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ABSTRACT

Swine movement networks among farms/operations are an important source of information to understand and prevent the
spread of diseases, nearly nonexistent in the United States. An understanding of the movement networks can help the
policymakers in planning effective disease control measures. The objectives of this work are: 1) estimate swine movement
probabilities at the county level from comprehensive anonymous inventory and sales data published by the United States
Department of Agriculture - National Agriculture Statistics Service database, 2) develop a network based on those estimated
probabilities, and 3) analyze that network using network science metrics. First, we use a probabilistic approach based on the
maximum entropy method to estimate the movement probabilities among different swine populations. Then, we create a swine
movement network using the estimated probabilities for the counties of the central agricultural district of Iowa. The analysis of
this network has found evidence of small-world phenomenon. Our study suggests that the US swine industry may be vulnerable
to infectious disease outbreaks because of the small-world structure of its movement network. Our system is easily adaptable
to estimate movement networks for other sets of data, farm animal production systems, and geographic regions.

Introduction
Livestock is often moved between facilities to reduce costs and improve productivity. There is an old adage, "Livestock
follow the grain". Even now this proverb seems true, as shipping the animals is less expensive than shipping the grains, which
are required for animals to attain their slaughter weights. The corn-belt region (Iowa, Missouri, Illinois, Indiana, and Ohio)
is the largest market for feeder pigs1 because they are the largest producers of two major sources of hog rations (corn and
soybeans). Although movements in the livestock industry can reduce the cost of production, movements have a major role
in the risk of pathogens spread. Movement of swine among the farms is one of the major pathways for the spreading of
several diseases (e.g., PRRS-Porcine reproductive and respiratory syndrome, PED-Porcine epidemic diarrhea etc.) in the US
swine industry2, 3. Knowledge of livestock movement could be useful in the control of pathogen spread. In Europe, there
are several well-established animal tracking systems. However, similar programs are yet to be mandated for the US. In the
US, a comprehensive livestock tracking system has not been implemented because of a cultural preference for privacy and
competition between producers4. The United State Department of Agriculture collects movement information when livestock
shipments cross state boundaries. There is no program that collects movement information at the county or farm level.

In the past literature, several models have been developed to understand swine movement in different regions of the US4–6.
However, all of them used confidential incomplete datasets, which are not publicly accessible, and also which are not inclusive
of the whole US. Yadav et al.5 developed a model to understand classical swine fever outbreak-related outcomes in Indiana.
They have used data from USHerds (US Animal Health Emergency Reporting and Diagnostic System), where import-export
activities, location of import origin, receiving swine premises, shipment size and shipment date are listed. However, only 22%
of the states participates in the USHerds program. Another research group predicted movement networks of the swine industry
for some counties of Minnesota using a machine learning approach6. They used confidential survey data from two counties to
train their model. The objective of our research is to understand the swine movement network in the US from publicly available
census data. A network is a useful structure in the study of any spreading phenomena, where farm-level animal movement
networks are used as a key component in the area of disease spreading7, 8.

In this work, we estimate the swine movement probabilities between counties based on published inventory and sales data
from the Census of Agriculture. We develop a convex optimization problem with some linear constraints for the US swine
industry. To solve this problem, we adapt the cattle movement model from Schumm et al.9 to the swine population. In particular,
we maximize the entropy of out-going distributions from each swine sub-population. Maximum entropy methods have been
used in various research fields10–12. The maximum entropy principle states that the best way to approximate the unknown
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distribution that satisfies all the constrains will have the maximum entropy13. We propose a novel algorithm to develop a farm
level swine movement network using the estimated swine movement probabilities. In this network, nodes (or vertices) represent
the swine-farms and the directed links (or edges or connections) represent directional swine movements between the farms.
To understand the generated swine movement network, we use network analysis tools. It has been used several times in the
literature to understand the livestock movement patterns14–16. From the analysis of the developed swine movement network, we
find trace of the small world phenomenon, and presence of hubs in the US swine movement network.

Materials and Methods
First, we develop a convex optimization problem to estimate swine movement probabilities. Next, we propose an algorithm
to develop a network based on those probabilities, where nodes or vertices are farms or operations and edges among them
represent swine movement. Finally, we analyze the network using different network analysis metrics.

Data
We collect the county-wise hog inventory, sales, slaughter, and dead/lost pig data from the United States Department of
Agriculture National Agricultural Statistics Service (USDA-NASS)17. The USDA-NASS conducts a census every five years,
which compiles a uniform, comprehensive agricultural data set for each county of the entire US. We used the data from the
2012 Census of Agriculture, as the census of 2017 is not published fully at the time of this research. For each county, two sets
of data are available: 1) inventory and 2) sales. In both types, pigs are grouped into seven classes based on operation/farm
size. These groups are: size1 (1-24 pigs), size2 (25-49 pigs), size3 (50-99 pigs), size4 (100-199 pigs), size5 (200-499 pigs),
size6 (500-999 pigs), and size7 (more than 1000 pigs). For each size group, data for the number of operations and the number
of pigs are available. However, several data points were not published to maintain anonymity; we estimate those to develop
the network model. Another set of missing data are the geographic farm locations; we use geographical county centroids to
measure the distances among counties.

We estimate the swine movement probabilities among sub-populations for the state of Iowa, where a sub-population is
denoted as the swine population in a size group in a county. Iowa has the largest swine inventory (31.43%) in the US18. In
the list of America’s top 100 pig farming counties, 42 counties are from Iowa alone19. It is also the most vulnerable state for
the introduction of classical swine fever and African swine fever viruses due to legal import of live swine20. Having Iowa 99
counties in total, the number of swine sub-populations in our optimization problem is 99×7.

Swine movement probability estimation
To estimate the pig movement rate among different sub-populations, we use a convex optimization problem. This convex
optimization problem consists of two steps: 1) estimation of the non-disclosed data points in the inventory and sales data and 2)
estimation of movement probabilities among different sub-populations.

To estimate non-disclosed points in the inventory data, we formulate an entropy function. By maximizing this function,
we estimate the data points with minimum assumptions21. This process is detailed in Schumm et al9. In step 2, we construct
a convex optimization problem, which includes a series of linear constraints. The objective of this problem is to maximize
the entropy of the out-going flows from each sub-population. The maximum entropy is a well-known method of statistical
inference, which has been used in diverse research fields including ecology, thermodynamics, economics, forensics, language
processing, astronomy, image processing etc.12, 22, 23. This method produces the least biased predictions while maintaining
prior knowledge constraints.

In the convex optimization problem, there are C counties and each county has I size groups. A pig from a sub-population
could be moved to other sub-population, or slaughtered, or lost, or stayed in that sub-population. We define the entropy of the
out-going distributions from all sub-populations as,

Entropy = ∑
county,c∈C

∑
size,i∈I

[ ∑
county,d∈C

∑
size, j∈I

−md
i, j,dist(c,d) ∗ log(md

i, j,dist(c,d)) −rnd
c,i ∗ log(rend

c,i)− sld
c,i ∗ log(sld

c,i)− ltd
c,i ∗ log(ltd

c,i)]

(1)

The purpose of this step is to find the decision variables that maximize the Eq 1. We estimate the movement parameter
md

i, j,dist(c,d), which represents the movement probability from sub-population (c, i) to sub-population (d, j). A sub-population

(c, i) is the swine population in the size group i in the county c. The superscript d marks the decision variable. sld
c,i is the

probability of pigs being slaughtered for meat from sub-population (c, i). ltd
c,i is the probability of pigs being dead or lost in

sub-population (c, i). rnd
c,i is the probability of remaining in sub-population (c, i). We divide the distance between counties into

five classes: 1) distance ∈ [0,20), 2) distance ∈ [20,100), 3) distance ∈ [100,200), 4) distance ∈ [200,400), and 5) distance
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∈ [400,Dmax]. dist(c,d) represents the distance class for the distance between county c and d. This problem is subject to
several linear constraints, which we construct from statistical rules, movement data, and swine population conservation.

The constraints for the statistical rule are,

∑
county,d∈C

∑
size, j∈I

md
i, j,dist(c,d)+ rnd

c,i + sld
c,i + ltd

c,i = 1 ∀(c, i) (2)

Constraints in the Eq 2 state that the sum of the outgoing probabilities from a sub-population is equal to 1.
Constraints for the movement data are,

∑
size,i∈I

∑
county,d∈C

∑
size, j∈I

Ivr
c,i ∗md

i, j,dist(c,d)+ ∑
size,i∈I

Ivr
c,i ∗ sld

c,i + ∑
size,i∈I

Ivr
c,i ∗ tsld

c,i +ET mov
c =

Salesr
c

scaled
∀c (3)

The superscript r indicates published data. Ivr
c,i is the swine inventory in sub-population (c, i). tsld

c,i represents sales from
sub-population (c, i) to outside of the state. Salesr

c represents the total sales from county c. The term scaled is used to convert
the timescale. The data here are yearly data, this term allows us to convert the timescale from yearly to weekly basis. ET mov

c is
the error term for movement constrains.

Constrain for the slaughtered swine is,

∑
county,c∈C

∑
size,i∈I

Ivr
c,i ∗ sld

c,i +ET sl =
Slaughtered

scaled
(4)

The term Slaughtered represents the total number of slaughtered in a year in the system. ET sl is the error term for slaughtered
data.

Constrain for the inshipments is;

∑
county,c∈C

∑
size,i∈I

Ivr
c,i ∗ isd

c,i +ET in =
Totalinshipment

scaled
(5)

isd
c,i indicates the inshipment rate from outside of the state in sub-population (c, i). Totalinshipment is the inshipment from

outside in a year in the system. ET in is the error term for inshipment.
In a sub-population, summation of the outgoing flows is equal to the summation of the incoming flows. Constrains for the

population conservation are,

Ivr
c,i ∗ ∑

county,d∈C
∑

size, j∈I
md

i, j,dist(c,d)+ Ivr
c,i ∗ sld

c,i + Ivr
c,i ∗ ltd

c,i + Ivr
c,i ∗ tsld

c,i

= ∑
county,d∈C

∑
size, j∈I

Ivr
d, j ∗md

j,i,dist(c,d)+ Ivd
c,i,b ∗btd

c,i + Ivr
c,i ∗ isd

c,i +ET pop
c,i ∀(c, i)

(6)

here, Ivd
c,i,b represents the breeding population, btd

c,i is the probability of birth in county c and size group i, and ET pop
c,i is the

error term. The left side of the equation 6 is the summation of the outgoing flows from sub-population (c, i) and the right
side is the summation of the incoming flows into the sub-population (c, i). The range for btd

c,i is (7×9)/115− (7×12)/112
week−1, as time period for gestation is 112-115 days and average litter rate is 9-1218. The range for sld

c,i was chosen based on
the lifespan of market pigs in the US, which is about 25 to 28 weeks.

Constrain for the errors is,

∑
county,c∈C

|ET mov
c |+ |ET sl |+ |ET In|+ ∑

county,c∈C
∑

size,i∈I
|ET pop

c,i | ≤ Rc ∗TotalPopulation (7)

The left side of the Eq 7 represents the summation of all the errors in the optimization problem. Here, Rc is a proportional
constant, and TotalPopulation is the total swine population in the system.

Convex cost function (Eq 1) and constrains (Eq 2-7) constitute our optimization linear problem.
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Network Development
We develop a network using the movement parameters which are obtained using the maximum entropy optimization. The
network development is done in two stages: 1) setup of the population in each farm and 2) setup of the movement links between
farms.

In order to generate the network, first, we need the farm level estimates of the pig population. The USDA-NASS data only
provide the number of farms in a size range and the number of total pigs in that range. Recorded data on the number of pigs in
a farm are generally not available in the US (with the exception of a few counties). To allocate the pig population, we generate
random numbers for every farm in a size group i within a county c with the following constraints:
a) The random numbers fall in the range of the corresponding group i.
b) The sum of all generated numbers is equal to the total number of pigs in that sub-population (c, i).

Our movement network for pig farms is represented as (V,E,W ). The term V denotes the set of nodes, the term E represents
the set of links or connections among individual nodes, and W denotes the weight of each link. To generate the movement
network among farms, we use the following procedures:

Step 1 For each pig p1 in a sub-population (c, i), we generate a random number rand for sub-population (d, j), d =
1,2,3, .....C, and j = 1,2,3, ....I. Here, C is the number of counties in the system and I is the number of size groups.

Step 2 If rand <= md
i, j,dist(c,d), a link is created from pig p1 to another pig p2. Pig p2 is picked randomly from the

sub-population (d, j).

Step 3 If there is no link from the parent farm f1 of pig p1 to the parent farm f2 of pig p2, we create a link f link from f1
to f2. Otherwise, if a link already exists, we increase its weight by 1.

Step 4 For each sub-population (c, i), we repeat Steps 1-3.

This process produces a directed weighted network at the farm level. Links or connections among farms represent swine
movement. The weight of a link represents the volume of movements occurred from one farm to another.

Network Analysis
To capture the particular features of the developed network, we compute the following network analysis metrics: node strength,
betweenness, eigenvector, clustering coefficient centrality measures, and average shortest path24–26. Centrality measures can
help us determine the most important or central nodes in a network.

The node strength-centrality measure is the strength of the nodes or sum of the weights of the edges connected to it27. In
a directed network, the nodes have two types of vertex-strength centralities: 1) in-strength Is, and 2) out-strength Os.

Is(i) = ∑
j∈NB(i)

w ji (8)

Os(i) = ∑
j∈NB(i)

wi j (9)

Here, w ji is the connection strength of the edge/link from j to i, NB(i) is the set of the neighbors of node i. Vertex strength can
be illuminating in the investigation of diseases spreading. A high in-strength node has a high risk of receiving infection. On the
other hand, a high out-strength node is influential over the network, as such a node can infect many more nodes.

The betweenness centrality measure suggests which nodes are important in the connection flow or act as bridges in the
network. Betweenness centrality of a node measures how many shortest path between different pairs of nodes go through that
particular node. Nodes with high betweenness centrality have high control over flow (here, concerning flow of swine) in the
network. Removal of such nodes can effectively reduce connectivity in the network. Knowledge of these nodes can be useful in
controlling outbreaks28. Let, pst be the number of shortest paths from s ∈ N to t ∈ N. We denote, pst(i) to be the number of
shortest paths from s to t, that includes node i somewhere in between. The betweenness centrality of a node i is defined29 as:

B(i) = ∑
s6=i6=t∈N

pst(i)
pst

(10)

Eigenvector centrality is an extension of the degree/strength centrality. In the eigenvector centrality measure, the centrality
of a node is proportional to the sum of the centralities of its neighbors.

e(i) = λ
−1
1 ∗ ∑

j∈NB(i)
e( j) (11)
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Here, e(i) is the eigenvector centrality of the node i, and λ1 is the largest eigenvalue of the adjacency matrix [ai j] of the network.
Eigenvector centrality of a node can be large if either it has many neighbors or it has important neighbors. Nodes with high
eigenvector centralities have high probabilities of becoming infected30, 31.

The clustering coefficient measures local group cohesiveness. The clustering coefficient Cc(i) for a node i is the ratio
of the number of edges among the neighbors of i and the maximum possible number of such edges (for the fully-connected
network formed by the neighbors of node i). If neighboring nodes of node i has ci connections among them then clustering
coefficient can be defined as25:

Cc(i) =
ci

|NB(i)|(|NB(i)|−1)/2
(12)

Results
Movement probability estimation
In this research, we solve a convex optimization problem to estimate the swine movement probabilities by using the maximum
entropy approach for Iowa. We utilized the AIMMS modeling system32 of Paragon Decision Technology to solve this convex
optimization problem. One assumption of this problem is sub-population sizes are constant. The time-scale of our estimation
problem is weekly, which we controlled it by using scaled = 52weeks/year. The boundary of error limit in our system is Rc =
5.5% of total swine population in Iowa. We found this value from trial and error with an objective to minimize the total error.
The estimated probabilities are given in Table 1. Table 1 is showing swine movement probabilities between size groups for five
different distance ranges. The highest movement probability is from size7 to size7 sub-population, when the distance between
them is less than 20km. We divide seven size groups into three categories; size: 1-3(small farms), 4-5(medium farms), and
6-7(large farms). The probability is small for the movement from large farms to small farms and vice versa.

Network description
We generate a swine movement network for the central agricultural district of Iowa. It has 12 counties: Boone, Dallas, Grundy,
Hamilton, Hardin, Jasper, Marshall, Polk, Poweshiek, Story, Tama, and Webster. The total number of farms in those 12 counties
is 641, while the net pig population is 2,600,888, which is 12.71% of the total pig population in Iowa. Grundy, Hamilton, Hardin,
Jasper, Marshall, and Webster County are within the America’s top 100 pork producer counties. Among these, Hardin County
is in the 9th position. The descriptions of pig inventories for the above-mentioned counties are provided in the supplementary
material Dataset 1.

For these 12 counties, we have developed a movement network (V,E,W ), which is shown in Fig 1. This network is a
realization based on the movement probabilities from Table 1. For the network, |V |= 641 and |E|= 26,060, the description
of the nodes, and the adjacency list for this network is provided in the supplementary material Dataset 2 and 3. In Fig 1, this
network has seven types of nodes representing the seven size groups. A description of size groups are presented in Table 2. The
largest group is the size7, contains 393 nodes which are presented by light blue. There are 17484 edges among the the nodes of
this group (67.41% of total edges).

Network Analysis
The clustering coefficient of the full network is 0.417, the diameter of the network is 8, and the average shortest path length
is 2.725. A summary of various centrality measures for the network is provided in Table 3. Node-strength, betweenness,
eigenvector and clustering coefficient centrality for seven size groups are presenting here. In-strength, out-strength, betweenness,
and eigenvector centralities were calculated from the overall network. Clustering coefficients in Table 3 were calculated for
networks of the same size group (any node and its neighbors are in the same size group). We used the open source package
Gephi to visualize and analyze the network33.

From the node-strength centrality measures, we observe that the average node-strength is positively correlated with the size
groups. Larger size groups have higher average node-strengths. Consequently, size7 has the highest average node-strength
(Table 3). The node-strength distribution is provided in Fig 2. In the network, only a few nodes have high strength and most of
the nodes have low strength. This characteristic is similar to the power-law distribution. The range of in-strength is 0−2633.
About 84.24% of the total nodes have in-strengths less than 526, which is merely the first 20% of the in-strength range. The
range for out-strength is 0−2187. About 79.88% of the total nodes have out-strengths less than 437, which is within first 20%
of the range of out-strength values. The correlation coefficient between in-strength and out-strength is 0.7999, which is an
indication of strong correlation.

The betweenness centrality is positively correlated with size groups until group6, after which farms in the group7 has
low betweenness. The farms in group6 have the highest average betweenness. The distribution of betweenness centrality
measure is given in Fig 3. Most of the farms have low betweenness. Few farms act as hubs in the network which have high
betweenness. We divide the nodes into three groups, 1) low-betweenness (0-100), 2) medium-betweenness (101-1000), and
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Table 1. Estimated swine movement probabilities mi, j,dist(c,d)×103 from maximum entropy approach.

Destination
Size1 Size2 Size3 Size4 Size5 Size6 Size7

Distance < 20km
size1 1.4959 1.3737 1.4112 1.4056 1.4410 1.4556 1.4911
size2 1.4333 1.4933 1.4073 1.4163 1.4350 1.4444 1.4951
size3 1.3647 1.2582 1.6877 1.4917 1.5190 1.5384 1.5859

Source size4 1.2084 1.2435 1.3374 2.0952 1.7075 1.7960 1.9354
size5 0.2962 0 0.8019 1.9487 5.7582 4.9944 4.6968
size6 0 0 0 1.4524 7.6968 10.9211 7.8967
size7 0 0 0 0 0 0.8257 54.2762

20km < Distance < 100km
size1 1.3813 1.3312 1.3876 1.4055 1.4352 1.4441 1.4858
size2 1.3807 1.3260 1.3823 1.4070 1.4332 1.4404 1.4843
size3 1.3236 1.2157 1.3588 1.3865 1.4976 1.5229 1.5861

Source size4 1.2212 0.9263 1.2939 1.3162 1.6023 1.6535 1.8475
size5 0 0 0.0671 0.6336 2.4507 3.1341 4.0366
size6 0 0 0 0 2.1857 3.6179 5.5171
size7 0 0 0 0 0 0 0

100km < Distance < 200km
size1 1.3728 1.3205 1.3865 1.3955 1.4400 1.4432 1.4900
size2 1.3779 1.3278 1.3917 1.3969 1.4360 1.4397 1.4858
size3 1.3392 1.2196 1.3511 1.3860 1.4725 1.4846 1.5895

Source size4 1.2067 0.9283 1.2853 1.3543 1.5697 1.6161 1.8692
size5 0 0 0.22110 0.62150 2.1443 2.3515 4.1797
size6 0 0 0 0 1.2824 1.7695 6.0746
size7 0 0 0 0 0 0 0

200km < Distance < 400km
size1 1.3641 1.3269 1.3851 1.3973 1.4346 1.4487 1.4956
size2 1.3631 1.3270 1.3846 1.3968 1.4367 1.4504 1.4935
size3 1.3090 1.2202 1.3545 1.3799 1.4648 1.4889 1.6106

Source size4 1.1813 0.9759 1.2754 1.3477 1.5448 1.5977 1.8757
size5 0 0 0.1522 0.6706 1.9323 2.2975 4.4027
size6 0 0 0 0 0.6692 1.4190 6.7712
size7 0 0 0 0 0 0 0

Distance > 400km
size1 1.3175 1.3092 1.3687 1.4282 1.4343 1.4829 1.5128
size2 1.3434 1.3050 1.3726 1.4186 1.4300 1.4783 1.5049
size3 1.2390 1.1926 1.3274 1.4639 1.4350 1.5919 1.6360

Source size4 1.1469 0.8761 1.3004 1.4588 1.4765 1.7712 1.8739
size5 0 0 0 0.6439 1.2650 3.5239 4.1429
size6 0 0 0 0 0 3.2889 5.6178
size7 0 0 0 0 0 0.0004 0.0029

Table 2. A summary of the size groups in the network.

Group No. of nodes % of the total nodes No. of edges in a group % of the total edges
size1 89 13.88% 17 0.07%
size2 10 1.56% 2 0.008%
size3 13 2.02% 19 0.07%
size4 20 3.12% 41 0.16%
size5 56 8.74% 506 1.94%
size6 60 9.36% 1086 4.17%
size7 393 61.31% 17484 67.09%
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Table 3. A summary of centrality measures for different size groups in the network.

Size1 Size2 Size3 Size4 Size5 Size6 Size7
In-strength
mean 1.202 6.300 9.846 15.250 38.232 79.117 417.791
median 1.000 4.500 8.000 12.000 21.000 32.000 262.000

(95% CI) (0.763,
1.641)

(1.174,
11.426)

(5.232,
14.461)

(8.192,
22.309)

(21.235,
55.229)

(51.804,
106.430)

(375.080,
460.503)

range (0, 11) (0, 24) (1, 29) (7, 76) (7, 451) (14, 543) (41, 2633)

Out-strength
mean 1.067 3.500 11.308 18.750 50.464 124.333 409.020

median 1.000 3.500 10.000 17.000 44.500 104.5000 270.000

(95% CI) (0.760,
1.375 )

(1.772,
5.228)

(6.408,
16.207)

(14.251,
23.249)

(44.010,
56.919)

(110.147,
138.520)

(370.854,
447.187)

range (0, 7) (0, 8) (3, 32) (7, 39) (23, 117) (48, 295) (49, 2187)

Betweenness
mean 59.580 478.316 874.537 1377.900 1329.300 5123.400 458.014

median 0 338.046 600.790 1334.900 1017.500 2606.100 325.821

(95% CI) (23.367,
95.790)

(136.166,
820.467)

(449.100,
1299.900)

(1021.400,
1734.500)

(1041.400,
1617.300)

(3539.800,
6707.100)

(411.019,
505.011)

range (0, 737.345) (0, 1195.4) (91.2106,
2279.3)

(141.363,
3391.5)

(65.760,
4995.5)

(833.733,
36326)

(0.747,
4207.9)

Eigenvector
mean .00076 0.0066 0.0108 0.0273 0.0794 0.1858 0.3530

median .00018 0.0036 0.0074 0.0217 0.0662 0.0922 0.2125

(95% CI) (0.0005,
0.0010)

(0.0003,
0.0135)

(0.0045,
0.0172)

(0.0177,
0.0369)

(0.0641,
0.0946)

(0.1289,
0.2427)

(0.3257,
0.3804)

range (0, 0.0050) (0, 0.0324) (.00098,
0.0371)

(0.0074,
0.1018)

(0.0191,
0.3039)

( 0.0407, 1) (0.0417,
0.9760)

Clustering coefficient
mean 0.006 0 0.187 0.112 0.223 0.354 0.796
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Figure 1. Movement Network for the pig population in the farm level. Different color represents different size groups.
Farms are divided into 7 size groups, size: 1-3(small farms), 4-5(medium farms), and 6-7(large farms).

3) high-betweenness (> 1000). These three groups contain 165, 335, and 141 nodes respectively. These three groups are
illustrated in Fig 4. In the low-betweenness group maximum nodes are from small size groups, in the medium-betweenness
group most of the nodes are from group7, and in the high-betweenness group, most of the nodes are from group6.

The mean eigenvector centrality is positively correlated with the size groups. Larger size groups have higher eigenvector
centralities (Table 3). We have divided the nodes (farms) into three groups: 1) low-eigenvector central nodes (0-0.1), 2)
medium-eigenvector central nodes (0.11- 0.5), and 3) high-eigenvector central nodes (0.51-1). The low-eigenvector central
group consists of 243 nodes, the medium group consists of 270 nodes, and the high group contains the rest of the nodes. The
network for different eigenvector groups is presented in Fig 5. Clustering coefficient for group size 7 is 0.796, which is quite
high. The nodes from this group forms several cluster, which are quite visible in Fig 1 and Fig 5.

8/15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/488767doi: bioRxiv preprint 

https://doi.org/10.1101/488767
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Node strength distribution of the directed network. (a) in-strength, (b) out-strength

Discussion
In this study, we have three objectives: 1) we compute optimal estimates swine movement probabilities among counties from
the aggregated data of USDA-NASS, 2) we develop a realization of the network from the estimated probabilities, and 3) we
analyze the developed network with different network analysis metrics.

Animal movement has been one of the major causes of diseases spread among the farms for several outbreaks in the US
swine industry. A better understanding of the swine movement network can increase the feasibility of planning effective
mitigation strategies that can reduce the chances of disease spread. There is no mandatory animal movement tracking system
in the US due to the appreciation of secrecy in the swine business. We estimated the movements among different swine
sub-populations using a convex optimization problem, formulated according to the NASS data. The discrepancy from our
optimization problem is about 5.5% of the total swine population, which is slightly higher than that of a similar work on
cattle movement probability estimation9 due to a greater amount of data available for cattle. Our estimation problem can be
improved if more data are available. The information that we have missed the most is the type of pig farms (for example,
nursery, farrow-to-feeder, farrow-to-wean, farrow-to-finish, finish only etc.) at the county level. The USDA-NASS department
should collect and publish this information in future reports, since this additional data would not hamper the anonymity of the
Census of Agriculture but greatly improve movement estimations.

The network development algorithm can provide us a realization of the network from the estimated movement probabilities.
The generated swine movement network was well connected with a giant component that contains 95.94% of the farms. Because
of this high connectivity, the swine industry is vulnerable to infectious diseases. All the disconnected farms were smaller farms
(inventory size less than 100) where most of them produce meat for their own consumption (60.5% of all small swine farms)34.
In addition to that, most of these small farms are engaged in all of the phases of swine production (farrow-to-finish producers)35.
On the other hand, larger farms have more connections among them. One possible reason could be that most of the large farms
are specialized in a single production phase to increase productivity36, 37. Consequently, pig shipments are very frequent among
them.

We use some centrality measures to understand the characteristics of the movement network. The node-strength distribution
of the network is similar to that of scale-free networks (Fig 2). Compared to a random network, epidemics can spread faster in a
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Figure 3. Betweenness distribution of the network.

scale-free network. In addition to that, scale-free networks have lower epidemic threshold transmission rates than comparable
random networks38. This information could be useful because targeted vaccination/node-removal is more effective in scale-free
structures than random vaccination39.

If we analyze the average shortest path length and the clustering coefficient of the overall network, we see evidence of the
small-world phenomenon in the network. The average path length was much smaller and clustering coefficient was more than
six times larger compared to the similar properties of the equivalent Erdos-Renyi random network40, which satisfy the sufficient
conditions for small-world properties of the network41. The US swine movement network structure is quite vulnerable to any
pathogen spreading because of its small-world nature. This result is similar to other studies as well14–16. This network has
high local clustering. Size7 group (larger operations: headcount is more than 1000) has the highest amount of local clustering.
Therefore, the large operations are highly interconnected, making them more vulnerable to outbreaks. Moreover, the structure
of the US swine industry has been changing over several years. The number of large operations is increasing, where most of
them specialize in one particular phase of production. These changes are increasing the risk for disease outbreaks in the swine
industry.

The correlation between in-strength (incoming movements) and out-strength (outgoing movements) is strong. The nodes
with high out-strength values also have high in-strength values. This is an important indicator as the nodes with high risk of
receiving infection are also highly capable of spreading them.

Although the group size7 (largest operations) has the highest values of node-strength, clustering coefficient, and eigenvector
centralities it is not necessarily highest in terms of the betweenness centrality measure. We found that the group size6 has
the highest betweenness centrality values. The group size4 and size5 also show high betweenness. The above-mentioned
properties indicate that the group size7 forms various clusters in the network, where the operations are highly connected. The
operations of medium size, however, maintain the connectivity among the clusters of the largest group. Hence, these medium
size operations play a key role in the system.

We made several assumptions to simplify our model as all the necessary data were not available. We assumed that the
inventory size of the operations is constant on a year-to-year basis. Our network only considers direct movements but there are
many indirect ways a disease could spread. Our estimation steps can be easily adapted by adding more constraints when more
data are available.
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Figure 4. Node groups according to betweenness . a) nodes with low-betweenness, b) nodes with medium-betweenness,
and c) nodes with high-betweenness. The connections among visible nodes are presented here. 11/15
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Figure 5. Node groups according to eigenvector centrality. a) Low-eigenvector central nodes, b) medium-eigenvector
central nodes, and c) high-eigenvector central nodes. The connections among visible nodes are presented here. 12/15
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One immediate use of this network could be the investigation of the stochastic spreading processes42–46. This kind of study
can help us understand the underlying mechanisms and threshold conditions of spreading processes for various swine diseases
including porcine reproductive and respiratory syndrome (PRRS), classical swine fever (CSF), African swine fever (ASF) and
many more.

In summary, we present a maximum entropy approach to estimate the swine movement network from aggregated anonymous
census data. This method can be used to estimate movement probabilities of other farm animals too for various locations.

Data Availability
The dataset used to perform this research is available from https://quickstats.nass.usda.gov/. The authors are willing to provide
further details upon request.

References
1. United states department of agriculture economic research service. Accessed: 2018-10-09.

2. Dee, S. et al. Mechanical transmission of porcine reproductive and respiratory syndrome virus throughout a coordinated
sequence of events during warm weather. Can. journal veterinary research 67, 12 (2003).

3. Perez, A. M. et al. Lessons learned and knowledge gaps about the epidemiology and control of porcine reproductive and
respiratory syndrome virus in north america. J. Am. Vet. Med. Assoc. 246, 1304–1317 (2015).

4. VanderWaal, K., Perez, A., Torremorrell, M., Morrison, R. M. & Craft, M. Role of animal movement and indirect contact
among farms in transmission of porcine epidemic diarrhea virus. Epidemics (2018).

5. Yadav, S., Widmar, O., Nicole, J. & Weng, H.-Y. Modeling classical swine fever outbreak-related outcomes. Front.
veterinary science 3, 7 (2016).

6. Valdes-Donoso, P., VanderWaal, K., Jarvis, L. S., Wayne, S. R. & Perez, A. M. Using machine learning to predict swine
movements within a regional program to improve control of infectious diseases in the us. Front. veterinary science 4, 2
(2017).

7. Bajardi, P., Barrat, A., Savini, L. & Colizza, V. Optimizing surveillance for livestock disease spreading through animal
movements. J. Royal Soc. Interface 9, 2814–2825 (2012).

8. Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Phil. Trans. R. Soc. B 370,
20140107 (2015).

9. Schumm, P., Scoglio, C. & Scott, H. M. An estimation of cattle movement parameters in the central states of the us.
Comput. Electron. Agric. 116, 191–200 (2015).

10. Kapur, J. N. & Kesavan, H. K. Entropy optimization principles and their applications. In Entropy and energy dissipation in
water resources, 3–20 (Springer, 1992).

11. Ziebart, B. D., Maas, A. L., Bagnell, J. A. & Dey, A. K. Maximum entropy inverse reinforcement learning. In AAAI, vol. 8,
1433–1438 (Chicago, IL, USA, 2008).

12. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol.
modelling 190, 231–259 (2006).

13. Jaynes, E. T. Information theory and statistical mechanics. Phys. review 106, 620 (1957).

14. Lee, K. et al. Unraveling the contact patterns and network structure of pig shipments in the united states and its association
with porcine reproductive and respiratory syndrome virus (prrsv) outbreaks. Prev. veterinary medicine 138, 113–123
(2017).

15. Thakur, K., Revie, C., Hurnik, D., Poljak, Z. & Sanchez, J. Analysis of swine movement in four c anadian regions: Network
structure and implications for disease spread. Transboundary emerging diseases 63, e14–e26 (2016).

16. Natale, F. et al. Network analysis of italian cattle trade patterns and evaluation of risks for potential disease spread. Prev.
veterinary medicine 92, 341–350 (2009).

17. United states department of agriculture national agricultural statistics service. Accessed: 2018-04-30.

18. United states department of agriculture. Accessed: 2018-04-30.

19. Pork checkoff. Accessed: 2018-04-30.

13/15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/488767doi: bioRxiv preprint 

https://quickstats.nass.usda.gov/
https://doi.org/10.1101/488767
http://creativecommons.org/licenses/by-nc/4.0/


20. Herrera-Ibatá, D. M., Martínez-López, B., Quijada, D., Burton, K. & Mur, L. Quantitative approach for the risk assessment
of african swine fever and classical swine fever introduction into the united states through legal imports of pigs and swine
products. PloS one 12, e0182850 (2017).

21. Wu, N. The maximum entropy method, vol. 32 (Springer Science & Business Media, 2012).

22. Harte, J. Maximum entropy and ecology: a theory of abundance, distribution, and energetics (OUP Oxford, 2011).

23. El-Halees, A. M. Arabic text classification using maximum entropy. IUG J. Nat. Stud. 15 (2015).

24. Newman, M. Networks: An introduction (Oxford university press, 2010).

25. Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical processes on complex networks (Cambridge university press,
2008).

26. Barabási, A.-L. et al. Network science (Cambridge university press, 2016).

27. Barrat, A., Barthelemy, M. & Vespignani, A. The architecture of complex weighted networks: Measurements and models.
In Large Scale Structure And Dynamics Of Complex Networks: From Information Technology to Finance and Natural
Science, 67–92 (World Scientific, 2007).

28. Newman, M. E. Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys. review E 64,
016132 (2001).

29. Brandes, U. A faster algorithm for betweenness centrality. J. mathematical sociology 25, 163–177 (2001).

30. Canright, G. S. & Engø-Monsen, K. Spreading on networks: a topographic view. Complexus 3, 131–146 (2006).

31. Youssef, M. & Scoglio, C. An individual-based approach to sir epidemics in contact networks. J. theoretical biology 283,
136–144 (2011).

32. Bisschop, J. J. & Entriken, R. AIMMS: The modeling system (Paragon Decision Technology BV, 1993).

33. Bastian, M., Heymann, S., Jacomy, M. et al. Gephi: an open source software for exploring and manipulating networks.
Icwsm 8, 361–362 (2009).

34. United states department of agriculture animal and plant health inspection service. Accessed: 2018-10-12.

35. Giamalva, J. Pork and swine. industry and trade summary. United States Int. Trade Comm. (2014).

36. Key, N. & McBride, W. The changing economics of us hog production. (2007).

37. McBride, W. & Key, N. Characteristics and production costs of us hog farms, 2004. (2007).

38. Kiss, I. Z., Green, D. M. & Kao, R. R. Infectious disease control using contact tracing in random and scale-free networks.
J. The Royal Soc. Interface 3, 55–62 (2006).

39. Nair, A. & Vidal, J. M. Supply network topology and robustness against disruptions–an investigation using multi-agent
model. Int. J. Prod. Res. 49, 1391–1404 (2011).

40. Erdos, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 17–60 (1960).

41. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. nature 393, 440 (1998).

42. Sahneh, F. D., Scoglio, C. & Van Mieghem, P. Generalized epidemic mean-field model for spreading processes over
multilayer complex networks. IEEE/ACM Transactions on Netw. (TON) 21, 1609–1620 (2013).

43. Moon, S. A., Cohnstaedt, L. W., McVey, D. S. & Scoglio, C. M. A spatio-temporal individual-based network framework
for west nile virus in the usa: spreading pattern of west nile virus. bioRxiv 438366 (2018).

44. Shahtori, N. M., Ferdousi, T., Scoglio, C. & Sahneh, F. D. Quantifying the impact of early-stage contact tracing on
controlling ebola diffusion. Math. Biosci. & Eng. 15, 1165–1180 (2018).

45. Ferdousi, T., Cohnstaedt, L., McVey, D. & Scoglio, C. Understanding the role of sexual transmission in the spread of zika
virus using an individual-based interconnected population model. (2018).

46. Riad, M. H., Scoglio, C. M., McVey, D. S. & Cohnstaedt, L. W. An individual-level network model for a hypothetical
outbreak of japanese encephalitis in the usa. Stoch. environmental research risk assessment 31, 353–367 (2017).

Acknowledgements
The authors would like to express their gratitude to Dr. Sanderson for helpful insights into the US swine industry. This material
is based upon work supported by the United States Department of Agriculture under the Grant No. 2015-67013-23818 (NIFA)
and by the State of Kansas, National Bio and Agro-Defense Facility (NBAF) Transition Fund through the National Agricultural
Biosecurity Center (NABC) at Kansas State University.

14/15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/488767doi: bioRxiv preprint 

https://doi.org/10.1101/488767
http://creativecommons.org/licenses/by-nc/4.0/


Author contributions
S.M., T.F. and C.S. conceived and designed the study, S.M. performed the experiments, S.M. and C.S. analysed the results.
S.M. and C.S. wrote the manuscript. T.F., A.S. and C.S. edited the manuscript. All authors reviewed the manuscript.

Additional information
Competing interests: The authors declare no competing interests.

Electronic supplementary material
Dataset 1. A description of the pig population in the counties of the central agricultural district of IOWA.
Dataset 2. A description of the nodes in the network.
Dataset 3. Adjacency list.

15/15

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 6, 2018. ; https://doi.org/10.1101/488767doi: bioRxiv preprint 

https://doi.org/10.1101/488767
http://creativecommons.org/licenses/by-nc/4.0/

	References

