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Agriculture is a major driver of global biodiversity loss, accounts for one quarter of green-
house gas emissions, and is responsible for 70% of freshwater use. How can land be used
for agriculture in a way that minimises environmental impacts while maintaining cur-
rent production levels? We solved this more than 10 million dimensional optimisation
problem and find that moving current croplands and pastures to optimal locations, while
allowing then-abandoned areas to regenerate, could simultaneously decrease the current
carbon, biodiversity and water footprint of global agriculture by up to 71%, 91% and
100%, respectively. This would offset current net CO2 emissions for half a century, mas-
sively alleviate pressures on global biodiversity and greatly reduce freshwater shortages.
Reductions of up to 59%, 78% and close to 100% are achievable by relocating production
within national borders, with the greatest potential for carbon footprint reduction held by
the world’s top three CO2 emitting countries.

The conversion of almost half of the world’s ice-free land area (1) to cropland and pasture
has contributed to three of humanity’s most pressing environmental challenges (2, 3): (i) agri-
culture accounts for a quarter of anthropogenic greenhouse gas emissions (4), largely from the
release of carbon stored in vegetation and soils (5, 6); (ii) agriculture is the predominant driver of
habitat loss, the greatest threat to global biodiversity (7); and (iii) agriculture is responsible for
70% of global freshwater usage for irrigation, leading to shortages of potable water in many arid
areas of the world (8). A rising demand for animal products (9) thwarts hopes that the poten-
tial for dietary shifts to decrease the environmental footprints of food production (2, 10, 3) can
be fully realised in the near future. Yield increases through more resource-efficient practices,
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technological advancements and genetically enhanced crop varieties are promising (2, 11, 3),
however a growing human population and increasing per-capita consumption (12) threaten to
offset the potential of these developments without complementary measures.

Optimising the spatial distribution of production could help to minimise the impact of agri-
culture (13). Empirical evidence shows that biodiversity and carbon stocks previously lost
through land conversion can rapidly reach pre-disturbance levels if these lands are allowed
to regenerate, often without active human intervention (Supplementary text). Relocating crop-
lands and pastures that are currently situated in areas with high potential biodiversity and carbon
stocks, and subsequently allowing these areas to regenerate, may therefore lead to net carbon
and biodiversity benefits. If, in addition, new agricultural areas were established where suffi-
cient rainfall obviates the need for irrigation, the water footprint of global agriculture could be
substantially reduced at the same time.

We used global maps of the current distribution of pasture and harvested areas of 43 major
crops (Table S1), which between them account for over 95% of global agricultural land (14),
to assess the current carbon and biodiversity footprints of agriculture. The carbon impact in
a specific area was calculated as the difference between local potential natural carbon stocks
in vegetation and soils, and carbon stocks under the type of agricultural land use present there
(14). Similarly, the local biodiversity impact of agriculture was estimated as the difference be-
tween local biodiversity under natural vegetation, and under cropland or pasture. Biodiversity is
measured in terms of range rarity, in which local bird, mammal and amphibian species richness
is weighted by the inverse of the species’ ranges (14). Range rarity has been advocated as a
particularly meaningful biodiversity metric for conservation planning (15).

By the same methods, we predicted potential carbon and biodiversity impacts in areas that
are currently not cultivated but are suitable for agricultural use (14). We used estimates of agro-
climatically attainable crop and grass production on potential agricultural areas that assume
only rain-fed water supply (14), so as to identify land use configurations that require no irriga-
tion. We considered three different management levels, representing the range from traditional,
subsistence-based organic farming systems to advanced, fully mechanised production that uses
high-yielding crop varieties and optimum fertiliser and pesticide application (14).

Using these realised and potential yield and impact estimates, we identified the global dis-
tribution of agricultural areas that provides the same total production of the 43 crops and grass
as the current one, while minimising the total environmental footprint. On a 30 arc-minute
(0.5◦) grid, this requires solving a more than 106-dimensional linear optimisation problem (14).
We estimated that for the optimal configuration of agricultural areas and advanced management
farming, current carbon and biodiversity impacts of global agriculture could be simultaneously
reduced by up to 71% and 91%, respectively (Fig. 1A). This would offset the current annual
increase of atmospheric CO2 of 4.7 Pg C y-1 (16) for 49 years, while drastically alleviating pres-
sures on terrestrial biodiversity. As per the data used, no irrigation is required to supplement
rainfall water supply. The total worldwide area used for agriculture in this scenario is less than
half of its current extent. The trade-off between reducing carbon and biodiversity impacts is
minimal; optimising land use for each impact measure independently yields only marginally
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higher reduction potentials of 74% and 98%, respectively (Fig. 1A). Under traditional farming,
simultaneous carbon and biodiversity impact reductions of up to 43% and 84%, respectively,
are feasible (Fig. 1C). Whilst this confirms that increasing crop yields is important for reducing
the environmental footprint of agriculture (11, 2, 12, 10, 3), it demonstrates that a substantial
impact reduction could be achieved by land reallocation alone.

A B C

Figure 1: Possible reduction of current carbon and biodiversity footprints of global agriculture by op-
timally relocating agricultural production. Each contour level represents the frontier of simultaneously
achievable carbon and biodiversity impact reduction for a given proportion of local land area that is
available for agricultural use (see text). Black lines correspond to a subjectively defined optimal trade-
off between carbon and biodiversity impacts.

Thus far, we have assumed that the entire area of each grid cell is available for agricultural
use. How does the potential for reducing impact change if only a proportion of each grid
cell can be cultivated, while the remainder is retained as natural ecosystem or used for other
purposes? In this scenario, total impacts are necessarily higher, because less optimal areas,
in which environmental impacts are higher in relation to yields, also need to be cultivated to
meet a given production level. This is disproportionally the case for low intensity farming,
which inherently requires more land. We found that when only half of the local land area can
be used for agriculture, carbon and biodiversity impacts could be simultaneously reduced by
63% and 90%, respectively, under advanced management (Fig. 1A), but only by 30% and 80%,
respectively, for traditional farming (Fig. 1C). Allocating as much land as possible in optimal
areas therefore becomes more important the less advanced the farming system is.

Moving agricultural production, and thus labour and capital, across national borders poses
political and socio-economic challenges that will be difficult to resolve in the near future. We
therefore repeated our analyses, allowing croplands and pastures to be relocated only within
countries, while requiring current national production levels to remain unchanged (14). We es-
timated that if each country independently optimised its distribution of agricultural areas, the
current global carbon and biodiversity impacts of agriculture could be simultaneously reduced
by up to 59% and 78%, respectively (Fig. 1A). In this scenario, the vast majority of production
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Figure 2: Optimal and current distribution of agricultural areas. (A)–(D) Optimal distribution of crop-
lands and pastures for across- and within-country relocation of current agricultural areas. Red areas
represent the land that is required to meet current production levels if grid cells are entirely available for
agricultural use, while both red and yellow areas are required when only 50% of grid cells are allowed to
be cultivated, etc. (see text). Maps show optimal configurations for advanced management farming and
the optimal impact trade-off shown in Fig. 1A. (E)–(F) Current distribution of croplands and pastures.
Current and optimal distributions for a specific crop, maize, are shown in Figure S2C–E.

can be relocated so that rainfall provides sufficient water supply; however, some countries pro-
duce crops for which national natural agro-climatic conditions are not suitable, and thus some
irrigation continues to be needed (14). Fig. 3 lists the ten countries with the highest absolute
carbon and biodiversity reduction potentials, showing that the world’s three largest CO2 emit-
ters – China, India and the United States (17) – are also the countries that can reduce their
agricultural carbon footprint the most.

Agricultural areas optimally sited to minimise environmental impacts coincide only to a
limited extent with their current distribution (Fig. 2). The world’s most produced crop, maize,
for example, is currently planted predominantly in the United States and China, but would
ideally be grown in parts of Sub-Saharan Africa (Fig. S1). In the scenario of optimal within-
country land reallocation, the optimal land use coincides with the current one on 30% of optimal
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Figure 3: Current national (A) carbon and (B) biodiversity impacts of agriculture, and potentials for
impact reduction by means of within-border relocation of agricultural areas for 10 countries, ordered by
absolute impact reduction potential. Results correspond to the optimal impact trade-offs shown in Fig.
1A–C.

areas, while 42% of optimal areas are located in regions already under some type of agricultural
use, and 45% are located in either currently active or abandoned agricultural areas (Fig. S2).
This overlap is significantly lower in the scenario of across-country relocation (Fig. S2). Whilst
the expansion of agriculture into degraded areas has been advocated as a way to minimise
future biodiversity and carbon losses (2, 11), our results suggest that potential biodiversity and
carbon stocks on currently cultivated and abandoned agricultural areas are often so high that,
in principle, their restoration would be preferable to the protection of natural habitat in the
identified optimal growing areas.

For computational reasons, here, we did not explore the possibility of crop rotations and
other diversification types, which can have benefits, e.g. for pest and disease suppression (18).
Our analyses also do not account for possible changes in yields as the result of climate change
(19). Both aspects may affect the precise location of optimal areas, and decrease or increase the
reduction potentials identified here, however, we do not expect them to qualitatively change our
overall conclusions.

Whilst our estimates of achievable impact reductions assume a fully optimised distribution
of agricultural areas, we stress that even relocating only a small share of production would
already generate a substantial portion of these benefits. 50% of the current total carbon impacts
of individual crops are caused by areas that account for only 26±5% of the total production,
while a mere 8±4% of production are responsible for 50% of biodiversity impacts (Fig. S3).
Prioritising the relocation of these areas, where the ratio of environmental impact to yield is
largest, would have disproportionately high carbon and biodiversity benefits, and represents the
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most effective strategy for countries to progressively reduce impacts.
How can the relocation of agricultural areas, whether at a small or large scale, be imple-

mented in practice? There are a number of national and supranational set-aside schemes, aimed
at retiring agricultural land for environmental benefits, that offer useful templates for how di-
rect payments for ecosystem services can reduce impacts in socio-economically sustainable
ways (20, 21). As a case example, China’s Grain for Green programme, the world’s largest na-
tional set-aside scheme, achieved the reforestation of 15 million hectares of farmland between
1999 and 2010, with generally positive economic outcomes for the 124 million people involved
(22). While primarily aimed at reducing soil erosion, the programme also generated substantial
carbon and biodiversity benefits (22, 23). Notably, the scheme led to an effective relocation of
agricultural land from Southern to Northern China (24), facilitated by higher financial incen-
tives for retiring land in the South. Setting up incentives in relation to local potential biodiversity
and carbon stocks will indeed be crucial for achieving benefits most effectively. International
climate funds can support countries that lack the financial means for direct payments to farm-
ers in implementing durable set-aside schemes. It is important to note that in many parts of
the world, agricultural subsidies prevent land abandonment and migration to urban centres that
would naturally occur otherwise (25); thus, reducing subsidies in areas with high potential bio-
diversity and carbon stocks represents a particular cost-efficient way to generate benefits (26).
A range of financial, infrastructural and policy measures have also proven effective at steering
the establishment of new agricultural land towards desired agro-ecologically optimal areas (27).

Spatial reallocation of agricultural production has tremendous potential to reduce its envi-
ronmental footprint, but the implementation of such changes requires careful management of
the process. Relocating cultivated areas can only lead to a reduction of impact if abandoned
areas with high potential biodiversity and carbon stocks are effectively protected and their re-
generation is ensured. This requires strong institutional, legal, and policy frameworks, and
financial incentives for landowners (28, 29, 30). Their implementation at the national and in-
ternational level will be crucial for realising the environmental potential of moving agricultural
areas, providing gains that are badly needed if we are to reverse the ongoing degradation of
global climate, biodiversity and water under an ever increasing demand for food.
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Materials and Methods
In the following, we define the mathematical optimisation problem whose solutions represent
minimum impact configurations of agricultural land, and specify the datasets that were used to
solve it. We use the following notation:

x : index of an arbitrary cell on a global 30 arc-minute (0.5◦) grid
A(x) : physical area of grid cell x (ha)

Yi(x) : current yield of crop i in grid cell x (Mg C ha-1 y-1)
Hi(x) : current harvested area fraction of crop i in grid cell x

Ci(x) : carbon impact of crop i in grid cell x (Mg ha -1)
Bi(x) : biodiversity impact of crop i in grid cell x (local range rarity loss)

Ŷi(x) : agro-climatically attainable yield of crop i in grid cell x (Mg ha-1 y-1)
V (x) : fraction of area available for agriculture in grid cell x

On pastures, yield is assessed in terms of the annual production of forage per hectare. The
current total annual production of crop i is given by

Pi =
∑
x

Hi(x) · A(x) · Yi(x)︸ ︷︷ ︸
Production of crop i

in grid cell x

, (1)

and the current global carbon and biodiversity impacts of agriculture are given by∑
i

∑
x

Hi(x) · A(x) · Ci(x)︸ ︷︷ ︸
Total carbon impact of crop i

and
∑
i

∑
x

Hi(x) · A(x) ·Bi(x)︸ ︷︷ ︸
Total biodiversity impact of crop i

,

respectively.
For each crop i and each grid cell x, we determined the harvested area fraction Ĥi(x) such

that the total production of each crop i equals the current production Pi, while the environmental
impact is minimised. Any solution must satisfy the equality constraints∑

x

Ĥi(x) · A(x) · Ŷi(x) = Pi for each crop i, (2a)

requiring the total production on new agricultural areas to be equal to the current one, and the
inequality constraints ∑

i

Ĥi(x) ≤ V (x) for each grid cell x, (2b)

which ensure that the local sum of agricultural lands is not larger than the locally available area.
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Subject to these constraints, we can identify the configuration that minimises the total carbon
or biodiversity impact by minimising the objective function∑

i

∑
x

Ĥi(x) · A(x) · Ci(x) or
∑
i

∑
x

Ĥi(x) · A(x) ·Bi(x),

respectively. More generally, we consider the linearly weighted objective function∑
i

∑
x

Ĥi(x) · A(x) ·
(
λ · Ci(x) + (1− λ) ·Bi(x)

)
→ min, (3)

where λ ranges between 0 and 1, thus allowing us to minimise both impacts simultaneously and
examine potential trade-offs.

The above framework is identical when examining the potential for impact reduction by
means of relocating croplands within national borders rather than globally. In this case, the
sum over x in the calculation of national production (Eq. (1)), in the optimisation constraints
(Eqs. (2a)–(2b)) and in the objective function (Eq. (3)) is taken over grid cells that correspond
to specific countries rather than the whole world, and the optimisation problem is solved inde-
pendently for each country. Some countries produce small quantities of crops that, according to
the data used here, would not grow anywhere within their borders under natural climatic con-
ditions, i.e. these crops likely require irrigation or greenhouses cultivation. Our analysis shows
that these crops account for a fraction of 0.12% of current global agricultural areas that can not
be relocated within national borders to areas where rain-fed cultivation is possible. These crops
were excluded from Eq. (3) for the respective countries; we added the environmental impacts
associated with the current growing areas of these crops to the minimum national impacts found
by Eq. (3).

Although all data required to compute the relevant variables, A(x), Yi(x), Hi(x), Ci(x),
Bi(x), Ŷi(x) and V (x) (see below), are available at a 5 arc-minute (0.083◦) grid resolution, for
computational reasons, we upscaled the final data to a 30 arc-minute (0.5◦) grid. For pasture
and 43 crops, this implies a more than 10 million dimensional linear optimisation problem. We
solved Eq. (3) using the dual-simplex algorithm in the function linprog of the Matlab R2018a
Optimization Toolbox (31).

Current and potential agricultural areas and yields: Hi(x),Yi(x), Ŷi(x) We used global
maps of harvested areas, Hi(x), and fresh weight yields, Yi(x), of 43 crops (32), and a global
map for pasture (33) (Table S1). These areas cover 95.2% of the combined area of pasture
and harvested areas of 175 crops (32), for which data is available. We used global maps of
potential growing areas and agro-climatically attainable dry weight yields, Ŷi(x), for baseline
climate, rain-fed water supply and three different management levels for the same 43 crops and
pasture grass (34). Management levels represent the range from traditional, labour-intensive
farming systems without synthetic chemicals, to advanced, market-oriented production that is
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fully mechanised, uses high-yielding crop varieties, and optimum applications of nutrients and
pest, disease and weed control (34). Potential yields were converted from dry weight to fresh
weight using crop-specific conversion factors (32). We are not aware of a global dataset of
forage production on current pastures, and therefore used potential pasture grass yields for rain-
fed water supply and intermediate input management as an estimate on these areas.

Carbon impact: Ci(x) Following ref. (6), the local carbon impact of agriculture, Ci(x),
was estimated as the difference between potential natural vegetation and soil carbon stocks, and
carbon stocks under agricultural land cover.

The change of carbon stocks in vegetation resulting from land conversion is given by the
difference of carbon stored in potential natural vegetation (6) and carbon stored in grass or
crops, which was calculated as in ref. (6), based on the data compiled by ref. (32).

Due to the technical difficulties of acquiring empirical data across large spatial scales,
spatially-explicit global estimates of soil organic carbon (SOC) dynamics under varying land
use types are currently not available. We therefore chose a simple approach, consistent with
average estimates across large spatial scales, rather than a complex spatially-explicit model for
which, given the limited empirical data, robust predictions on and beyond currently cultivated
areas would not be possible. Following ref. (6), and supported by empirical meta-analyses
(35, 36, 37, 38, 39), we assumed a 25% reduction of potential natural SOC (see below) from
the conversion to cropland. Meta-analyses of the change of SOC stocks when natural habitat is
converted to pasture suggest, on average, no significant change (37), a slight increase (36, 39)
or slight decrease (38). Here, we assumed no change in carbon stocks when natural habitat is
converted to pasture. Absolute local SOC loss from the conversion of potential natural veg-
etation to cropland or pasture was estimated by applying the appropriate loss percentages to
a global map of pre-agricultural SOC stocks (5). The total local carbon impact of agriculture
(Mg C ha-1) is thus given by

Ci(x) = Cpotential vegetation(x) + γ · Cpotential SOC(x)− Ccrop(i),

where Cpotential vegetation(x), Cpotential SOC(x) and Ccrop(i) denote the carbon stocks (Mg C ha-1) of
potential natural vegetation, potential natural SOC stocks, and carbon stocks of crop i, respec-
tively, in the grid cell x, and where γ is equal to 0.25 or 0 if land is converted to cropland or
pasture, respectively.

We did not consider greenhouse gas emissions from sources other other than from land
use change. This includes nitrous emissions from fertilised soils and methane emissions from
livestock and rice paddies (40). In contrast to the one-off land use change emissions, these
are ongoing emissions that are tied to production and incur continually. We do not consider
available data sufficient to allow a robust extrapolation of these emission types to currently
uncultivated land. We argue, though, that the magnitude of these emissions in a scenario of land
reallocation in which total production is constant, is likely similar to that associated with the
current distribution of agricultural areas. We also did not consider emissions associated with
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transport; however, these have been argued to be small compared to other food chain emissions
(41) and poorly correlated with the actual distance travelled by agricultural products (42).

Biodiversity impact: Bi(x) We assessed the local biodiversity impact of agriculture in terms
of range rarity loss. Range rarity has been advocated as a metric for biodiversity that is more
relevant to conservation planning than alternative measures, such as species richness (43, 44,
45, 15, 46). Bi(x) is calculated as the difference between range rarity under natural vegetation
and under agricultural land cover as follows: Using a similar approach to that of ref. (47),
we considered a bird, mammal or amphibian species to be potentially present in a cell of a 5
arc-minute grid if the species’ spatial extent of occurrence (48, 49) overlays the grid cell, and
if its habitat preferences (48, 49) include the local potential natural vegetation type (50). Each
species’ potential natural range (ha) is then given by the total area of all grid cells identified as
containing the species. Next, potential natural range rarity of each grid cell was obtained as the
sum of the inverse ranges of all species present in the grid cell under potential natural vegetation.
Finally, global maps of range rarity loss resulting from the conversion of natural vegetation
to cropland or pasture were derived by subtracting, in each grid cell, the sum of the inverse
ranges of potentially present species whose habitat preferences also include cropland or pasture,
respectively, from the potential natural range rarity. As with Ci(x) (see above), this approach
allowed us to estimate biodiversity impact for both currently cultivated and uncultivated areas.

Land available for agriculture: V(x) We assumed that the maximum area available for
agriculture in a grid cell is given by the proportion not occupied by any crop other than the 43
considered here (32), or by water bodies, infrastructure or settlements (34). Areas where soil
and terrain-slope conditions are not suitable for agriculture are already excluded in the potential
yield data (34).

As specified in the main text, we also examined the scenario in which only a certain fraction
of this maximum available area is available as potential agricultural land.
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A B

C

Figure S1: (A)–(C) Optimal and current growing locations of maize in the scenarios shown in Fig.
1A,C,E, respectively.
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A B C

Figure S2: Overlap between optimal agricultural areas (under the six specified scenarios) and (A) current
agricultural land where the specific current and optimal crop types coincide (i.e. where current crops are
already optimally sited), (B) current agricultural land (irrespective of the specific local land use), and (C)
the combined area of current agricultural land and abandoned, wasted or idle agricultural land (using the
global dataset of ref. (51)). All values are relative to the total area required in the appropriate optimal
scenario. Plots correspond to the optimal impact trade-off shown in Fig. 1A–C.
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Figure S3: Cumulative production and environmental impact on current and optimal agricultural areas.
(A)–(B) For each crop and grass, we sorted the relevant growing locations according to the local ratio of
environmental impact to yield, from high to low. We then generated cumulative production-impact curves
by traversing areas in that order. For comparability, the resulting 44 curves were converted to a relative
scale, and are summarised by the 10–90th percentiles shown. Black lines represent means across crops.
Dotted lines illustrate the level of production on the least agro-environmentally efficient growing areas
that corresponds to 50% of the total crop-specific impact. The more concave the production-impact curve
is, the larger are the relative environmental benefits of relocating even small portions of land. (C)–(F)
Equivalent of (A)–(B) for optimally sited agricultural areas, but with growing locations ordered from low
to high impact-to-yield ratio (i.e. the order in which new areas would ideally be established). Dotted lines
thus show the maximum achievable level of production that causes 50% of the environmental impact.
Data correspond to advanced management farming and the optimal impact trade-off shown in Fig. 1A.
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Current
carbon
impact of
agriculture
(Mg C)

Current
biodiversity
impact of
agriculture
(cumulative
range rarity)

Potential
national car-
bon impact
reduction

Potential in-
ternational
carbon
impact
reduction

Potential
national
biodiversity
impact
reduction

Potential in-
ternational
biodiversity
impact
reduction

Alfalfa 21.9 8.3 77% 87% 83% 83%
Banana 8.3 23 64% 74% 82% 97%
Barley 69.5 18.5 78% 90% 87% 79%
Buckwheat 3.4 0.9 76% 80% 84% 83%
Cabbage 4.5 3.1 73% 90% 80% 93%
Cassava 30.7 46.1 77% 90% 90% 95%
Carrot 1.5 1.1 69% 87% 87% 88%
Chickpea 14.2 8.6 66% 92% 86% 96%
Cocoa 14.3 27.7 87% 92% 95% 99%
Coconut 26.2 86 68% 81% 87% 97%
Cocoyam 2.8 4.2 82% 88% 94% 97%
Coffee 22.2 72.4 85% 89% 96% 99%
Cotton 33.7 18.8 58% 80% 80% 79%
Cowpea 9.9 6.6 92% 94% 94% 94%
Flax 0.8 0.1 47% 70% 58% 39%
Green bean 1.6 2 89% 93% 97% 99%
Groundnut 30.7 21.9 80% 89% 89% 92%
Maize 202.4 225.4 76% 84% 92% 92%
Millet 30.2 18.6 91% 95% 92% 96%
Oat 17.9 4.1 68% 84% 79% 74%
Oil palm 24.1 42.6 58% 71% 81% 93%
Olive 9.9 3.1 87% 96% 95% 95%
Onion 4.3 3.6 78% 90% 91% 91%
Orange 6 9.4 74% 86% 89% 96%
Pasture grass 97.8 24.4 83% 95% 89% 86%
Pasture legume 6.3 1.9 49% 80% 85% 64%
Pea 8 3.2 58% 72% 73% 86%
Pigeon pea 6.9 3.7 91% 94% 87% 89%
Potato 31.2 17.6 77% 90% 84% 94%
Rape 34.9 11.1 73% 89% 79% 87%
Rice 308.6 305.1 62% 75% 84% 91%
Rye 15.2 1.2 75% 85% 77% 57%
Sorghum 39.6 33.2 92% 92% 94% 96%
Soybean 105 56 73% 75% 78% 85%
Sugarbeet 9.2 1.2 52% 71% 67% 51%
Sugarcane 36.1 67.2 20% 55% 62% 87%
Sunflower 23.2 8.2 76% 83% 83% 91%
Sweet potato 15.6 15.8 66% 88% 93% 92%
Tea 4.2 9.9 75% 85% 75% 97%
Tobacco 7.7 8.3 68% 86% 86% 96%
Tomato 5.1 4.1 61% 83% 81% 76%
Wheat 244.4 79.8 74% 86% 68% 88%
Yam 7.1 5.8 81% 85% 85% 92%
Pasture 1807.3 2808.9 48% 59% 75% 90%

Table S1: List of crops considered in this study, their current global carbon and biodiversity impacts,
and the potentials for reducing impacts under optimal within- and across-border relocation of areas.
Reduction potentials are shown for advanced management farming and the optimal impact trade-off
shown in Fig. 1A.
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Supplementary text
Carbon and biodiversity recovery on abandoned agricultural land We briefly review em-
pirical results on the recovery of biodiversity and carbon stocks on regenerating agricultur-
ally degraded land. In both cases, recovery follows an asymptotic concave trajectory; the
time required to reach pre-disturbance levels can therefore be difficult to pinpoint, as both
slightly shorter or longer times correspond to similar recovery levels in the flat saturation
stage of the recovery function. Above- and below-ground carbon stocks have been found
to asymptotically reach pre-disturbance values within 50–100 years after land abandonment
(52, 53, 54, 55, 56, 57, 58). Slower biomass accumulation coupled with lower potential car-
bon stocks in temperate forests leads to overall similar recovery times compared to tropical
forests (59). In grasslands, carbon stocks recover within a few decades following land abandon-
ment (60, 54). Faunal species richness on regenerating degraded land reaches pre-disturbance
levels on timescales of decades to a century (61, 62, 56, 63, 53, 64). Initial colonists may
represent different species to those present before degradation occurred (65, 63, 66), but the
proportion of old-growth species increases as secondary ecosystems age, thereby gradually re-
placing non-native species (67, 65, 68, 63, 56, 69, 70). Biodiversity tends to regenerate faster in
temperate than in tropical regions, and faster in grassland and shrubland biomes than in forests
(62, 71, 53, 64).

Whilst assisted regeneration and active restoration can accelerate carbon and biodiversity
recovery (28, 67, 29, 62, 72, 73, 74, 63, 75, 66, 53), passive regeneration is often the most ef-
fective strategy (76).
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