral ecological subsystems with purely imaginary eigenvalues (also513

bi ≥ 0 for all i, with at least one of the bi coefficients being positive) have stabilizing effects514

on the whole system because the ai coefficients are more positive if some of the bi are515

positive. For neutral ecological subsystems where all eigenvalues are zero (bi = 0 for all i),516

the subsystem has no direct effect on the stability of the whole system. For all of the models517

we examined, every neutral subsystem only had zero eigenvalues.518

The above argument holds for a Jacobian of any size and a submatrix of any size. It519

explains our interpretation of how subsystems with different stabilities affect equilibrium520

stability. The above only focuses on the necessary condition for stability, i.e., all coefficients521

of the characteristic polynomial are positive. Necessary and sufficient conditions for stability522

are defined by the Routh-Hurwitz criteria. We do not use all of the conditions from the523

Routh-Hurwitz criteria because the other conditions are more complex and less tractable for524

large matrices.525
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S2 Complementary subsystem pairs method526

Here we detail how one can apply our complementary subsystem method to their own mode.527

Note that Step 1 is skipped for models with continuous traits.528

529

Step 1: Convert discrete trait model into continuous trait model530

For clonal models without stage structure where Ci is the density of clone i, the ecological531

variable of the continuous trait model is total density, N =
∑

iCi, and the evolutionary532

variables are the frequencies of clone i, xi = Ci/N , for i < k. For clonal models with stage533

structure where Cj
i is the density of clone i in stage j, the ecological variables are the total534

densities in each stage, Nj =
∑

j C
j
i , and the evolutionary variables are the proportions of535

clone i in each stage, Cj
i /Nj for i > 1. The differential equations for the continuous trait536

model are derived using the chain rule, e.g., dN/dt =
∑

i
dCi

dt
and dxi/dt = (N dCi

dt
−Ci dNdt )/N2

537

define the dynamics for a continuous trait model derived from a clonal model without stage538

structure.539

Step 2: Find coexistence equilibria and determine their stability540

For each coexistence equilibrium, ρ, stability is determined by computing the eigenvalues of541

the Jacobian evaluated at ρ.542

Step 3: Pick a complementary subsystem pair and determine stabilities of the543

subsystems544

Partition the state variables into two complementary. Let S1 be the subsystem containing545

variables from the first subset and S2 be the subsystem containing variables from the second546

subset. Find the two submatrices of the Jacobian corresponding to the two subsystems. In547

particular, the submatrix corresponding to subsystem S1 is made up of all entries ∂ṡi/∂sj548

(si, sj ∈ S1) and the submatrix corresponding to subsystem S2 is made up of all entries549

∂ṡi/∂sj (si, sj ∈ S2). For each coexistence equilibrium, evaluate the two submatrices at the550

equilibrium and determine the stability of each subsystem by finding the eigenvalues of each551

submatrix.552
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Step 4: Compare stabilities of whole system and subsystem pairs553

For each coexistence equilibrium, compare its stability with the stability of the comple-554

mentary subsystems. If (i) both subsystems are stable and the coexistence equilibrium is555

unstable, (ii) both subsystems are unstable and the coexistence equilibrium is stable, or (iii)556

one subsystem is unstable, one subsystem is stable, and the coexistence equilibrium is stable,557

then the stability of the coexistence equilibrium differs from what is predicted from just the558

stabilities of the complementary subsystems. In such cases, the interactions between the559

subsystems alter the stability of the coexistence equilibrium based on what is predicted from560

just the stabilities of the complementary subsystems. In all other cases, the interactions561

between subsystems do not alter the stability of the coexistence equilibrium based on what562

is predicted from just the stabilities of the complementary subsystems.563

564

We note two things about applying our method. First, applying our method to an un-565

stable equilibrium (i.e., an equilibrium whose Jacocbian has at least one eigenvalue with566

positive real part) will identify which feedbacks are destabilizing that particular equilibrium.567

However, it may not explain why cyclic dynamics occur in that system, e.g., when there568

are unstable equilibria with homoclinic or heteroclinic orbits or cycles that arose via bifurca-569

tions not involving equilibria. Information about equilibrium instability is informative about570

cyclic dynamics only if the equilibrium has undergone a Hopf bifurcation that gave rise to571

an attracting periodic orbit (as was the case for the empirically parameterized models we572

considered).573

Second, applying our method to a coexistence equilibrium always identifies how feedbacks574

affect stability at that specific equilibrium. However, if multiple equilibria are present, the575

feedbacks may have different effects at different equilibria. This is expected because the trait576

values and densities differ between the equilibria. However, it means that judgment must be577

used to determine which equilibria will yield biologically informative information. Applying578

our method to a stable coexistence equilibrium is always biologically informative because it579
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identifies which feedbacks are responsible for stabilizing the system near that equilibrium.580

For unstable equilibria, our results are biologically informative if (i) the unstable equilibrium581

and an attracting periodic orbit are both present for the given parameter values and (ii) the582

unstable manifold of the equilibrium point intersects the stable manifold of the periodic583

orbit. In this case, our results help explain which feedbacks are responsible for destabilizing584

the unstable equilibrium and causing the system to exhibit periodic cycles. In other cases,585

e.g., when there are no periodic orbits or the equilibria have homoclinic or heteroclinic586

connections, applying our method to unstable equilibria may not explain system behavior.587

S3 Varying evolutionary speeds588

To vary the speed of evolution in the models, we multiplied the right hand sides of the trait589

equations by the parameter εi, where the rate of evolution is unchanged for εi = 1 and is590

slowed down (sped up) for 0 < εi < 1 (εi > 1). For example, the trait dynamics dx1/dt = g(·)591

are changed to dx1/dt = ε1g(·). For systems where a single species had multiple traits,592

each trait equation was multiplied by the same parameter (e.g., ε1 for all trait equations).593

For systems with multiple evolving species, the trait equations for different species were594

multiplied by different parameters (e.g., ε1 for the prey trait and ε2 for the predator trait).595

Our analysis only focused on the effects of varying each εi parameter independently; we did596

not explore how simultaneously varying multiple εi parameters would affect system stability.597

Multiplying a trait equation by εi results in each entry of the Jacobian corresponding598

to that trait equation being multiplied by εi. Thus, varying εi changes the magnitudes of599

those Jacobian entries, which in turn affects the eigenvalues of the Jacobian. For all of the600

models we considered, changing the rate of evolution (i.e., varying εi) does not change the601

location of an equilibrium point. Thus, varying εi does not affect the entries of the Jacobian602

corresponding to the ecological equations or other trait equations.603

For all models we considered, equilibria can only undergo Hopf bifurcations as the εi604
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parameters are varied (15), and they cannot undergo bifurcations where one or more eigen-605

values are identically zero. The mathematical justification is the following. The determinant606

of the Jacobian factors as |J | = εi|Jεi=1| where |Jεi=1| is the determinant of the Jacobian607

when εi = 1. Recall that the determinant of a matrix is equal to the product of its eigenval-608

ues. If the equilibrium were to undergo a bifurcation with a zero eigenvalue, then |Jεi| = 0609

for some εi value, which would imply |Jεi=1| = 0 and further that |Jεi| = 0 for all εi > 0.610

Thus, the sign of |J | is constant for εi > 0. This means that the eigenvalues of |J | can only611

change signs via Hopf bifurcations. In total, increasing or decreasing the rate of evolution612

can cause no effect on stability or cause the periodic orbit to undergo a Hopf bifurcation,613

i.e., either cause a system undergoing oscillations to converge to an equilibrium or cause a614

stable system to exhibit cycles.615

S4 Analysis of parameterized models616

Here, we analyze the nine empirically parameterized models from the literature; subsystem617

stabilities are given in table S1. All calculations can be reproduced using the accompanying618

Maple worksheet and R files. However, the results for subsystem stability differ between619

the Maple worksheet and R files because of small numerical errors in R that result in R620

computing non-zero values for Jacobian entries that are analytically zero. If these numerical621

errors are accounted for (i.e., the entries are set equal to zero), then the results from R and622

Maple agree. In the following, Jacobian entries are listed as zero only if it is possible to show623

analytically that the entry is zero (see Maple worksheet for details). All other entries are624

rounded to three significant digits.625
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Table S1: Stabilities of complementary pairs of subsystems in parameterized models from the literature626

Study Evolving System Stabilities of complementary subsystem pairs∗

Species Behavior Eco & Evo Prey evo Prey eco or eco-evo† Pred Evo Pred eco or eco-evo†

Predator-prey

Becks et al. (3) Prey Cyclic S - U U - S U - NS NS - U
Frickel et al. (9) Both Stable S - S S - S NS - NS S - S NS - S
Haafke et al. (13) Both Cyclic U - U U - U U - NS NS - U NS - U
Kasada et al. (26) Prey Stable S - U U - S U - NS N - U
Wei et al. (34) Fig. 5a Both Stable S - S S - NS S - NS N - S N - S
Wei et al. (34) Fig. 5b Both Stable S - S S - U U - NS N - S N - U
Yoshida et al. (11; 10) Prey Cyclic S - U U - S U - NS NS - U
Intraguild predation

Hiltunen et al. (35)‡ Fig. 2.1b Basal prey Cyclic S - U U - S U - S S - U
Hiltunen et al. (35)‡ Fig. 2.1c Basal prey Cyclic S - U U - S U - U U - U
Hiltunen et al. (35)‡ Fig. 2.1d Basal prey Cyclic S - U U - S U - S S - U
Host-parasite

Bolker et al. (21) Parasite Stable S - S S - NS S - S NS - S
Duffy et al. (27) Host Stable S - S S - S S - S U - S

627

628

∗ The first letter is the stability of the subsystem listed in the column and the second is the stability of the complemen-629

tary subsystem. S = all eigenvalues for the submatrix have negative real part; U = at least one eigenvalue has positive real630

part; NS = at least one eigenvalue has negative real part and at least one eigenvalue is zero; N = all eigenvalues are zero. Eco631

= ecological subsystem; Evo = evolutionary subsystem; Eco-evo = eco-evolutionary subsystem; Pred = exploiter (predator or632

pathogen); Prey = victim (prey or host).633

† For systems without prey (predator) evolution, the prey (predator) eco-evolutionary subsystem is just the prey (predator)634

ecological subsystem.635

‡ Prey subsystems refer to subsystems with just the basal resource variables and predator subsystems refer to subsystems with636

both the intraguild prey and the intraguild predator variables.637
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S4.1 Becks et al. (3) Model638

The discrete trait model is

dN

dt
= δ(NI −N)− ρC1N

Kc,1 +N
− ρC2N

Kc,2 +N

dCi
dt

=
χcρNCi
Kc,i +N

− piG(B + S)Ci
KB +Q

− δCi

dB

dt
=

piGBQ

KB +Q
− (δ +m+ λ)B

dS

dt
= λB − (δ +m)S

(S.6)

where N is the concentration of nitrogen, Ci is the density of algal clones (i = 1, 2), B and639

S are the densities of breeding and senescent rotifers, and Q = p1C1 + p2C2. The parameter640

values are p2 = 1, NI = 160, δ = 0.3, m = 0.055e, λ = 0.4, χc = 0.0027, Kc,2 = 2.2,641

Kc,1 = 8− 5.8p1, ρ = 270, χB = 170, KB = 0.15, G = 0.011, p1 = 0.1.642

The four ecological variables for the continuous trait model are N , C = C1+C2, B, and S,643

and the single evolutionary variable is x1 = C1/C. The equilibrium of the continuous trait644

model is (N,C,B, S, x1) = (5.91, 0.338, 2.49, 2.8, 0.777). The Jacobian for the continuous645

trait model is646



−3.94 −137 0 0 −26.0

0.00983 0.028 −0.00444 −0.00444 −0.0284

0 3.31 0 0 −3.35

0 0 0.4 −0.355 0

0.00105 −0.0431 0.00682 0.00682 0.0436


(S.7)

where the order of the rows and columns is (N,C,B, S, x1). The eigenvalues are647

(−3.58,−0.462,−0.23, 0.0219±0.229i), which implies the equilibrium is unstable. The insta-648

bility of the equilibrium is due to a Hopf bifurcation that occurs at δ ≈ 0.55. The stabilities649

of the complementary pairs are given in Table S2.650
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Table S2: Stabilities of subsystems for the Becks et al. (3) model651

Subsystem Variables Eigenvalues Stability

Ecological {N,C,B, S} −3.57,−0.123± 0.109,−0.455 stable

Evolutionary {x1} 0.0436 unstable

Prey evo {x1} 0.0436 unstable

Complement {N,C,B, S} −3.57,−0.123± 0.109,−0.455 stable

Prey eco-evo {C, x1} −2.24 · 10−11, 0.0716 unstable

Complement {N,B, S} 0,−3.941,−0.355 neutrally stable

Predator eco {B, S} 0,−0.355 neutrally stable

Complement {N,C, x1} −3.58,−0.336, 0.042 unstable

652
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S4.2 Bolker et al. (21) Model653

The model is

dS

dt
= m(N − S)− β(α)SI

I

dt
= β(α)SI − (m+ α)I

dα

dt
= Vg

(
S
dβ

dα
− 1

) (S.8)

where S is the density of susceptible hosts, I is the density of infected hosts, and α is654

the population mean virulence of the pathogen; S and I are ecological variables and α is655

the evolutionary variable. The transmission rate is defined by β(α) = cα1/γ. Multiple656

parameterizations are provided for this model because it was applied to four different disease657

systems. (The values of c and γ are computed from the reported values of R0 and α∗; see658

original study for details). The parameters for SARS were N = 1, m = 1, c = 4.45,659

γ = 1.156. The parameters for HIV were N = 1, m = 1, c = 2.13, γ = 1.157. The660

parameters for West Nile Virus (WNV) were N = 1, m = 1, c = 3.23, γ = 1.002. The661

parameters for Myxomatosis (Myx) were N = 1, m = 1, c = 4.71, γ = 1.2.662

The equilibrium for the SARS parameterization is (S, I, α) = (0.333, 0.00104, 640); the663

equilibrium for the HIV parameterization is (S, I, α) = (.699, 0.0409, 6.36); the equilibrium664

for the WNV parameterization is (S, I, α) = (.309, 0.001082, 639); and the equilibrium for665

the Myx parameterization is (S, I, α) = (1/3, 1/9, 5). The Jacobians for the different param-666

eterizations are667

JSARS =


−3 −641 −0.09

2 0 0

3 0 −2.44 · 10−6

 , JHIV =


−1.43 −7.36 −0.0409

0.43 0 0

1.43 0 −0.0214

 (S.9)
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JWNV =


−3.24 −640 −0.00108

2.24 0 0

3.24 0 −2.45 · 10−6

 , JMyx =


−3 −6 −0.111

2 0 0

3 0 −0.0333

 . (S.10)

where the orders of the columns and rows are (S, I, α). The eigenvalues of JSARS are668

(−1.5 ± 35.8i,−2.44 · 10−6); the eigenvalues of JHIV are (−0.715 ± 1.65i,−0.021); the669

eigenvalues of JWNV are (−1.62 ± 37.8i,−2.45 · 10−6); and the eigenvalues of JMyx are670

(−1.5 ± 3.18i,−0.0324). In all cases the equilibria are stable. The stabilities of the com-671

plementary pairs are given in Table S3. Note that the ecological subsystem {S, I} and the672

complementary evolutionary subsystem is {α} also define the parasite evolutionary subsys-673

tem and its complement.674
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Table S3: Stabilities of subsystems for the Bolker et al. (21) model675

Subsystem Variables Eigenvalues Stability

WNV Ecological {S, I} −1.5± 35.8i stable

Evolutionary {α} −2.44 · 10−6 stable

Parasite eco-evo {I, α} 0,−2.44 · 10−6 neutrally stable

Complement {S} −3 stable

HIV Ecological {S, I} −0.715± 1.65i stable

Evolutionary {α} −0.021 stable

Parasite eco-evo {I, α} 0,−0.021 neutrally stable

Complement {S} −1.43 stable

SARS Ecological {S, I} −1.62± 37.8i stable

Evolutionary {α} −2.45 · 10−6 stable

Parasite eco-evo {I, α} 0,−2.45 · 10−6 neutrally stable

Complement {S} −3.24 stable

Myx Ecological {S, I} −1.5± 3.18i stable

Evolutionary {α} −0.0333 stable

Parasite eco-evo {I, α} 0,−0.0333 neutrally stable

Complement {S} −3 stable

676
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S4.3 Duffy et al. (27) Model677

The model is

dSi
dt

= bi(Si + fIi)

(
1−

∑
j Sj + Ij

K

)
− nSi −mSi − βiSiZ

dIi
dt

= βiSiZ − nIi − vIi − θmIi

dα

dt
= −dZ + σ(n+ v + eθm)

(∑
j

Ij

)
−
∑
j

βjSjZ

(S.11)

where Si and Ii are the densities of susceptible and infected clonal hosts (i = 1, 2), re-678

spectively, and Z is the spore density. The parameter values for the model are b1 =679

5712.11β1 + 0.241, b2 = 5712.11β2 + 0.241, d = 0.05, e = 0.5, f = 0.75, K = 5, m = 0.1,680

n = 0.05, v = 0.05, β1 = 0.5 · 10−6, β2 = 8.5 · 10−6, θ = 9, σ = 15000.681

The three ecological variables for the continuous trait model are S = S1 +S2, I = I1 +I2,682

and Z and the evolutionary variables are the proportions of host clone one in each stage,683

x1 = S1/S and x2 = I2/I. The equilibrium of the continuous trait model is (S, I, Z, x1, x2) =684

(1.86, 0.025, 4120, 0.656, 0.101). The Jacobian for the continuous trait system is685



−0.0995 0.0353 −6.06 · 10−6 0.00838 −0.000533

0.0134 −1 6.06 · 10−6 −0.0614 0

−0.0134 8250 −0.05 0.0614 0

0.00294 −0.0383 1.806 · 106 −0.00318 0.00171

0 0 0 0.401 −1


(S.12)

where the order of the rows and columns is (S, I, Z, x1, x2). The eigenvalues are686

(−1.05,−1,−0.0915,−0.00318 ± 0.027i), which implies the equilibrium is stable. The sta-687

bilities of the complementary pairs are given in Table S4.688
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Table S4: Stabilities of subsystems for the Duffy et al. (27) model689

Subsystem Variables Eigenvalues Stability

Ecological {S, I, Z} −1.05,−0.091,−0.00671 stable

Evolutionary {x1, x2} −0.00249,−1 stable

Host evo {x1, x2} −0.00249,−1 stable

Complement {S, I, Z} −1.05,−0.091,−0.00671 stable

Host eco-evo {S, I, x1, x2} −0.0991,−1.49,−1.00,−1 stable

Complement {Z} −0.05 stable

Parasite eco {I, Z} −1.05, 1.19 unstable

Complement {S, x1, x2} −0.0998,−0.00225,−1 stable

690
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S4.4 Frickel et al. (9) Model691

In matrix form the model is692

dS

dt
= D(S0 − S)− c

N∑
i=1

gi(S)Bi

d ~B

dt
= MB(g(S) ∗ ~B)− (φA~P ) ∗ ~B −D~B

d~P

dt
= Mpβ(φAT ~B) ∗ ~P − (φA~B) ∗ ~P −D~P

(S.13)

where S is the resource concentration, ~B = (B1, B2, B3, B4) is the density of algal clones,693

and ~P = (P1, P2, P3) is the density of viral types. In the model, ∗ denotes component-wise694

multiplication, gi(S) = aiS/(H + S), ai = a1 + (aN − a1)(i− 1)/(N − 1), and A is an upper695

triangular 4x3 matrix with ones on and above the main diagonal. The matrices MB and Mp696

are697

MB =



1− ε ε/2 0 0

ε 1− ε ε/2 0

0 ε/2 1− ε ε

0 0 ε/2 1− ε


, MP =


1− ε ε/2 0

ε 1− ε ε

0 ε/2 1− ε

 (S.14)

The parameter values are a1 = 0.25, aN = 0.15, D = 0.1, S0 = 30, H = 1, c = 2.3 · 10−5,698

φ = 7.5 · 10−8, β = 100, ε = 10−3.699

The three ecological variables for the continuous trait model are S, total algal density700

(B = B1 + B2 + B3 + B4), and total viral density (P = P1 + P2 + P3). The evolutionary701

variables are x1 = B1/B, x2 = B2/B, x3 = B3/B, x4 = P1/P , x5 = P2/P . The equilibrium702

of the continuous trait model is (S,B, P, x1, x2, x3, x4, x5)703

= (2.01, 1210000, 0.00884, 0.726 · 10−4, 0.00224, 889000, 0.973 · 10−5, 0.005). The Jacobian is704
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−0.564 2.32 · 10−6 0 −1.85 −1.24 −0.618 0 0

20200 0 −0.00101 80.1 −26800 −53300 187 181

0 0.0736 0 7.97 · 106 7.97 · 106 7.93 · 106 −18500 −17900

0.0000967 0 −6.56 · 10−10 −1.18 · 10−6 0.000268 0.00039 −1.37 · 10−6 −1.32 · 10−6

7.93 · 10−7 0 −5.38 · 10−12 0.000167 −0.0222 6.44 · 10−5 4.83 · 10−6 −1.09 · 10−8

2.44 · 10−5 0 −1.656 · 10−10 −0.0001 0.000022 −0.0441 0.000149 0.000149

0 0 0 2.26 · 10−5 −6.46 · 10−5 −8.69 · 10−5 −0.0208 4.06 · 10−5

0 0 0 0.00897 0.00897 −0.0356 0.000083 −0.0201


(S.15)

where the order of the columns and rows is (S,B, P, x1, x2, x3, x4, x5). The eigenvalues are705

(−0.463,−0.00437 ± 0.0792i,−0.1,−0.0365,−0.0204,−0.0207,−0.0222), which implies the706

equilibrium is stable. The stabilities of the complementary pairs are given in Table S5.707
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Table S5: Stabilities of subsystems for the Frickel et al. (9) model708

Subsystem Variables Eigenvalues Stability

Ecological {S,B, P} −0.463,−0.1,−0.000905 stable

Evolutionary {x1, x2, x3, x4, x5} −5.11 · 10−8,−0.0439,−0.0222,−0.0203,−0.0208 stable

Prey evo {x1, x2, x3} −5.0610 · 10−8,−0.0222,−0.0441 stable

Complement {x1, x2, x3} −0.463,−0.1,−0.000905,−0.0208,−0.0201 stable

Prey eco-evo {B, x1, x2, x3} 0,−5.06 · 10−8,−0.0222,−0.0441 neutrally stable

Complement {S, P, x4, x5} 0,−0.564,−0.0207,−0.0201 neutrally stable

Predator evo {x4, x5} −0.0208,−0.0201 stable

Complement {S,B, P, x1, x2, x3} −0.463,−0.00436± 0.0792i,−0.1,−0.0368,−0.0222 stable

Predator eco-ev {P, x4, x5} 0,−0.0208,−0.0201 neutrally stable

Complement {S,B, x1, x2, x3} −0.463, 0.102,−0.044,−0.0222,−5.01 · 10−8 stable

709
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S4.5 Haafke et al. (13) Model710

The model is

dN

dt
= δ(Nstock −N)−

∑
i

pjiAiN

Ki
A +N

dAi
dt

= Ai

[
XApiN

Ki
A +N

−
∑
j

pjiG(Rj + Sj)

Kj
R +Qj

− δ

]
dRj

dt
= Rj

[
XrGQ

j

Kj
R +Qj

− (m+ δ + λ)

]
dSj
dt

= λRj − (δ +m)Sj

(S.16)

where N is the concentration of nitrogen, Ai is the density of algal clones (i = 1, 2), Rj and711

Sj are the densities of breeding and senescent rotifer clones (j = 1, 2), and Qj = pj1A1+pj2A2.712

The parameter values are δ = 0.3, Nstock = 160, K1
A = 8, K2

A = 2.2, K1
R = 0.15, K2

R = 0.15,713

XA = 0.0027, G = 0.011, m = 0.055, λ = 0.4, Xr = 170, p11 = 0.1, p12 = 1, p21 = 1, p22 = 0.1,714

p1 = 270, p2 = 270.715

The four ecological variables of the continuous trait model are nitrogen concentration716

(N), total algal density (A = A1 + A2), and total breeding (R = R1 + R2) and senes-717

cent (S = S1 + S2) rotifers. The evolutionary variables are x1 = A1/A, x2 = R1/R,718

and x3 = S1/S. The equilibrium of the continuous trait model is (N,A,R, S, x1, x2, x3) =719

(22.7, 0.185, 5.9, 6.65, 0.5, 0.627, 0.627). The Jacobian is720



−0.599 −223 0 0 8.58 0 0

0.000808 0.122 −0.00444 −0.00444 −0.00935 0 0

0 14.4 0 0 −1.10 0. 0

0 0 0.4 −0.355 0 0 0

0.000898 −0.0685 0.0025 0.0025 0.0816 0.116 0.131

0 −5.74 · 10−10 0 0 −0.345 0. 0

0 0 0. −2.83 · 10−12 0 0.355 −0.355



(S.17)
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where the order of the columns and rows is (N,A,R, S, x1, x2, x3). The eigenvalues are721

(0.0156 ± 0.369i, 0.0602 ± 0.274i,−0.417 ± 0.133i,−0.423), which implies the equilibrium722

is unstable. The instability of the equilibrium is due to a Hopf bifurcation that occurs at723

δ ≈ 0.734. The stabilities of the complementary pairs are given in Table S6.724

725

Table S6: Stabilities of subsystems for the Haafke et al. (13) model726

Subsystem Variables Eigenvalues Stability

Ecological {N,A,R, S} 0.00149± 0.387i,−0.418± 0.136i unstable

Evolutionary {x1, x2, x3} 0.0729± 0.259i,−0.419 unstable

Prey evo {x1} 0.0816 unstable

Complement {N,A,R, S, x2, x3} 0.00149± 0.387i,−0.418± 0.136i,−0.355, 0 unstable

Prey eco-evo {A, x1} 0.134, 0.0694 unstable

Complement {N,R, S, x2, x3} 0, 0,−0.599,−0.355,−0.355 neutrally stable

Predator evo {x2, x3} 0,−0.355 neutrally stable

Complement {N,A,R, S, x1} −0.418± 0.132i, 0.013± 0.38i, 0.0595 unstable

Predator eco-evo {R,S, x2, x3} 0, 0,−0.355,−0.355 neutrally stable

Complement {N,A, x1} −0.244± 0.212i, 0.0917 unstable

727
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S4.6 Hiltunen et al. (35) Model728

The model is

dS

dt
= δ(1− S)− rS

(
A1

k1 + S
+

A2

k2 + S

)
dAi
dt

= Ai

[
rS

ki + S
− pigR

kR + Er + αFF
− πihF − δ

]
dR

dt
= R

[
gER

kR + ER + αFF
+

ηF

kR + ER + αFF
− δ
]

dF

dt
= F

[
hEF −

ηR

kR +Q+ αFF
− δ
]

+ IF

(S.18)

where S is the concentration of limiting substrate, Ai is the density of algal clones (i = 1, 2),729

R is the density of rotifers (the intraguild predator), and F is the density of flagellates (the730

intraguild prey). In the model ER = p1A1 + p2A2 and EF = π1A1 + π2A2. The three731

parameterizations for figures 1b-d are listed below.732

The four ecological variables of the continuous trait model are S, A = A1 +A2, R, and F733

and the evolutionary variable is x1 = A1/A. Note that the ecological subsystem {S,A,R, F}734

and the complementary evolutionary subsystem {x1} also define the prey evolutionary sub-735

system and its complement.736

737

Figure 1b: The parameter values are δ = 1, r = 2, k1 = 0.234, k2 = 0.19, p1 = 0.05, p2 = 1,738

g = 2, kr = 0.2, αF = 0.05, π1 = 1, π2 = 0.1, h = 3, η = 0.08, IF = 0.001. The equilibrium739

of the continuous trait model is (S,A,R, F, x1) = (0.372, 0.497, 0.0608, 0.0711, 0.633). The740

Jacobian for the continuous trait model is741



−1.62 −1.27 0 0 0.0478

0.619 0.06 −0.985 −0.99 −0.0705

0 0.0604 0 0.00455 −0.0715

0 0.144 −0.0142 −0.014 0.0943

0.0166 −0.0664 1.1 −0.635 0.0786


(S.19)
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where the order of the columns and rows is (S,A,R, F, x). The eigenvalues are742

(−1,−0.29± 0.506i, 0.0422± 0.363i), which implies the equilibrium is unstable. The insta-743

bility of the equilibrium is due to a Hopf bifurcation that occurs at δ ≈ 1.17. The stabilities744

of the complementary pairs are given in Table S7.745

746

Figure 1c: The parameter values are δ = 1, r = 3.3, k1 = 0.1475, k2 = 0.07375, p1 = 0.05,747

p2 = 1, g = 2.5, kR = 0.2, αF = 0.05, π1 = 1, π2 = 0.05, h = 3, η = 0.4, IF = 0.001. The748

equilibrium of the continuous trait model is (S,A,R, F, x1) = (0.168, 0.456, 0.146, 0.231, 0.869).749

The Jacobian for the continuous trait model is750



−3.19 −1.83 0 0 0.244

2.19 0.06 −0.682 −1.18 −0.149

0 0.132 0 0.176 −0.327

0 0.635 −0.318 0.00367 0.231

0.0824 −0.081 0.928 −0.347 0.202


(S.20)

where the order of the columns and rows is (S,A,R, F, x). The eigenvalues are751

(−1 ± 1.12,−1, 0.0395 ± 0.619i), which implies the equilibrium is unstable. The instability752

of the equilibrium is due to a Hopf bifurcation that occurs at δ ≈ 1.69. The stabilities of the753

complementary pairs are given in Table S7.754

755

Figure 1d: The parameter values are δ = 1, r = 2, k1 = 0.19, k2 = 0.12, p1 = 0.1, p2 = 1,756

g = 2, kR = 0.2, αF = 0.05, π1 = 1, π2 = 1, h = 3, η = 0.4, IF = 0.001. The equilibrium757

of the continuous trait model is (S,A,R, F, x1) = (0.485, 0.343, 0.03307748540, 0.14, 0.622).758

The Jacobian for the continuous trait model is759
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−1.26 −1.5 0 0 0.0571

0.263 0.0343 −0.844 −1.03 −0.0241

0 0.0407 0 0.0323 −0.0285

0 0.425 −0.156 −0.00645 −0.00445

0.0419 −0.0481 1.18 −0.00546 0.0337


(S.21)

where the order of the columns and rows is (S,A,R, F, x). The eigenvalues are760

(−1,−0.106± 0.763i, 0.0052± 0.174i), which implies the equilibrium is unstable. The insta-761

bility of the equilibrium is due to a Hopf bifurcation that occurs at δ ≈ 1.17. The stabilities762

of the complementary pairs are given in Table S7.763

764
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Table S7: Stabilities of subsystems for the Hiltunen et al. (35) model765

Subsystem Variables Eigenvalues Stability

Fig. 1b Ecological {N,C,B, S} −1,−0.285± 0.503i,−0.00317 stable

Evolutionary {x1} 0.0786 unstable

Prey eco-evo {C, x1} −6.32 · 10−11, 0.138 unstable

Complement {N,B, S} −1.62,−0.00698± 0.00395i stable

Predator eco {B,S} −0.00698± 0.00395i stable

Complement {N,C, x1} −0.784± 0.283i, 0.0877 unstable

Fig. 1c Ecological {N,C,B, S} −0.997± 1.146i,−1,−0.129 stable

Evolutionary {x1} 0.202 unstable

Prey eco-evo {C, x1} −1.93 · 10−11, 0.262 unstable

Complement {N,B, S} −3.19, 0.00183± 0.237i unstable

Predator eco {B,S} 0.00183± 0.237i unstable

Complement {N,C, x1} −1.57± 1.16i, 0.207 unstable

Fig. 1d Ecological {N,C,B, S} −1,−0.11± 0.764i,−0.0142 stable

Evolutionary {x1} 0.0337 unstable

Prey eco-evo {C, x1} 0.068, 1.34 · 10−12 unstable

Complement {N,B, S} −1.263,−0.00322± 0.0709i stable

Predator eco {B,S} −0.00322± 0.0709i stable

Complement {N,C, x1} −0.779,−0.46, 0.0395 unstable

766
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S4.7 Kasada et al. (26) Model767

The model is

dN

dt
= δ(NI −N)− ωc

εc

∑
i

βiNCi
Kc +N

dCi
dt

= Ci

[
χc
ωc
εc

βiN

Kc +N
− GpiB

Kb + p1C1 + p2C2

− δ
]

dB

dt
= Bχb

G(p1C1 + p2C2)

Kb + p1C1 + p2C2

− (m+ δ)B

(S.22)

where N is concentration of nitrogen, Ci is the density of algal clones (i = 1, 2), and B768

is the density of rotifers. We only focus on the parameter values for the UTEX396 and769

UTEX265 algal clones because coexistence of multiple clonal types did not occur for other770

combinations. This corresponds to figure 4E in Kasada et al. (26). The parameter values771

are β1 = 1.77, β2 = 1.57, p1 = 0.102, p2 = 0.102 · 0.688, NI = 80, δ = 0.5, χc = 0.05,772

χb = 54000, m = 0.055, Kc = 4.3, Kb = 0.835, ωc = 20, ε = 1, G = 5 · 10−5.773

For the continuous trait model the ecological variables are N , C = C1 + C2, and B and774

the evolutionary variable is x1 = C1/C. The equilibrium of the continuous trait model is775

(N,C,B, x1) = (3.42, 2.63, 58500, 0.38). The Jacobian for the system is776



−6.74 −14.6 0 −4.65

0.312 0.047 −0.0000103 0.00478

0 9822 0 9980

0.0034 0.0016 −3.57 · 10−7 0.00166


(S.23)

where the order of the columns and rows is (N,C,B, x). The eigenvalues are777

(−5.99,−0.455,−0.239,−0.0117), which implies the equilibrium is stable. The stabilities of778

the complementary pairs are given in Table S8. Note that the ecological subsystem and the779

complementary evolutionary subsystem also define the prey evolutionary subsystem and its780

complement.781
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Table S8: Stabilities of subsystems for the Kasada et al. (26) model782

Subsystem Variables Eigenvalues Stability

Ecological {N,C,B} −5.99,−0.455,−0.25 stable

Evolutionary {x1} 0.00166 unstable

Prey eco-evo {C, x1} 0.0487,−3.21 · 10−11 stable

Complement {N,B} 0,−6.74 neutrally stable

Predator eco {B} 0 neutral

Complement {N,C, x1} −5.98,−0.709, 0.000837 unstable

783
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S4.8 Wei et al. (34) Model784

The model is

dR

dt
= w(C −R)− R

k +R
e(vN + v1N1 + v2N2 + v12N12)

dN

dt
= ψ(R)N − δ1(R)NP1 − δ2(R)NP1 −

R

R + k
[nxN − xnX]− nwN + wnNW − wN

dN1

dt
= ψ1(R)N1 − δ1(R)N1P1 − δ2(R)N1P1 −

R

R + k
[nxN1 − xnX1]− nwN1 + wnNW1 − wN1

dN2

dt
= ψ2(R)N2 − δ1(R)N2P1 − δ2(R)N2P1 −

R

R + k
[nxN2 − xnX2]− nwN2 + wnNW2 − wN2

dN12

dt
= ψ12(R)N!2 − wN12

dNW

dt
= nwN − wnNW − wwN

dNW1

dt
= nwN1 − wnNW1 − wwN1

dNW2

dt
= nwN2 − wnNW2 − wwN2

dX

dt
=

R

R + k
[nxN − xnX]− wX

dX1

dt
=

R

R + k
[nxN1 − xnX1]− wX1

dX2

dt
=

R

R + k
[nxN2 − xnX2]− wX2

dP1

dt
= P1 [δ1(R)(N +N2)(β1(R)− 1))]− wP1

dP2

dt
= P2 [δ2(R)(N +N1)(β2(R)− 1))]− wP2

(S.24)

where the variables are phage densities (P1, P2), planktonic, non-persistor bacteria densi-785

ties (N , N1, N2, N12), persistor bacteria densities (X1, X2, X3) and wall bacteria densities786

(NW,NW1, NW2); the subscripts for the bacteria populations denote which phage the bac-787

teria is resistant to. The functions in the model are788
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φ(R) =
vR

R− k

δi(R) = (1− x)δmax,i + xδmax,i
R

R + k

βi(R) = (1− x)βmax,i + xβmax,i
R

R + k

(S.25)

The parameter values are v = 1, k = 0.25, e = 5 · 10−7, δmax,1 = 0.1 · 10−7, δmax,2 = 0.1 · 108,789

βmax,1 = 50, βmax,2 = 100, x = 0.5, w = 0.4, ww = 0.01, C = 100, nx = 0.0001, xn = 0.0001,790

nw = 0.01, wn = 0.005, v1 = 0.9, v2 = 0.85, v12 = 0.8.791

792

Figure 5a: This parameterization assumes N , X, NW , and N12 are not present, i.e.,793

there are no bacteria susceptible to both or none of the phage types. The ecological vari-794

ables of the continuous trait model are the total densities of the different bacterial types795

and phage: N̄ = N1 + N2, ¯NW = NW1 + NW2, X̄ = X1 + X2, and P̄ = P1 + P2.796

To avoid notational confusion, we use χi to denote the evolutionary traits. The evo-797

lutionary variables are χ1 = N1/N̄ , χ2 = NW2/ ¯NW , χ3 = X1/X̄, and χ4 = P1/P̄ .798

The equilibrium is (R, N̄, ¯NW, X̄, P̄ , χ1, χ2, χ3, χ4) = (94.6, 4.87 · 106, 3.25 · 106, 1210, 5.36 ·799

106, 0.832, 0.832, 0.832, 0.0824). The Jacobian for the system is800



−0.4 −4.45 · 10−7 0 0 0 −0.121 0 0 0

88 −0.00333 0.005 9.97 · 10−5 −0.00439 0 0 0 −2.21 · 106

0 0.01 −0.015 0 0 0 0 0 0

0.0135 9.97 · 10−5 0 −0.4 0 0 0 0 0

5996 44 0 0 0 1.31 · 108 0 0 0

9.73 · 10−8 0 0 0 −1.3 · 10−11 −0.00333 0.00333 2.49 · 10−8 0.823

0 0. 0 0 0 0.015 −0.015 0 0

0 0. 0 0 0 0.4 0 −0.4 0

0 0 0 0 0 −0.216 0 0 0


(S.26)
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where the order of the columns and rows is (R, N̄, ¯NW, X̄, P̄ , χ1, χ2, χ3, χ4). The eigenvalues801

are (−0.0017±0.443i,−0.00167±0.42i,−0.015,−0.015,−0.4,−0.4,−0.4), which implies the802

equilibrium is stable. The stabilities of the complementary pairs are given in Table S9.803
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Table S9: Stabilities of subsystems for the Fig. 5a Wei et al. (34) model804

Subsystem Variables Eigenvalues Stability

Ecological {R, N̄, ¯NW, X̄, P̄} −0.0017± 0.439i,−0.015,−0.4,−0.4 stable

Evolutionary {x1, x2, x3, x4} −0.00166± 0.421i,−0.4,−0.015 stable

Prey evo {x1, x2, x3} −0.4,−5.22 · 10−21,−0.0183 stable

Complement {R, N̄, ¯NW, X̄, P̄ , x4} −0.0017± 0.439i,−0.015,−0.4,−0.4, 0 neutrally stable

Prey eco-evo {N̄ , ¯NW, X̄, x1, x2, x3} −5 · 10−21,−0.0183,−0.4,−0.4,−5.23 · 10−21,−0.0183 stable

Complement {R, P̄ , x4} 0, 0.− 0.4 neutrally stable

Predator evo {x4} 0 neutral

Complement {R, N̄, ¯NW, X̄, P̄ , x1, x2, x3} −0.0017± 0.441i,−4 · 10−7,−0.015,−0.0183,−0.4,−0.4,−0.4 stable

Predator eco-evo {P̄ , x4} 0, 0 neutral

Complement {R, N̄, ¯NW, X̄, x1, x2, x3} −0.00008,−0.0184,−0.4,−0.4,−0.4,−7.29 · 10−24,−0.0183 stable

805
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Figure 5b: This parameterization assumes N2, X2 and NW2 are not present, i.e.,806

there are no types that are just resistant to phage 2. For the continuous trait model807

the ecological variables are the total densities of the different bacterial types and phage:808

N̄ = N + N1 + N12, ¯NW = NW + NW1, X̄ = X + X1, and P̄ = P1 + P2. To avoid809

notational confusion, we use χi to denote the evolutionary traits. The evolutionary vari-810

ables are χ1 = N1/N̄ , χ2 = N12/N̄ , χ3 = NW/ ¯NW , χ4 = X/X̄, and χ5 = P1/P̄ .811

The equilibrium is (R, N̄, ¯NW, X̄, P̄ , χ1, χ4, χ2, χ3, χ5) = (.25, 1.98 · 108, 4.8 · 106, 901, 6.44 ·812

107, 0.029, 0.964, 0.203, 0.203, 0.104). The Jacobian for the system is813



−80.2 −2.01 · 10−7 0 0 0 4.96 9.92 0 0 0

1.59 · 108 −0.000121 0.005 0.00005 −0.006 0. 6.61 · 105 0 0 −3.58 · 105

0 0.000363 −0.015 0 0 0 −1.98 · 106 0 0 0

721 1.82 · 10−6 0 −0.4 0 0 −9920 0 0 0

3.46 · 107 0.13 0 0 0 −3.62 · 108 −9.98 · 108 0 0 0

0.00197 −4.69 · 10−13 1.94 · 10−11 1.94 · 10−13 −1.86 · 10−11 −0.00333 −9.65 · 10−5 −0.000121 −2.27 · 10−10 0.00145

−0.00296 5.88 · 10−13 −2.43 · 10−11 −2.43 · 10−13 2.9 · 10−11 ·10−20 −0.00321 0 0 0.00174

0 0 0 0 0 −0.413 −0.33 −0.015 0 0

0 0 0 0 0 −11 −8.78 0 −0.4 0

0.000344 0 0 0 0 −5.04 −4.02 0 0 0


(S.27)

where the order of the columns and rows is (R, N̄, ¯NW, X̄, P̄ , χ1, χ4, χ2, χ3, χ5). The eigen-814

values are (−79.8,−0.00198± 0.162i,−0.00168± 0.1i,−0.015,−0.0151,−0.401,−0.4− 0.4),815

which implies the equilibrium is stable. The stabilities of the complementary pairs are given816

in Table S10.817
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Table S10: Stabilities of subsystems for the Fig. 5b Wei et al. (34) model818

Subsystem Variables Eigenvalues Stability

Ecological {R, N̄, ¯NW, X̄, P̄} −79.8,−0.000645,−0.015,−0.401,−0.4 stable

Evolutionary {x1, x2, x3, x4, x5} −0.4,−0.00164± 0.119i,−0.00321,−0.015 stable

Prey evo {x1, x2, x3, x4} −0.4,−0.0183,−1.88 · 10−18,−0.00321 stable

Complement {R, N̄, ¯NW, X̄, P̄ , x5} −79.8,−0.401,−0.4,−0.015,−0.000645, 3.57 · 10−15 unstable

Prey eco-evo {N̄ , ¯NW, X̄, x1, x2, x3, x4} 1.6 · 10−20,−0.0183,−0.4,−0.0183 unstable

−0.4, 8.67 · 10−20, 9.31 · 10−20

Complement {R, P̄ , x5} 0, 0,−80.2 neutrally stable

Predator evo {x5} 0 neutral

Complement {R, N̄, ¯NW, X̄, P̄ , x1, x2, x3, x4} −79.8,−0.00202± 0.148i,−0.401,−0.4 stable

−0.4,−0.0183,−0.015, 3.54 · 10−16

Predator eco-evo {P̄ , x5} 0, 0 neutral

Complement {R, N̄, ¯NW, X̄, x1, x2, x3, x4} −79.8,−0.0182,−0.402,−0.4 unstable

−0.4,−0.0183,−8.42 · 10−20, 3.02 · 10−18

819
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S4.9 Yoshida et al. (10; 11) Model820

The model is

dN

dt
= δ(V NI −N)− ωc

εc

∑
i

βcCiN/V

Kc,i +N/V

dCi
dt

= Ci

[
χc
ωc
εc

βcCiN/V

Kc,i +N/V
− GpiB

Kb + p1C1 + p2C2

− δ
]

dB

dt
= Rχb

G(p1C1 + p2C2)

Kb + p1C1 + p2C2

− (m+ δ)B

dR

dt
= Rχb

G(p1C1 + p2C2)

Kb + p1C1 + p2C2

− (m+ δ + λ)R

(S.28)

where N is concentration of nitrogen, Ci is the density of algal clones (i = 1, 2), and B821

and R are the total rotifer density and density of fertile rotifers, respectively. In the model822

Kc,i = Kmin + α2(1 − pα1
i )1/α2 . The parameters are NI = 80, V = 0.33, Kmin = 4.3,823

Kb = 0.292, βc = 3.3, α1 = 0.8, α2 = 9.5, pmin = 0.02, δ = 0.69, χb = 5400, χc = 0.05,824

ωc = 20, εc = 1, G = 3.3 · 10−4, λ = 0.4, m = 0.055, p1 = 0.02, p2 = 1.825

For the continuous trait model the ecological variables are N , C = C1 + C2, B, and R826

and the evolutionary variable is x1 = C1/C. The equilibrium of the continuous trait model827

is (N,C,B,R, x1) = (0.731, 1.07, 690, 449, 0.495). The Jacobian for the system is828



−18.7 −16.5 0 0 5.55

0.9 0.0877 −0.000212 0 −0.178

0 171 −0.745 1.15 −349

0 171 0 0 −349

−0.0443 −0.0388 0.0000939 0 0.079


(S.29)

where the order of the columns and rows is (N,C,B,R, x1). The eigenvalues are829

(−17.8,−0.864,−0.562, 0.0028 ± 0.219i), which implies the equilibrium is unstable. The830

instability of the equilibrium is due to a Hopf bifurcation that occurs at δ ≈ 0.7. The831

stabilities of the complementary pairs are given in Table S11.832
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Table S11: Stabilities of subsystems for the Yoshida et al. (10; 11) model833

Subsystem Variables Eigenvalues Stability

Ecological {N,C,B,R} −17.9,−0.0951,−0.535,−0.856 stable

Evolutionary {x1} 0.079 unstable

Prey evo {x1} 0.079 unstable

Complement {N,C,B,R} −17.9,−0.0951,−0.535,−0.856 stable

Prey eco-evo {C, x1} 0.167, 1.43 · 10−10 unstable

Complement {N,B,R} −18.7,−0.745, 0 neutrally stable

Predator eco {B,R} 0,−0.745 neutrally stable

Complement {N,C, x1} −17.8,−0.741, 0.0659 unstable

834
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